This commit is contained in:
2023-02-13 15:04:44 +08:00
parent 07b0d54146
commit 3014078e68
5 changed files with 492 additions and 0 deletions

180
segpredict.py Normal file
View File

@ -0,0 +1,180 @@
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import numpy as np
import cv2
import matplotlib.pyplot as plt
import albumentations as albu
import torch
import segmentation_models_pytorch as smp
from torch.utils.data import Dataset as BaseDataset
import imageio
# ---------------------------------------------------------------
### Dataloader
class Dataset(BaseDataset):
"""CamVid数据集。进行图像读取图像增强增强和图像预处理.
Args:
images_dir (str): 图像文件夹所在路径
masks_dir (str): 图像分割的标签图像所在路径
class_values (list): 用于图像分割的所有类别数
augmentation (albumentations.Compose): 数据传输管道
preprocessing (albumentations.Compose): 数据预处理
"""
# CamVid数据集中用于图像分割的所有标签类别
#CLASSES = ['sky', 'building', 'pole', 'road', 'pavement',
# 'tree', 'signsymbol', 'fence', 'car',
# 'pedestrian', 'bicyclist', 'unlabelled']
CLASSES = ['front']
def __init__(
self,
images_dir,
# masks_dir,
classes=None,
augmentation=None,
preprocessing=None,
):
self.ids = os.listdir(images_dir)
self.images_fps = [os.path.join(images_dir, image_id) for image_id in self.ids]
# convert str names to class values on masks
self.class_values = [self.CLASSES.index(cls.lower()) for cls in classes]
self.augmentation = augmentation
self.preprocessing = preprocessing
def __getitem__(self, i):
# read data
image = cv2.imread(self.images_fps[i])
image = cv2.resize(image, (512, 512)) # 改变图片分辨率
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# 图像增强应用
if self.augmentation:
sample = self.augmentation(image=image)
image = sample['image']
# 图像预处理应用
if self.preprocessing:
sample = self.preprocessing(image=image)
image = sample['image']
return image
def __len__(self):
return len(self.ids)
# ---------------------------------------------------------------
def get_validation_augmentation():
"""调整图像使得图片的分辨率长宽能被32整除"""
test_transform = [
albu.PadIfNeeded(384, 480)
]
return albu.Compose(test_transform)
def to_tensor(x, **kwargs):
return x.transpose(2, 0, 1).astype('float32')
def get_preprocessing(preprocessing_fn):
"""进行图像预处理操作
Args:
preprocessing_fn (callbale): 数据规范化的函数
(针对每种预训练的神经网络)
Return:
transform: albumentations.Compose
"""
_transform = [
albu.Lambda(image=preprocessing_fn),
albu.Lambda(image=to_tensor),
]
return albu.Compose(_transform)
# 图像分割结果的可视化展示
def visualize(**images):
"""PLot images in one row."""
n = len(images)
plt.figure(figsize=(16, 5))
for i, (name, image) in enumerate(images.items()):
plt.subplot(1, n, i + 1)
plt.xticks([])
plt.yticks([])
plt.title(' '.join(name.split('_')).title())
plt.imshow(image)
plt.show()
# ---------------------------------------------------------------
if __name__ == '__main__':
DATA_DIR = './data/CamVid/'
x_test_dir = os.path.join(DATA_DIR, 'abc')
img_test = cv2.imread('data/CamVid/abc/pic_unscan_front.jpg')
height = img_test.shape[0]
weight = img_test.shape[1]
print(type(img_test))
print('>>>>>>shape {}'.format(img_test.shape))
#ENCODER = 'resnet18'
ENCODER = 'mobilenet_v2'
ENCODER_WEIGHTS = 'imagenet'
CLASSES = ['front']
ACTIVATION = 'sigmoid' # could be None for logits or 'softmax2d' for multiclass segmentation
DEVICE = 'cuda'
# 按照权重预训练的相同方法准备数据
preprocessing_fn = smp.encoders.get_preprocessing_fn(ENCODER, ENCODER_WEIGHTS)
# 加载最佳模型
best_model = torch.load('./best_model.pth')
# 创建检测数据集
predict_dataset = Dataset(
x_test_dir,
augmentation=get_validation_augmentation(),
preprocessing=get_preprocessing(preprocessing_fn),
classes=CLASSES,
)
# 对检测图像进行图像分割并进行图像可视化展示
predict_dataset_vis = Dataset(
x_test_dir,
classes=CLASSES,
)
for i in range(len(predict_dataset)):
# 原始图像image_vis
image_vis = predict_dataset_vis[i].astype('uint8')
image = predict_dataset[i]
# 通过图像分割得到的0-1图像pr_mask
x_tensor = torch.from_numpy(image).to(DEVICE).unsqueeze(0)
pr_mask = best_model.predict(x_tensor)
pr_mask = (pr_mask.squeeze().cpu().numpy().round())
print('>>>>>>> pr_mask{}'.format(pr_mask.shape))
print('>>>>>>{} {}'.format(height, weight))
# 恢复图片原来的分辨率
#image_vis = cv2.resize(image_vis, (weight, height))
#pr_mask = cv2.resize(pr_mask, (weight, height))
pr_mask = cv2.resize(pr_mask[0,:,:], (weight, height))
# 保存图像分割后的黑白结果图像
imageio.imwrite('f_test_out.png', pr_mask)
# 原始图像和图像分割结果的可视化展示
# visualize(
# image=image_vis,
# predicted_mask=pr_mask
# )