Files
ieemoo-ai-contrast/tools/model_onnx_transform.py
2025-06-13 10:45:53 +08:00

61 lines
2.0 KiB
Python

import pdb
import torch
import torch.nn as nn
from model import resnet18
# from config import config as conf
from collections import OrderedDict
from configs import trainer_tools
import cv2
import yaml
def tranform_onnx_model():
# # 定义模型
# if model_name == 'resnet18':
# model = resnet18(scale=0.75)
with open('../configs/transform.yml', 'r') as f:
conf = yaml.load(f, Loader=yaml.FullLoader)
tr_tools = trainer_tools(conf)
backbone_mapping = tr_tools.get_backbone()
if conf['models']['backbone'] in backbone_mapping:
model = backbone_mapping[conf['models']['backbone']]().to(conf['base']['device'])
else:
raise ValueError('不支持该模型: {}'.format({conf['models']['backbone']}))
pretrained_weights = conf['models']['model_path']
print('model_name >>> {}'.format(conf['models']['backbone']))
if conf['base']['distributed']:
model = model.to(torch.device('cpu'))
checkpoint = torch.load(pretrained_weights)
new_state_dict = OrderedDict()
for k, v in checkpoint.items():
name = k[7:] # remove "module."
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
else:
model.load_state_dict(torch.load(pretrained_weights, map_location=torch.device('cpu')))
# 转换为ONNX
input_shape = [1, 3, 224, 224]
img = cv2.imread('./dog_224x224.jpg')
output_file = pretrained_weights.replace('pth', 'onnx')
# 导出模型
torch.onnx.export(model,
torch.randn(input_shape),
output_file,
verbose=True,
input_names=['input'],
output_names=['output']) ##, optset_version=12
model.eval()
trace_model = torch.jit.trace(model, torch.randn(1, 3, 224, 224))
trace_model.save(output_file.replace('.onnx', '.pt'))
print(f"Model exported to {output_file}")
if __name__ == '__main__':
tranform_onnx_model()