71 lines
2.5 KiB
Python
71 lines
2.5 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.init as init
|
|
|
|
class channelAttention(nn.Module):
|
|
def __init__(self, channel, reduction=16):
|
|
super(channelAttention, self).__init__()
|
|
self.Maxpooling = nn.AdaptiveMaxPool2d(1)
|
|
self.Avepooling = nn.AdaptiveAvgPool2d(1)
|
|
self.ca = nn.Sequential()
|
|
self.ca.add_module('conv1',nn.Conv2d(channel, channel//reduction, 1, bias=False))
|
|
self.ca.add_module('Relu', nn.ReLU())
|
|
self.ca.add_module('conv2',nn.Conv2d(channel//reduction, channel, 1, bias=False))
|
|
self.sigmod = nn.Sigmoid()
|
|
|
|
def forward(self, x):
|
|
M_out = self.Maxpooling(x)
|
|
A_out = self.Avepooling(x)
|
|
M_out = self.ca(M_out)
|
|
A_out = self.ca(A_out)
|
|
out = self.sigmod(M_out+A_out)
|
|
return out
|
|
|
|
class SpatialAttention(nn.Module):
|
|
def __init__(self, kernel_size=7):
|
|
super().__init__()
|
|
self.conv = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=kernel_size, padding=kernel_size // 2)
|
|
self.sigmoid = nn.Sigmoid()
|
|
|
|
def forward(self, x):
|
|
max_result, _ = torch.max(x, dim=1, keepdim=True)
|
|
avg_result = torch.mean(x, dim=1, keepdim=True)
|
|
result = torch.cat([max_result, avg_result], dim=1)
|
|
output = self.conv(result)
|
|
output = self.sigmoid(output)
|
|
return output
|
|
|
|
class CBAM(nn.Module):
|
|
def __init__(self, channel, reduction=16, kernel_size=7):
|
|
super().__init__()
|
|
self.ca = channelAttention(channel, reduction)
|
|
self.sa = SpatialAttention(kernel_size)
|
|
|
|
def init_weights(self):
|
|
for m in self.modules():#权重初始化
|
|
if isinstance(m, nn.Conv2d):
|
|
init.kaiming_normal_(m.weight, mode='fan_out')
|
|
if m.bias is not None:
|
|
init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
init.constant_(m.weight, 1)
|
|
init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.Linear):
|
|
init.normal_(m.weight, std=0.001)
|
|
if m.bias is not None:
|
|
init.constant_(m.bias, 0)
|
|
|
|
def forward(self, x):
|
|
# b,c_,_ = x.size()
|
|
# residual = x
|
|
out = x*self.ca(x)
|
|
out = out*self.sa(out)
|
|
return out
|
|
|
|
if __name__ == '__main__':
|
|
input=torch.randn(50,512,7,7)
|
|
kernel_size=input.shape[2]
|
|
cbam = CBAM(channel=512,reduction=16,kernel_size=kernel_size)
|
|
output=cbam(input)
|
|
print(output.shape)
|