Files
ieemoo-ai-contrast/tools/getHeatMap.py

165 lines
5.7 KiB
Python

# -*- coding: UTF-8 -*-
import os
import torch
from torchvision import models
import torch.nn as nn
import torchvision.transforms as tfs
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import cv2
# from tools.config import cfg
# from comparative.tools.initmodel import initSimilarityModel
import yaml
from dataset import get_transform
class cal_cam(nn.Module):
def __init__(self, model, conf):
super(cal_cam, self).__init__()
self.conf = conf
self.device = self.conf['base']['device']
self.model = model
self.model.to(self.device)
# 要求梯度的层
self.feature_layer = conf['heatmap']['feature_layer']
# 记录梯度
self.gradient = []
# 记录输出的特征图
self.output = []
_, self.transform = get_transform(self.conf)
def get_conf(self, yaml_pth):
with open(yaml_pth, 'r') as f:
conf = yaml.load(f, Loader=yaml.FullLoader)
return conf
def save_grad(self, grad):
self.gradient.append(grad)
def get_grad(self):
return self.gradient[-1].cpu().data
def get_feature(self):
return self.output[-1][0]
def process_img(self, input):
input = self.transform(input)
input = input.unsqueeze(0)
return input
# 计算最后一个卷积层的梯度,输出梯度和最后一个卷积层的特征图
def getGrad(self, input_):
self.gradient = [] # 清除之前的梯度
self.output = [] # 清除之前的特征图
# print(f"cuda.memory_allocated 1 {torch.cuda.memory_allocated()/ (1024 ** 3)}G")
input_ = input_.to(self.device).requires_grad_(True)
num = 1
for name, module in self.model._modules.items():
# print(f'module_name: {name}')
# print(f'module: {module}')
if (num == 1):
input = module(input_)
num = num + 1
continue
# 是待提取特征图的层
if (name == self.feature_layer):
input = module(input)
input.register_hook(self.save_grad)
self.output.append([input])
# 马上要到全连接层了
elif (name == "avgpool"):
input = module(input)
input = input.reshape(input.shape[0], -1)
# 普通的层
else:
input = module(input)
# print(f"cuda.memory_allocated 2 {torch.cuda.memory_allocated() / (1024 ** 3)}G")
# 到这里input就是最后全连接层的输出了
index = torch.max(input, dim=-1)[1]
one_hot = torch.zeros((1, input.shape[-1]), dtype=torch.float32)
one_hot[0][index] = 1
confidenct = one_hot * input.cpu()
confidenct = torch.sum(confidenct, dim=-1).requires_grad_(True)
# print(f"cuda.memory_allocated 3 {torch.cuda.memory_allocated() / (1024 ** 3)}G")
# 清除之前的所有梯度
self.model.zero_grad()
# 反向传播获取梯度
grad_output = torch.ones_like(confidenct)
confidenct.backward(grad_output)
# 获取特征图的梯度
grad_val = self.get_grad()
feature = self.get_feature()
# print(f"cuda.memory_allocated 4 {torch.cuda.memory_allocated() / (1024 ** 3)}G")
return grad_val, feature, input_.grad
# 计算CAM
def getCam(self, grad_val, feature):
# 对特征图的每个通道进行全局池化
alpha = torch.mean(grad_val, dim=(2, 3)).cpu()
feature = feature.cpu()
# 将池化后的结果和相应通道特征图相乘
cam = torch.zeros((feature.shape[2], feature.shape[3]), dtype=torch.float32)
for idx in range(alpha.shape[1]):
cam = cam + alpha[0][idx] * feature[0][idx]
# 进行ReLU操作
cam = np.maximum(cam.detach().numpy(), 0)
# plt.imshow(cam)
# plt.colorbar()
# plt.savefig("cam.jpg")
# 将cam区域放大到输入图片大小
cam_ = cv2.resize(cam, (224, 224))
cam_ = cam_ - np.min(cam_)
cam_ = cam_ / np.max(cam_)
# plt.imshow(cam_)
# plt.savefig("cam_.jpg")
cam = torch.from_numpy(cam)
return cam, cam_
def show_img(self, cam_, img, heatmap_save_pth, imgname):
heatmap = cv2.applyColorMap(np.uint8(255 * cam_), cv2.COLORMAP_JET)
cam_img = 0.3 * heatmap + 0.7 * np.float32(img)
# cv2.imwrite("img.jpg", cam_img)
cv2.imwrite(os.sep.join([heatmap_save_pth, imgname]), cam_img)
def get_hot_map(self, img_pth):
img = Image.open(img_pth)
img = img.resize((224, 224))
input = self.process_img(img)
grad_val, feature, input_grad = self.getGrad(input)
cam, cam_ = self.getCam(grad_val, feature)
heatmap = cv2.applyColorMap(np.uint8(255 * cam_), cv2.COLORMAP_JET)
cam_img = 0.3 * heatmap + 0.7 * np.float32(img)
cam_img = Image.fromarray(np.uint8(cam_img))
return cam_img
# def __call__(self, img_root, heatmap_save_pth):
# for imgname in os.listdir(img_root):
# img = Image.open(os.sep.join([img_root, imgname]))
# img = img.resize((224, 224))
# # plt.imshow(img)
# # plt.savefig("airplane.jpg")
# input = self.process_img(img)
# grad_val, feature, input_grad = self.getGrad(input)
# cam, cam_ = self.getCam(grad_val, feature)
# self.show_img(cam_, img, heatmap_save_pth, imgname)
# return cam
if __name__ == "__main__":
cam = cal_cam()
img_root = "test_img/"
heatmap_save_pth = "heatmap_result"
cam(img_root, heatmap_save_pth)