Files
ieemoo-ai-contrast/model/distill.py
2025-06-11 15:23:50 +08:00

182 lines
5.3 KiB
Python

import torch
from torch import nn
from torch.nn import Module
import torch.nn.functional as F
from vit_pytorch.vit import ViT
from vit_pytorch.t2t import T2TViT
from vit_pytorch.efficient import ViT as EfficientViT
from einops import repeat
from config import config as conf
# helpers
# Data Setup
from tools.dataset import load_data
train_dataloader, class_num = load_data(conf, training=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
# classes
class DistillMixin:
def forward(self, img, distill_token=None):
distilling = exists(distill_token)
x = self.to_patch_embedding(img)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '1 n d -> b n d', b=b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding[:, :(n + 1)]
if distilling:
distill_tokens = repeat(distill_token, '1 n d -> b n d', b=b)
x = torch.cat((x, distill_tokens), dim=1)
x = self._attend(x)
if distilling:
x, distill_tokens = x[:, :-1], x[:, -1]
x = x.mean(dim=1) if self.pool == 'mean' else x[:, 0]
x = self.to_latent(x)
out = self.mlp_head(x)
if distilling:
return out, distill_tokens
return out
class DistillableViT(DistillMixin, ViT):
def __init__(self, *args, **kwargs):
super(DistillableViT, self).__init__(*args, **kwargs)
self.args = args
self.kwargs = kwargs
self.dim = kwargs['dim']
self.num_classes = kwargs['num_classes']
def to_vit(self):
v = ViT(*self.args, **self.kwargs)
v.load_state_dict(self.state_dict())
return v
def _attend(self, x):
x = self.dropout(x)
x = self.transformer(x)
return x
class DistillableT2TViT(DistillMixin, T2TViT):
def __init__(self, *args, **kwargs):
super(DistillableT2TViT, self).__init__(*args, **kwargs)
self.args = args
self.kwargs = kwargs
self.dim = kwargs['dim']
self.num_classes = kwargs['num_classes']
def to_vit(self):
v = T2TViT(*self.args, **self.kwargs)
v.load_state_dict(self.state_dict())
return v
def _attend(self, x):
x = self.dropout(x)
x = self.transformer(x)
return x
class DistillableEfficientViT(DistillMixin, EfficientViT):
def __init__(self, *args, **kwargs):
super(DistillableEfficientViT, self).__init__(*args, **kwargs)
self.args = args
self.kwargs = kwargs
self.dim = kwargs['dim']
self.num_classes = kwargs['num_classes']
def to_vit(self):
v = EfficientViT(*self.args, **self.kwargs)
v.load_state_dict(self.state_dict())
return v
def _attend(self, x):
return self.transformer(x)
# knowledge distillation wrapper
class DistillWrapper(Module):
def __init__(
self,
*,
teacher,
student,
temperature=1.,
alpha=0.5,
hard=False,
mlp_layernorm=False
):
super().__init__()
# assert (isinstance(student, (
# DistillableViT, DistillableT2TViT, DistillableEfficientViT))), 'student must be a vision transformer'
if isinstance(student, (DistillableViT, DistillableT2TViT, DistillableEfficientViT)):
pass
self.teacher = teacher
self.student = student
dim = conf.embedding_size # student.dim
num_classes = class_num # class_num # student.num_classes
self.temperature = temperature
self.alpha = alpha
self.hard = hard
self.distillation_token = nn.Parameter(torch.randn(1, 1, dim))
# student is vit
# self.distill_mlp = nn.Sequential(
# nn.LayerNorm(dim) if mlp_layernorm else nn.Identity(),
# nn.Linear(dim, num_classes)
# )
# student is resnet
self.distill_mlp = nn.Sequential(
nn.LayerNorm(dim) if mlp_layernorm else nn.Identity(),
nn.Linear(dim, num_classes).to(device)
)
def forward(self, img, labels, temperature=None, alpha=None, **kwargs):
alpha = default(alpha, self.alpha)
T = default(temperature, self.temperature)
with torch.no_grad():
teacher_logits = self.teacher(img)
teacher_logits = self.distill_mlp(teacher_logits) # teach is vit 初始化
# student is vit
# student_logits, distill_tokens = self.student(img, distill_token=self.distillation_token, **kwargs)
# distill_logits = self.distill_mlp(distill_tokens)
# student is resnet
student_logits = self.student(img)
distill_logits = self.distill_mlp(student_logits)
loss = F.cross_entropy(distill_logits, labels)
# pdb.set_trace()
if not self.hard:
distill_loss = F.kl_div(
F.log_softmax(distill_logits / T, dim=-1),
F.softmax(teacher_logits / T, dim=-1).detach(),
reduction='batchmean')
distill_loss *= T ** 2
else:
teacher_labels = teacher_logits.argmax(dim=-1)
distill_loss = F.cross_entropy(distill_logits, teacher_labels)
# pdb.set_trace()
return loss * (1 - alpha) + distill_loss * alpha