# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn as nn from functools import partial, reduce from operator import mul from timm.models.vision_transformer import VisionTransformer, _cfg __all__ = [ 'vit_small', 'vit_base', ] def vit_small(**kwargs): model = VisionTransformer( patch_size=16, embed_dim=384, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, num_classes=256, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) # model.default_cfg = _cfg() return model def vit_base(**kwargs): model = VisionTransformer( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, num_classes=256, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg(num_classes=256) return model if __name__ == '__main__': img = torch.randn(8, 3, 224, 224) vit = vit_base() out = vit(img) print(out.shape) # print(count_parameters(vit))