import torch import torch.nn as nn import torch.nn.functional as F class ChannelAttention(nn.Module): """通道注意力模块,通过全局平均池化和最大池化提取特征,经过MLP生成通道权重""" def __init__(self, in_channels, reduction_ratio=16): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) # 共享的MLP层 self.fc = nn.Sequential( nn.Conv2d(in_channels, in_channels // reduction_ratio, 1, bias=False), nn.ReLU(), nn.Conv2d(in_channels // reduction_ratio, in_channels, 1, bias=False) ) def forward(self, x): avg_out = self.fc(self.avg_pool(x)) max_out = self.fc(self.max_pool(x)) out = avg_out + max_out return torch.sigmoid(out) class SpatialAttention(nn.Module): """空间注意力模块,通过通道维度的平均和最大值操作,生成空间权重""" def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() self.conv = nn.Conv2d(2, 1, kernel_size, padding=kernel_size // 2, bias=False) def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) out = torch.cat([avg_out, max_out], dim=1) out = self.conv(out) return torch.sigmoid(out) class CBAM(nn.Module): """CBAM注意力模块,串联通道注意力和空间注意力""" def __init__(self, in_channels, reduction_ratio=16, kernel_size=7): super(CBAM, self).__init__() self.channel_att = ChannelAttention(in_channels, reduction_ratio) self.spatial_att = SpatialAttention(kernel_size) def forward(self, x): x = x * self.channel_att(x) x = x * self.spatial_att(x) return x class BasicBlock(nn.Module): """ResNet基础残差块,适用于ResNet18和ResNet34""" expansion = 1 def __init__(self, in_channels, out_channels, stride=1, downsample=None, use_cbam=False): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.downsample = downsample self.stride = stride # 是否使用CBAM注意力机制 self.use_cbam = use_cbam if use_cbam: self.cbam = CBAM(out_channels) def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) # # 如果使用注意力机制,应用CBAM if self.use_cbam: out = self.cbam(out) # 如果有下采样,调整shortcut连接 if self.downsample is not None: identity = self.downsample(x) # 残差连接 out += identity out = self.relu(out) return out class Bottleneck(nn.Module): """ResNet瓶颈残差块,适用于ResNet50及更深的网络""" expansion = 4 def __init__(self, in_channels, out_channels, stride=1, downsample=None, use_cbam=False): super(Bottleneck, self).__init__() # 1x1卷积降维 self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) # 3x3卷积 self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) # 1x1卷积升维 self.conv3 = nn.Conv2d(out_channels, out_channels * self.expansion, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(out_channels * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride # 是否使用CBAM注意力机制 self.use_cbam = use_cbam if use_cbam: self.cbam = CBAM(out_channels * self.expansion) def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) # # 如果使用注意力机制,应用CBAM if self.use_cbam: out = self.cbam(out) # 如果有下采样,调整shortcut连接 if self.downsample is not None: identity = self.downsample(x) # 残差连接 out += identity out = self.relu(out) return out class ResNet(nn.Module): """集成了CBAM注意力机制的ResNet模型""" def __init__(self, block, layers, num_classes=1000, zero_init_residual=False, use_cbam=True): super(ResNet, self).__init__() self.in_channels = 64 self.use_cbam = use_cbam # 初始卷积层 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.cbam1 = CBAM(64) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # 残差块层 self.layer1 = self._make_layer(block, 64, layers[0], stride=1) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.cbam2 = CBAM(512) # 全局平均池化和分类器 self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) # 初始化权重 for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # 零初始化最后一个BN层的权重,使残差分支初始为0 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, out_channels, blocks, stride=1): downsample = None # 如果通道数不匹配或需要调整步长,创建下采样层 if stride != 1 or self.in_channels != out_channels * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_channels * block.expansion), ) layers = [] # 第一个块可能需要下采样 layers.append(block(self.in_channels, out_channels, stride, downsample, use_cbam=self.use_cbam)) self.in_channels = out_channels * block.expansion # 添加剩余的块 for _ in range(1, blocks): layers.append(block(self.in_channels, out_channels, use_cbam=self.use_cbam)) return nn.Sequential(*layers) def forward(self, x): # 特征提取 x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) # if self.use_cbam: # x = self.cbam1(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) # if self.use_cbam: # x = self.cbam2(x) # 分类 x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x # 工厂函数,创建不同深度的ResNet模型 def resnet18_cbam(pretrained=False, **kwargs): return ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) def resnet34_cbam(pretrained=False, **kwargs): return ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) def resnet50_cbam(pretrained=False, **kwargs): return ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) def resnet101_cbam(pretrained=False, **kwargs): return ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) def resnet152_cbam(pretrained=False, **kwargs): return ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) # 测试模型 if __name__ == "__main__": # 创建一个带有CBAM注意力机制的ResNet50模型 model = resnet50_cbam(num_classes=10) # 测试输入 x = torch.randn(1, 3, 224, 224) y = model(x) print(f"输入形状: {x.shape}") print(f"输出形状: {y.shape}")