import pdb import torch import torch.nn as nn import torch.nn.init as init from model.resnet_pre import resnet18, conv1x1, BasicBlock, load_state_dict_from_url, model_urls class MLP(nn.Module): def __init__(self, input_dim=256, output_dim=1): super(MLP, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.fc1 = nn.Linear(self.input_dim, 128) # 32 self.fc2 = nn.Linear(128, 64) self.fc3 = nn.Linear(64, 32) self.fc4 = nn.Linear(32, 16) self.fc5 = nn.Linear(16, self.output_dim) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() self.dropout = nn.Dropout(0.5) self.bn1 = nn.BatchNorm1d(128) self.bn2 = nn.BatchNorm1d(64) self.bn3 = nn.BatchNorm1d(32) self.bn4 = nn.BatchNorm1d(16) for m in self.modules(): if isinstance(m, nn.Linear): init.kaiming_normal_(m.weight) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, x): x = self.fc1(x) x = self.relu(self.bn1(x)) x = self.fc2(x) x = self.relu(self.bn2(x)) x = self.fc3(x) x = self.relu(self.bn3(x)) x = self.fc4(x) x = self.relu(self.bn4(x)) x = self.sigmoid(self.fc5(x)) return x class Net2(nn.Module): # 该网络部署有风险,dnn推理有障碍 def __init__(self, input_dim=960, output_dim=1): super(Net2, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.conv1 = nn.Conv1d(1, 16, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv1d(16, 32, kernel_size=3, stride=2, padding=1) # self.conv3 = nn.Conv1d(32, 64, kernel_size=3, stride=2, padding=1) # self.conv4 = nn.Conv1d(64, 64, kernel_size=5, stride=2, padding=1) self.maxPool1 = nn.MaxPool1d(kernel_size=3, stride=2) self.conv5 = nn.Conv1d(32, 64, kernel_size=5, stride=2, padding=1) self.maxPool2 = nn.MaxPool1d(kernel_size=3, stride=2) self.avgPool = nn.AdaptiveAvgPool1d(1) self.MaxPool = nn.AdaptiveMaxPool1d(1) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() self.dropout = nn.Dropout(0.5) self.flatten = nn.Flatten() # self.conv6 = nn.Conv1d(128, 128, kernel_size=5, stride=2, padding=1) self.fc1 = nn.Linear(960, 128) self.fc21 = nn.Linear(960, 32) self.fc22 = nn.Linear(32, 128) self.fc3 = nn.Linear(128, 1) self.bn1 = nn.BatchNorm1d(16) self.bn2 = nn.BatchNorm1d(32) self.bn3 = nn.BatchNorm1d(64) self.bn4 = nn.BatchNorm1d(128) for m in self.modules(): if isinstance(m, nn.Linear): init.kaiming_normal_(m.weight) if m.bias is not None: init.constant_(m.bias, 0) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) def forward(self, x): x = self.conv1(x) # 16 x = self.relu(x) x = self.conv2(x) # 32 x = self.relu(x) # x = self.conv3(x) # x = self.relu(x) # x = self.conv4(x) # 64 # x = self.relu(x) # x = self.maxPool1(x) x = self.conv5(x) x = self.relu(x) # x = self.conv6(x) # x = self.relu(x) # x = self.maxPool2(x) # x = self.MaxPool(x) x = x.view(x.size(0), -1) x = self.dropout(x) x = self.flatten(x) # pdb.set_trace() x1 = self.fc1(x) x2 = self.fc22(self.fc21(x)) x = self.fc3(x1 + x2) x = self.sigmoid(x) return x class Net3(nn.Module): # 目前较合适的网络结构,相较于Net2,Net3的输出结果更加准确 def __init__(self, pretrained=True, progress=True, num_classes=1, scale=0.75): super(Net3, self).__init__() self.resnet18 = resnet18(pretrained=pretrained, progress=progress) # Remove the last three layers (layer3, layer4, avgpool, fc) # self.resnet18.layer3 = nn.Identity() # self.resnet18.layer4 = nn.Identity() self.resnet18.avgpool = nn.Identity() self.resnet18.fc = nn.Identity() self.flatten = nn.Flatten() # Calculate the output size after layer2 # Assuming input size is 224x224, layer2 will have output size of 56x56 # So, the flattened size will be 128 * scale * 56 * 56 self.flattened_size = int(128 * (56 * 56) * scale * scale) # Add new layers for classification self.classifier = nn.Sequential( nn.AdaptiveAvgPool2d((1, 1)), nn.Flatten(), nn.Linear(384, num_classes), # layer1, layer2 in_features=96 # layer1 in_features=48 #layer3 in_features=192 # nn.ReLU(), nn.Dropout(0.6), # nn.Linear(256, num_classes), nn.Sigmoid() ) def forward(self, x): x = self.resnet18.layer1(x) x = self.resnet18.layer2(x) x = self.resnet18.layer3(x) x = self.resnet18.layer4(x) # Debugging: Print the shape of the tensor before flattening # print("Shape before flattening:", x.shape) # Ensure the tensor is flattened correctly # x = x.view(x.size(0), -1) x = self.classifier(x) return x class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None, scale=0.75): super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, int(64 * scale), layers[0]) self.layer2 = self._make_layer(block, int(128 * scale), layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, int(256 * scale), layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, int(512 * scale), layers[3], stride=2, dilate=replace_stride_with_dilation[2]) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(int(512 * block.expansion * scale), num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) self.sigmoid = nn.Sigmoid() def _make_layer(self, block, planes, blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) def _forward_impl(self, x): # See note [TorchScript super()] x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) x = self.sigmoid(x) return x def forward(self, x): return self._forward_impl(x) def Net4(arch, pretrained, progress, **kwargs): model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) if pretrained: state_dict = load_state_dict_from_url(model_urls[arch], progress=progress) src_state_dict = state_dict target_state_dict = model.state_dict() skip_keys = [] # skip mismatch size tensors in case of pretraining for k in src_state_dict.keys(): if k not in target_state_dict: continue if src_state_dict[k].size() != target_state_dict[k].size(): skip_keys.append(k) for k in skip_keys: del src_state_dict[k] missing_keys, unexpected_keys = model.load_state_dict(src_state_dict, strict=False) return model if __name__ == '__main__': ''' net2 = Net2() input_tensor = torch.randn(10, 1, 64) # 前向传播 output_tensor = net2(input_tensor) # pdb.set_trace() print("输入张量形状:", input_tensor.shape) print("输出张量形状:", output_tensor.shape) ''' # model = Net3(pretrained=True, num_classes=1) # 预训练从resnet中间结果获取数据训练模型 model = Net4('resnet18', True, True) input_tensor = torch.randn(1, 3, 224, 244) # Adjust batch size to 10 output = model(input_tensor) print(output.shape) # Should be [10, 2]