并行训练代码优化
This commit is contained in:
@ -3,7 +3,6 @@ import os.path as osp
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from tqdm import tqdm
|
||||
|
||||
from model.loss import FocalLoss
|
||||
@ -12,116 +11,196 @@ import matplotlib.pyplot as plt
|
||||
from configs import trainer_tools
|
||||
import yaml
|
||||
from datetime import datetime
|
||||
with open('configs/scatter.yml', 'r') as f:
|
||||
conf = yaml.load(f, Loader=yaml.FullLoader)
|
||||
|
||||
# Data Setup
|
||||
train_dataloader, class_num = load_data(training=True, cfg=conf)
|
||||
val_dataloader, _ = load_data(training=False, cfg=conf)
|
||||
|
||||
tr_tools = trainer_tools(conf)
|
||||
backbone_mapping = tr_tools.get_backbone()
|
||||
metric_mapping = tr_tools.get_metric(class_num)
|
||||
def load_configuration(config_path='configs/scatter.yml'):
|
||||
"""加载配置文件"""
|
||||
with open(config_path, 'r') as f:
|
||||
return yaml.load(f, Loader=yaml.FullLoader)
|
||||
|
||||
if conf['models']['backbone'] in backbone_mapping:
|
||||
model = backbone_mapping[conf['models']['backbone']]().to(conf['base']['device'])
|
||||
else:
|
||||
raise ValueError('不支持该模型: {}'.format({conf['models']['backbone']}))
|
||||
|
||||
if conf['training']['metric'] in metric_mapping:
|
||||
metric = metric_mapping[conf['training']['metric']]()
|
||||
else:
|
||||
raise ValueError('不支持的metric类型: {}'.format(conf['training']['metric']))
|
||||
def initialize_model_and_metric(conf, class_num):
|
||||
"""初始化模型和度量方法"""
|
||||
tr_tools = trainer_tools(conf)
|
||||
backbone_mapping = tr_tools.get_backbone()
|
||||
metric_mapping = tr_tools.get_metric(class_num)
|
||||
|
||||
if torch.cuda.device_count() > 1 and conf['base']['distributed']:
|
||||
print("Let's use", torch.cuda.device_count(), "GPUs!")
|
||||
model = nn.DataParallel(model)
|
||||
metric = nn.DataParallel(metric)
|
||||
if conf['models']['backbone'] in backbone_mapping:
|
||||
model = backbone_mapping[conf['models']['backbone']]()
|
||||
else:
|
||||
raise ValueError('不支持该模型: {}'.format({conf['models']['backbone']}))
|
||||
|
||||
# Training Setup
|
||||
if conf['training']['loss'] == 'focal_loss':
|
||||
criterion = FocalLoss(gamma=2)
|
||||
else:
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
if conf['training']['metric'] in metric_mapping:
|
||||
metric = metric_mapping[conf['training']['metric']]()
|
||||
else:
|
||||
raise ValueError('不支持的metric类型: {}'.format(conf['training']['metric']))
|
||||
|
||||
optimizer_mapping = tr_tools.get_optimizer(model, metric)
|
||||
if conf['training']['optimizer'] in optimizer_mapping:
|
||||
optimizer = optimizer_mapping[conf['training']['optimizer']]()
|
||||
scheduler_mapping = tr_tools.get_scheduler(optimizer)
|
||||
scheduler = scheduler_mapping[conf['training']['scheduler']]()
|
||||
print('使用{}优化器 使用{}调度器'.format(conf['training']['optimizer'],
|
||||
conf['training']['scheduler']))
|
||||
return model, metric
|
||||
|
||||
else:
|
||||
raise ValueError('不支持的优化器类型: {}'.format(conf['training']['optimizer']))
|
||||
|
||||
# Checkpoints Setup
|
||||
checkpoints = conf['training']['checkpoints']
|
||||
os.makedirs(checkpoints, exist_ok=True)
|
||||
def setup_optimizer_and_scheduler(conf, model, metric):
|
||||
"""设置优化器和学习率调度器"""
|
||||
tr_tools = trainer_tools(conf)
|
||||
optimizer_mapping = tr_tools.get_optimizer(model, metric)
|
||||
|
||||
if __name__ == '__main__':
|
||||
print('backbone>{} '.format(conf['models']['backbone']),
|
||||
'metric>{} '.format(conf['training']['metric']),
|
||||
'checkpoints>{} '.format(conf['training']['checkpoints']),
|
||||
)
|
||||
if conf['training']['optimizer'] in optimizer_mapping:
|
||||
optimizer = optimizer_mapping[conf['training']['optimizer']]()
|
||||
scheduler_mapping = tr_tools.get_scheduler(optimizer)
|
||||
scheduler = scheduler_mapping[conf['training']['scheduler']]()
|
||||
print('使用{}优化器 使用{}调度器'.format(conf['training']['optimizer'],
|
||||
conf['training']['scheduler']))
|
||||
return optimizer, scheduler
|
||||
else:
|
||||
raise ValueError('不支持的优化器类型: {}'.format(conf['training']['optimizer']))
|
||||
|
||||
|
||||
def setup_loss_function(conf):
|
||||
"""配置损失函数"""
|
||||
if conf['training']['loss'] == 'focal_loss':
|
||||
return FocalLoss(gamma=2)
|
||||
else:
|
||||
return nn.CrossEntropyLoss()
|
||||
|
||||
|
||||
def train_one_epoch(model, metric, criterion, optimizer, dataloader, device, scaler, conf):
|
||||
"""执行单个训练周期"""
|
||||
model.train()
|
||||
train_loss = 0
|
||||
for data, labels in tqdm(dataloader, desc="Training", ascii=True, total=len(dataloader)):
|
||||
data = data.to(device)
|
||||
labels = labels.to(device)
|
||||
|
||||
with torch.cuda.amp.autocast():
|
||||
embeddings = model(data)
|
||||
if not conf['training']['metric'] == 'softmax':
|
||||
thetas = metric(embeddings, labels)
|
||||
else:
|
||||
thetas = metric(embeddings)
|
||||
loss = criterion(thetas, labels)
|
||||
|
||||
optimizer.zero_grad()
|
||||
scaler.scale(loss).backward()
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
train_loss += loss.item()
|
||||
return train_loss / len(dataloader)
|
||||
|
||||
|
||||
def validate(model, metric, criterion, dataloader, device, conf):
|
||||
"""执行验证"""
|
||||
model.eval()
|
||||
val_loss = 0
|
||||
with torch.no_grad():
|
||||
for data, labels in tqdm(dataloader, desc="Validating", ascii=True, total=len(dataloader)):
|
||||
data = data.to(device)
|
||||
labels = labels.to(device)
|
||||
embeddings = model(data)
|
||||
if not conf['training']['metric'] == 'softmax':
|
||||
thetas = metric(embeddings, labels)
|
||||
else:
|
||||
thetas = metric(embeddings)
|
||||
loss = criterion(thetas, labels)
|
||||
val_loss += loss.item()
|
||||
return val_loss / len(dataloader)
|
||||
|
||||
|
||||
def save_model(model, path, is_parallel):
|
||||
"""保存模型权重"""
|
||||
if is_parallel:
|
||||
torch.save(model.module.state_dict(), path)
|
||||
else:
|
||||
torch.save(model.state_dict(), path)
|
||||
|
||||
|
||||
def log_training_info(log_path, log_info):
|
||||
"""记录训练信息到日志文件"""
|
||||
with open(log_path, 'a') as f:
|
||||
f.write(log_info + '\n')
|
||||
|
||||
|
||||
def initialize_training_components():
|
||||
"""初始化所有训练所需组件"""
|
||||
# 加载配置
|
||||
conf = load_configuration()
|
||||
|
||||
# 数据加载
|
||||
train_dataloader, class_num = load_data(training=True, cfg=conf)
|
||||
val_dataloader, _ = load_data(training=False, cfg=conf)
|
||||
|
||||
# 初始化模型和度量
|
||||
model, metric = initialize_model_and_metric(conf, class_num)
|
||||
device = conf['base']['device']
|
||||
model = model.to(device)
|
||||
metric = metric.to(device)
|
||||
|
||||
if torch.cuda.device_count() > 1 and conf['base']['distributed']:
|
||||
print("Let's use", torch.cuda.device_count(), "GPUs!")
|
||||
model = nn.DataParallel(model)
|
||||
metric = nn.DataParallel(metric)
|
||||
|
||||
# 设置损失函数、优化器和调度器
|
||||
criterion = setup_loss_function(conf)
|
||||
optimizer, scheduler = setup_optimizer_and_scheduler(conf, model, metric)
|
||||
|
||||
# 检查点目录
|
||||
checkpoints = conf['training']['checkpoints']
|
||||
os.makedirs(checkpoints, exist_ok=True)
|
||||
|
||||
# GradScaler for mixed precision
|
||||
scaler = torch.cuda.amp.GradScaler()
|
||||
|
||||
return {
|
||||
'conf': conf,
|
||||
'train_dataloader': train_dataloader,
|
||||
'val_dataloader': val_dataloader,
|
||||
'model': model,
|
||||
'metric': metric,
|
||||
'criterion': criterion,
|
||||
'optimizer': optimizer,
|
||||
'scheduler': scheduler,
|
||||
'checkpoints': checkpoints,
|
||||
'scaler': scaler,
|
||||
'device': device
|
||||
}
|
||||
|
||||
|
||||
def run_training_loop(components):
|
||||
"""运行完整的训练循环"""
|
||||
# 解包组件
|
||||
conf = components['conf']
|
||||
train_dataloader = components['train_dataloader']
|
||||
val_dataloader = components['val_dataloader']
|
||||
model = components['model']
|
||||
metric = components['metric']
|
||||
criterion = components['criterion']
|
||||
optimizer = components['optimizer']
|
||||
scheduler = components['scheduler']
|
||||
checkpoints = components['checkpoints']
|
||||
scaler = components['scaler']
|
||||
device = components['device']
|
||||
|
||||
# 训练状态
|
||||
train_losses = []
|
||||
val_losses = []
|
||||
epochs = []
|
||||
temp_loss = 100
|
||||
|
||||
if conf['training']['restore']:
|
||||
print('load pretrain model: {}'.format(conf['training']['restore_model']))
|
||||
model.load_state_dict(torch.load(conf['training']['restore_model'],
|
||||
map_location=conf['base']['device']))
|
||||
model.load_state_dict(torch.load(conf['training']['restore_model'], map_location=device))
|
||||
|
||||
# 训练循环
|
||||
for e in range(conf['training']['epochs']):
|
||||
train_loss = 0
|
||||
model.train()
|
||||
|
||||
for train_data, train_labels in tqdm(train_dataloader,
|
||||
desc="Epoch {}/{}"
|
||||
.format(e, conf['training']['epochs']),
|
||||
ascii=True,
|
||||
total=len(train_dataloader)):
|
||||
train_data = train_data.to(conf['base']['device'])
|
||||
train_labels = train_labels.to(conf['base']['device'])
|
||||
|
||||
train_embeddings = model(train_data).to(conf['base']['device']) # [256,512]
|
||||
# pdb.set_trace()
|
||||
|
||||
if not conf['training']['metric'] == 'softmax':
|
||||
thetas = metric(train_embeddings, train_labels) # [256,357]
|
||||
else:
|
||||
thetas = metric(train_embeddings)
|
||||
tloss = criterion(thetas, train_labels)
|
||||
optimizer.zero_grad()
|
||||
tloss.backward()
|
||||
optimizer.step()
|
||||
train_loss += tloss.item()
|
||||
train_lossAvg = train_loss / len(train_dataloader)
|
||||
train_losses.append(train_lossAvg)
|
||||
train_loss_avg = train_one_epoch(model, metric, criterion, optimizer, train_dataloader, device, scaler, conf)
|
||||
train_losses.append(train_loss_avg)
|
||||
epochs.append(e)
|
||||
val_loss = 0
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
for val_data, val_labels in tqdm(val_dataloader, desc="val",
|
||||
ascii=True, total=len(val_dataloader)):
|
||||
val_data = val_data.to(conf['base']['device'])
|
||||
val_labels = val_labels.to(conf['base']['device'])
|
||||
val_embeddings = model(val_data).to(conf['base']['device'])
|
||||
if not conf['training']['metric'] == 'softmax':
|
||||
thetas = metric(val_embeddings, val_labels)
|
||||
else:
|
||||
thetas = metric(val_embeddings)
|
||||
vloss = criterion(thetas, val_labels)
|
||||
val_loss += vloss.item()
|
||||
val_lossAvg = val_loss / len(val_dataloader)
|
||||
val_losses.append(val_lossAvg)
|
||||
if val_lossAvg < temp_loss:
|
||||
if torch.cuda.device_count() > 1:
|
||||
torch.save(model.state_dict(), osp.join(checkpoints, 'best.pth'))
|
||||
else:
|
||||
torch.save(model.state_dict(), osp.join(checkpoints, 'best.pth'))
|
||||
temp_loss = val_lossAvg
|
||||
|
||||
val_loss_avg = validate(model, metric, criterion, val_dataloader, device, conf)
|
||||
val_losses.append(val_loss_avg)
|
||||
|
||||
if val_loss_avg < temp_loss:
|
||||
save_model(model, osp.join(checkpoints, 'best.pth'), isinstance(model, nn.DataParallel))
|
||||
temp_loss = val_loss_avg
|
||||
|
||||
scheduler.step()
|
||||
current_lr = optimizer.param_groups[0]['lr']
|
||||
@ -129,19 +208,26 @@ if __name__ == '__main__':
|
||||
.format(datetime.now(),
|
||||
e,
|
||||
conf['training']['epochs'],
|
||||
train_lossAvg,
|
||||
val_lossAvg,
|
||||
train_loss_avg,
|
||||
val_loss_avg,
|
||||
current_lr))
|
||||
print(log_info)
|
||||
# 写入日志文件
|
||||
with open(osp.join(conf['logging']['logging_dir']), 'a') as f:
|
||||
f.write(log_info + '\n')
|
||||
log_training_info(osp.join(conf['logging']['logging_dir']), log_info)
|
||||
print("第%d个epoch的学习率:%f" % (e, current_lr))
|
||||
if torch.cuda.device_count() > 1 and conf['base']['distributed']:
|
||||
torch.save(model.module.state_dict(), osp.join(checkpoints, 'last.pth'))
|
||||
else:
|
||||
torch.save(model.state_dict(), osp.join(checkpoints, 'last.pth'))
|
||||
plt.plot(epochs, train_losses, color='blue')
|
||||
plt.plot(epochs, val_losses, color='red')
|
||||
# plt.savefig('lossMobilenetv3.png')
|
||||
|
||||
# 保存最终模型
|
||||
save_model(model, osp.join(checkpoints, 'last.pth'), isinstance(model, nn.DataParallel))
|
||||
|
||||
# 绘制损失曲线
|
||||
plt.plot(epochs, train_losses, color='blue', label='Train Loss')
|
||||
plt.plot(epochs, val_losses, color='red', label='Validation Loss')
|
||||
plt.legend()
|
||||
plt.savefig('loss/mobilenetv3Large_2250_0316.png')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# 初始化训练组件
|
||||
components = initialize_training_components()
|
||||
|
||||
# 运行训练循环
|
||||
run_training_loop(components)
|
Reference in New Issue
Block a user