多机并行计算

This commit is contained in:
lee
2025-08-14 10:09:54 +08:00
parent bc896fc688
commit 99a204ee22
18 changed files with 105 additions and 55 deletions

View File

@ -4,7 +4,7 @@ import logging
import numpy as np
from typing import Dict, List, Optional, Tuple
from tools.dataset import get_transform
from model import resnet18
from model import resnet18, resnet34, resnet50, resnet101
import torch
from PIL import Image
import pandas as pd
@ -50,7 +50,16 @@ class FeatureExtractor:
raise FileNotFoundError(f"Model weights file not found: {model_path}")
# Initialize model
model = resnet18(scale=self.conf['models']['channel_ratio']).to(self.conf['base']['device'])
if conf['models']['backbone'] == 'resnet18':
model = resnet18(scale=self.conf['models']['channel_ratio']).to(self.conf['base']['device'])
elif conf['models']['backbone'] == 'resnet34':
model = resnet34(scale=self.conf['models']['channel_ratio']).to(self.conf['base']['device'])
elif conf['models']['backbone'] == 'resnet50':
model = resnet50(scale=self.conf['models']['channel_ratio']).to(self.conf['base']['device'])
elif conf['models']['backbone'] == 'resnet101':
model = resnet101(scale=self.conf['models']['channel_ratio']).to(self.conf['base']['device'])
else:
print("不支持的模型: {}".format(conf['models']['backbone']))
# Handle multi-GPU case
if conf['base']['distributed']:
@ -168,7 +177,7 @@ class FeatureExtractor:
# Validate input directory
if not os.path.isdir(folder):
raise ValueError(f"Invalid directory: {folder}")
i = 0
# Process each barcode directory
for root, dirs, files in tqdm(os.walk(folder), desc="Scanning directories"):
if not dirs: # Leaf directory (contains images)
@ -180,14 +189,16 @@ class FeatureExtractor:
ori_barcode = basename
barcode = basename
# Apply filter if provided
i += 1
print(ori_barcode, i)
if filter and ori_barcode not in filter:
continue
elif len(ori_barcode) > 13 or len(ori_barcode) < 8:
logger.warning(f"Skipping invalid barcode {ori_barcode}")
with open(conf['save']['error_barcodes'], 'a') as f:
f.write(ori_barcode + '\n')
f.close()
continue
# elif len(ori_barcode) > 13 or len(ori_barcode) < 8: # barcode筛选长度
# logger.warning(f"Skipping invalid barcode {ori_barcode}")
# with open(conf['save']['error_barcodes'], 'a') as f:
# f.write(ori_barcode + '\n')
# f.close()
# continue
# Process image files
if files:
@ -299,7 +310,8 @@ class FeatureExtractor:
dicts['value'] = truncated_imgs_list
if create_single_json:
# json_path = os.path.join("./search_library/v8021_overseas/", str(barcode_list[i]) + '.json')
json_path = os.path.join(self.conf['save']['json_path'], str(barcode_list[i]) + '.json')
json_path = os.path.join(self.conf['save']['json_path'],
str(barcode_list[i]) + '.json')
with open(json_path, 'w') as json_file:
json.dump(dicts, json_file)
else:
@ -317,8 +329,10 @@ class FeatureExtractor:
with open(conf['save']['barcodes_statistics'], 'w', encoding='utf-8') as f:
for barcode in os.listdir(pth):
print("barcode length >> {}".format(len(barcode)))
if len(barcode) > 13 or len(barcode) < 8:
continue
# if len(barcode) > 13 or len(barcode) < 8: # barcode筛选长度
# continue
if filter is not None:
f.writelines(barcode + '\n')
if barcode in filter: