训练代码优化
This commit is contained in:
230
train_compare.py
230
train_compare.py
@ -122,84 +122,66 @@ def log_training_info(log_path, log_info):
|
||||
f.write(log_info + '\n')
|
||||
|
||||
|
||||
def initialize_training_components():
|
||||
def initialize_training_components(distributed=False):
|
||||
"""初始化所有训练所需组件"""
|
||||
# 加载配置
|
||||
conf = load_configuration()
|
||||
|
||||
# 初始化分布式训练
|
||||
distributed = conf['base']['distributed']
|
||||
if distributed:
|
||||
dist.init_process_group(backend='nccl')
|
||||
local_rank = int(os.environ["LOCAL_RANK"])
|
||||
torch.cuda.set_device(local_rank)
|
||||
device = torch.device('cuda', local_rank)
|
||||
else:
|
||||
device = conf['base']['device']
|
||||
|
||||
# 数据加载
|
||||
train_dataloader, class_num = load_data(training=True, cfg=conf)
|
||||
val_dataloader, _ = load_data(training=False, cfg=conf)
|
||||
|
||||
# 如果使用分布式,需要为每个进程创建单独的数据加载器
|
||||
if distributed:
|
||||
train_sampler = DistributedSampler(train_dataloader.dataset, shuffle=True)
|
||||
val_sampler = DistributedSampler(val_dataloader.dataset, shuffle=False)
|
||||
|
||||
# 重新创建适合分布式训练的数据加载器
|
||||
train_dataloader = torch.utils.data.DataLoader(
|
||||
train_dataloader.dataset,
|
||||
batch_size=train_dataloader.batch_size,
|
||||
sampler=train_sampler,
|
||||
num_workers=train_dataloader.num_workers,
|
||||
pin_memory=train_dataloader.pin_memory,
|
||||
drop_last=train_dataloader.drop_last
|
||||
)
|
||||
|
||||
val_dataloader = torch.utils.data.DataLoader(
|
||||
val_dataloader.dataset,
|
||||
batch_size=val_dataloader.batch_size,
|
||||
sampler=val_sampler,
|
||||
num_workers=val_dataloader.num_workers,
|
||||
pin_memory=val_dataloader.pin_memory,
|
||||
drop_last=val_dataloader.drop_last
|
||||
)
|
||||
|
||||
# 初始化模型和度量
|
||||
model, metric = initialize_model_and_metric(conf, class_num)
|
||||
model = model.to(device)
|
||||
metric = metric.to(device)
|
||||
|
||||
if distributed:
|
||||
model = DDP(model, device_ids=[local_rank], output_device=local_rank)
|
||||
metric = DDP(metric, device_ids=[local_rank], output_device=local_rank)
|
||||
|
||||
# 设置损失函数、优化器和调度器
|
||||
criterion = setup_loss_function(conf)
|
||||
optimizer, scheduler = setup_optimizer_and_scheduler(conf, model, metric)
|
||||
|
||||
# 检查点目录
|
||||
checkpoints = conf['training']['checkpoints']
|
||||
os.makedirs(checkpoints, exist_ok=True)
|
||||
|
||||
# GradScaler for mixed precision
|
||||
scaler = torch.cuda.amp.GradScaler()
|
||||
|
||||
return {
|
||||
# 初始化分布式训练相关参数
|
||||
components = {
|
||||
'conf': conf,
|
||||
'train_dataloader': train_dataloader,
|
||||
'val_dataloader': val_dataloader,
|
||||
'model': model,
|
||||
'metric': metric,
|
||||
'criterion': criterion,
|
||||
'optimizer': optimizer,
|
||||
'scheduler': scheduler,
|
||||
'checkpoints': checkpoints,
|
||||
'scaler': scaler,
|
||||
'device': device,
|
||||
'distributed': distributed
|
||||
'distributed': distributed,
|
||||
'device': None,
|
||||
'train_dataloader': None,
|
||||
'val_dataloader': None,
|
||||
'model': None,
|
||||
'metric': None,
|
||||
'criterion': None,
|
||||
'optimizer': None,
|
||||
'scheduler': None,
|
||||
'checkpoints': None,
|
||||
'scaler': None
|
||||
}
|
||||
|
||||
# 如果是非分布式训练,直接创建所有组件
|
||||
if not distributed:
|
||||
# 数据加载
|
||||
train_dataloader, class_num = load_data(training=True, cfg=conf)
|
||||
val_dataloader, _ = load_data(training=False, cfg=conf)
|
||||
|
||||
# 初始化模型和度量
|
||||
model, metric = initialize_model_and_metric(conf, class_num)
|
||||
device = conf['base']['device']
|
||||
model = model.to(device)
|
||||
metric = metric.to(device)
|
||||
|
||||
# 设置损失函数、优化器和调度器
|
||||
criterion = setup_loss_function(conf)
|
||||
optimizer, scheduler = setup_optimizer_and_scheduler(conf, model, metric)
|
||||
|
||||
# 检查点目录
|
||||
checkpoints = conf['training']['checkpoints']
|
||||
os.makedirs(checkpoints, exist_ok=True)
|
||||
|
||||
# GradScaler for mixed precision
|
||||
scaler = torch.cuda.amp.GradScaler()
|
||||
|
||||
# 更新组件字典
|
||||
components.update({
|
||||
'train_dataloader': train_dataloader,
|
||||
'val_dataloader': val_dataloader,
|
||||
'model': model,
|
||||
'metric': metric,
|
||||
'criterion': criterion,
|
||||
'optimizer': optimizer,
|
||||
'scheduler': scheduler,
|
||||
'checkpoints': checkpoints,
|
||||
'scaler': scaler,
|
||||
'device': device
|
||||
})
|
||||
|
||||
return components
|
||||
|
||||
|
||||
def run_training_loop(components):
|
||||
"""运行完整的训练循环"""
|
||||
@ -262,9 +244,107 @@ def run_training_loop(components):
|
||||
plt.savefig('loss/mobilenetv3Large_2250_0316.png')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# 初始化训练组件
|
||||
components = initialize_training_components()
|
||||
def main():
|
||||
"""主函数入口"""
|
||||
# 加载配置
|
||||
conf = load_configuration()
|
||||
|
||||
# 检查是否启用分布式训练
|
||||
distributed = conf['base']['distributed']
|
||||
|
||||
if distributed:
|
||||
# 分布式训练:使用mp.spawn启动多个进程
|
||||
world_size = torch.cuda.device_count()
|
||||
mp.spawn(
|
||||
run_training,
|
||||
args=(world_size, conf),
|
||||
nprocs=world_size,
|
||||
join=True
|
||||
)
|
||||
else:
|
||||
# 单机训练:直接运行训练流程
|
||||
components = initialize_training_components(distributed=False)
|
||||
run_training_loop(components)
|
||||
|
||||
|
||||
def run_training(rank, world_size, conf):
|
||||
"""实际执行训练的函数,供mp.spawn调用"""
|
||||
# 初始化分布式环境
|
||||
os.environ['RANK'] = str(rank)
|
||||
os.environ['WORLD_SIZE'] = str(world_size)
|
||||
os.environ['MASTER_ADDR'] = 'localhost'
|
||||
os.environ['MASTER_PORT'] = '12355'
|
||||
|
||||
dist.init_process_group(backend='nccl', rank=rank, world_size=world_size)
|
||||
torch.cuda.set_device(rank)
|
||||
device = torch.device('cuda', rank)
|
||||
|
||||
# 创建数据加载器和模型等组件(分布式情况下)
|
||||
train_dataloader, class_num = load_data(training=True, cfg=conf)
|
||||
val_dataloader, _ = load_data(training=False, cfg=conf)
|
||||
|
||||
# 初始化模型和度量
|
||||
model, metric = initialize_model_and_metric(conf, class_num)
|
||||
model = model.to(device)
|
||||
metric = metric.to(device)
|
||||
|
||||
# 包装为DistributedDataParallel模型
|
||||
model = DDP(model, device_ids=[rank], output_device=rank)
|
||||
metric = DDP(metric, device_ids=[rank], output_device=rank)
|
||||
|
||||
# 设置损失函数、优化器和调度器
|
||||
criterion = setup_loss_function(conf)
|
||||
optimizer, scheduler = setup_optimizer_and_scheduler(conf, model, metric)
|
||||
|
||||
# 检查点目录
|
||||
checkpoints = conf['training']['checkpoints']
|
||||
os.makedirs(checkpoints, exist_ok=True)
|
||||
|
||||
# GradScaler for mixed precision
|
||||
scaler = torch.cuda.amp.GradScaler()
|
||||
|
||||
# 创建分布式数据加载器
|
||||
train_sampler = DistributedSampler(train_dataloader.dataset, shuffle=True)
|
||||
val_sampler = DistributedSampler(val_dataloader.dataset, shuffle=False)
|
||||
|
||||
# 重新创建适合分布式训练的数据加载器
|
||||
train_dataloader = torch.utils.data.DataLoader(
|
||||
train_dataloader.dataset,
|
||||
batch_size=train_dataloader.batch_size,
|
||||
sampler=train_sampler,
|
||||
num_workers=train_dataloader.num_workers,
|
||||
pin_memory=train_dataloader.pin_memory,
|
||||
drop_last=train_dataloader.drop_last
|
||||
)
|
||||
|
||||
val_dataloader = torch.utils.data.DataLoader(
|
||||
val_dataloader.dataset,
|
||||
batch_size=val_dataloader.batch_size,
|
||||
sampler=val_sampler,
|
||||
num_workers=val_dataloader.num_workers,
|
||||
pin_memory=val_dataloader.pin_memory,
|
||||
drop_last=val_dataloader.drop_last
|
||||
)
|
||||
|
||||
# 构建组件字典
|
||||
components = {
|
||||
'conf': conf,
|
||||
'train_dataloader': train_dataloader,
|
||||
'val_dataloader': val_dataloader,
|
||||
'model': model,
|
||||
'metric': metric,
|
||||
'criterion': criterion,
|
||||
'optimizer': optimizer,
|
||||
'scheduler': scheduler,
|
||||
'checkpoints': checkpoints,
|
||||
'scaler': scaler,
|
||||
'device': device,
|
||||
'distributed': True # 因为是在mp.spawn中运行
|
||||
}
|
||||
|
||||
# 运行训练循环
|
||||
run_training_loop(components)
|
||||
run_training_loop(components)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
Reference in New Issue
Block a user