This commit is contained in:
lee
2025-06-11 15:23:50 +08:00
commit 37ecef40f7
79 changed files with 26981 additions and 0 deletions

View File

@ -0,0 +1,186 @@
import os
import pdb
import urllib
import traceback
import time
import sys
import numpy as np
import cv2
from config import config as conf
from rknn.api import RKNN
import config
# ONNX_MODEL = 'resnet50v2.onnx'
# RKNN_MODEL = 'resnet50v2.rknn'
ONNX_MODEL = 'checkpoints/resnet18_scale=1.0/best.onnx'
RKNN_MODEL = 'checkpoints/resnet18_scale=1.0/best.rknn'
# ONNX_MODEL = 'v3_small_0424.onnx'
# RKNN_MODEL = 'v3_small_0424.rknn'
def show_outputs(outputs):
# print('***************outputs', outputs)
output = outputs[0][0]
# print('len(outputs)',len(output), output)
output_sorted = sorted(output, reverse=True)
top5_str = 'resnet50v2\n-----TOP 5-----\n'
for i in range(5):
value = output_sorted[i]
index = np.where(output == value)
for j in range(len(index)):
if (i + j) >= 5:
break
if value > 0:
topi = '{}: {}\n'.format(index[j], value)
else:
topi = '-1: 0.0\n'
top5_str += topi
# pdb.set_trace()
print(top5_str)
def readable_speed(speed):
speed_bytes = float(speed)
speed_kbytes = speed_bytes / 1024
if speed_kbytes > 1024:
speed_mbytes = speed_kbytes / 1024
if speed_mbytes > 1024:
speed_gbytes = speed_mbytes / 1024
return "{:.2f} GB/s".format(speed_gbytes)
else:
return "{:.2f} MB/s".format(speed_mbytes)
else:
return "{:.2f} KB/s".format(speed_kbytes)
def show_progress(blocknum, blocksize, totalsize):
speed = (blocknum * blocksize) / (time.time() - start_time)
speed_str = " Speed: {}".format(readable_speed(speed))
recv_size = blocknum * blocksize
f = sys.stdout
progress = (recv_size / totalsize)
progress_str = "{:.2f}%".format(progress * 100)
n = round(progress * 50)
s = ('#' * n).ljust(50, '-')
f.write(progress_str.ljust(8, ' ') + '[' + s + ']' + speed_str)
f.flush()
f.write('\r\n')
if __name__ == '__main__':
# Create RKNN object
rknn = RKNN(verbose=True)
# If resnet50v2 does not exist, download it.
# Download address:
# https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.onnx
if not os.path.exists(ONNX_MODEL):
print('--> Download {}'.format(ONNX_MODEL))
url = 'https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.onnx'
download_file = ONNX_MODEL
try:
start_time = time.time()
urllib.request.urlretrieve(url, download_file, show_progress)
except:
print('Download {} failed.'.format(download_file))
print(traceback.format_exc())
exit(-1)
print('done')
# pre-process config
print('--> config model')
# rknn.config(mean_values=[123.675, 116.28, 103.53], std_values=[58.82, 58.82, 58.82])
rknn.config(
mean_values=[[127.5, 127.5, 127.5]],
std_values=[[127.5, 127.5, 127.5]],
target_platform='rk3588',
model_pruning=False,
compress_weight=False,
single_core_mode=True)
# rknn.config(
# mean_values=[[127.5, 127.5, 127.5]], # 对于单通道图像,可以设置为 [[127.5]]
# std_values=[[127.5, 127.5, 127.5]], # 对于单通道图像,可以设置为 [[127.5]]
# target_platform='rk3588', # 设置目标平台
# # quantize_dtype='int8',
# # quantize_algo='normal',
# # output_optimize=False,
# # output_format='rknnb'
# )
print('done')
# Load model
print('--> Loading model')
ret = rknn.load_onnx(model=ONNX_MODEL)
if ret != 0:
print('Load model failed!')
exit(ret)
print('done')
# Build model
print('--> Building model')
ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
# ret = rknn.build(do_quantization=False, dataset='./dataset.txt')
if ret != 0:
print('Build model failed!')
exit(ret)
print('done')
# Export rknn model
print('--> Export rknn model')
ret = rknn.export_rknn(RKNN_MODEL)
if ret != 0:
print('Export rknn model failed!')
exit(ret)
print('done')
# Set inputs
img = cv2.imread('./dog_224x224.jpg')
# img = cv2.imread('./data/gift_test/Havegift/20241213-161415-cb8e0762-f376-45d1-8f36-7dc070990fa5/subimg/cam1_9_tid2_fid(18, 33250169482).png')
# print('img', img)
# with open('pixel_values.txt', 'w') as file:
# for y in range(img.shape[0]):
# for x in range(img.shape[1]):
# b, g, r = img[y, x]
# file.write(f'{r},{g},{b}\n')
# img = cv2.imread('./810115161912_810115161912_20240131-145622_0da14e4d-a3da-499f-b512-2d4168ab1c87_front_addGood_70f75407b7ae_29_01.jpg')
img = cv2.resize(img, (224, 224))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# img = conf.test_transform(img)
# img = img.numpy()
# img = img.transpose(1, 2, 0)
# Init runtime environment
print('--> Init runtime environment')
ret = rknn.init_runtime()
# ret = rknn.init_runtime('rk3588')
if ret != 0:
print('Init runtime environment failed!')
exit(ret)
print('done')
# Inference
print('--> Running model')
T1 = time.time()
outputs = rknn.inference(inputs=[img])
# outputs = rknn.inference(inputs=img)
T2 = time.time()
print('消耗时间 >>> {}'.format(T2 - T1))
with open('result_0415_128.txt', 'a') as f:
f.write(str(outputs))
# pdb.set_trace()
print('***outputs', outputs)
np.save('./onnx_resnet50v2_0.npy', outputs[0])
x = outputs[0]
output = np.exp(x) / np.sum(np.exp(x))
outputs = [output]
show_outputs(outputs)
print('done')
rknn.release()