This commit is contained in:
lee
2025-06-11 15:23:50 +08:00
commit 37ecef40f7
79 changed files with 26981 additions and 0 deletions

View File

@ -0,0 +1,63 @@
import pdb
import torch
import torch.nn as nn
from model import resnet18
from config import config as conf
from collections import OrderedDict
import cv2
def tranform_onnx_model(model_name, pretrained_weights='checkpoints/v3_small.pth'):
# 定义模型
if model_name == 'resnet18':
model = resnet18(scale=0.75)
print('model_name >>> {}'.format(model_name))
if conf.multiple_cards:
model = model.to(torch.device('cpu'))
checkpoint = torch.load(pretrained_weights)
new_state_dict = OrderedDict()
for k, v in checkpoint.items():
name = k[7:] # remove "module."
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
else:
model.load_state_dict(torch.load(pretrained_weights, map_location=torch.device('cpu')))
# try:
# model.load_state_dict(torch.load(pretrained_weights, map_location=torch.device('cpu')))
# except Exception as e:
# print(e)
# # model.load_state_dict({k.replace('module.', ''): v for k, v in torch.load(pretrained_weights, map_location='cpu').items()})
# model = nn.DataParallel(model).to(conf.device)
# model.load_state_dict(torch.load(conf.test_model, map_location=torch.device('cpu')))
# 转换为ONNX
if model_name == 'gift_type2':
input_shape = [1, 64, 13, 13]
elif model_name == 'gift_type3':
input_shape = [1, 3, 224, 224]
else:
# 假设输入数据的大小是通道数*高度*宽度例如3*224*224
input_shape = [1, 3, 224, 224]
img = cv2.imread('./dog_224x224.jpg')
output_file = pretrained_weights.replace('pth', 'onnx')
# 导出模型
torch.onnx.export(model,
torch.randn(input_shape),
output_file,
verbose=True,
input_names=['input'],
output_names=['output']) ##, optset_version=12
model.eval()
trace_model = torch.jit.trace(model, torch.randn(1, 3, 224, 224))
trace_model.save(output_file.replace('.onnx', '.pt'))
print(f"Model exported to {output_file}")
if __name__ == '__main__':
tranform_onnx_model(model_name='resnet18', # ['resnet18', 'gift_type2', 'gift_type3'] #gift_type2指resnet18中间数据判断gift3_type3指resnet原图计算推理
pretrained_weights='./checkpoints/resnet18_scale=1.0/best.pth')