rebuild
This commit is contained in:
56
configs/utils.py
Normal file
56
configs/utils.py
Normal file
@ -0,0 +1,56 @@
|
||||
from model import (resnet18, mobilevit_s, MobileNetV3_Small, MobileNetV3_Large, mobilenet_v1,
|
||||
PPLCNET_x1_0, PPLCNET_x0_5, PPLCNET_x2_5)
|
||||
from timm.models import vit_base_patch16_224 as vit_base_16
|
||||
from model.metric import ArcFace, CosFace
|
||||
import torch.optim as optim
|
||||
import torch.nn as nn
|
||||
import timm
|
||||
|
||||
|
||||
class trainer_tools:
|
||||
def __init__(self, conf):
|
||||
self.conf = conf
|
||||
|
||||
def get_backbone(self):
|
||||
backbone_mapping = {
|
||||
'resnet18': lambda: resnet18(scale=self.conf['models']['channel_ratio']),
|
||||
'mobilevit_s': lambda: mobilevit_s(),
|
||||
'mobilenetv3_small': lambda: MobileNetV3_Small(),
|
||||
'PPLCNET_x1_0': lambda: PPLCNET_x1_0(),
|
||||
'PPLCNET_x0_5': lambda: PPLCNET_x0_5(),
|
||||
'PPLCNET_x2_5': lambda: PPLCNET_x2_5(),
|
||||
'mobilenetv3_large': lambda: MobileNetV3_Large(),
|
||||
'vit_base': lambda: vit_base_16(pretrained=True),
|
||||
'efficientnet': lambda: timm.create_model('efficientnet_b0', pretrained=True,
|
||||
num_classes=self.conf.embedding_size)
|
||||
}
|
||||
return backbone_mapping
|
||||
|
||||
def get_metric(self, class_num):
|
||||
# 优化后的metric选择代码块,使用字典映射提高可读性和扩展性
|
||||
metric_mapping = {
|
||||
'arcface': lambda: ArcFace(self.conf['base']['embedding_size'], class_num).to(self.conf['base']['device']),
|
||||
'cosface': lambda: CosFace(self.conf['base']['embedding_size'], class_num).to(self.conf['base']['device']),
|
||||
'softmax': lambda: nn.Linear(self.conf['base']['embedding_size'], class_num).to(self.conf['base']['device'])
|
||||
}
|
||||
return metric_mapping
|
||||
|
||||
def get_optimizer(self, model, metric):
|
||||
optimizer_mapping = {
|
||||
'sgd': lambda: optim.SGD(
|
||||
[{'params': model.parameters()}, {'params': metric.parameters()}],
|
||||
lr=self.conf['training']['lr'],
|
||||
weight_decay=self.conf['training']['weight_decay']
|
||||
),
|
||||
'adam': lambda: optim.Adam(
|
||||
[{'params': model.parameters()}, {'params': metric.parameters()}],
|
||||
lr=self.conf['training']['lr'],
|
||||
weight_decay=self.conf['training']['weight_decay']
|
||||
),
|
||||
'adamw': lambda: optim.AdamW(
|
||||
[{'params': model.parameters()}, {'params': metric.parameters()}],
|
||||
lr=self.conf['training']['lr'],
|
||||
weight_decay=self.conf['training']['weight_decay']
|
||||
)
|
||||
}
|
||||
return optimizer_mapping
|
Reference in New Issue
Block a user