智能秤分析

This commit is contained in:
lee
2025-08-06 17:03:28 +08:00
parent 54898e30ec
commit 3392d76e38
17 changed files with 572 additions and 54 deletions

View File

@ -3,6 +3,42 @@
<component name="CopilotChatHistory">
<option name="conversations">
<list>
<Conversation>
<option name="createTime" value="1754286137102" />
<option name="id" value="0198739a1f0e75c38b0579ade7b34050" />
<option name="title" value="新对话 2025年8月04日 13:42:17" />
<option name="updateTime" value="1754286137102" />
</Conversation>
<Conversation>
<option name="createTime" value="1753932970546" />
<option name="id" value="01985e8d3a3170bf871ba640afdf246d" />
<option name="title" value="新对话 2025年7月31日 11:36:10" />
<option name="updateTime" value="1753932970546" />
</Conversation>
<Conversation>
<option name="createTime" value="1753932554257" />
<option name="id" value="01985e86e01170d6a09dca496e3dad46" />
<option name="title" value="新对话 2025年7月31日 11:29:14" />
<option name="updateTime" value="1753932554257" />
</Conversation>
<Conversation>
<option name="createTime" value="1753680371881" />
<option name="id" value="01984f7ee0a9779aabcd3f1671b815b3" />
<option name="title" value="新对话 2025年7月28日 13:26:11" />
<option name="updateTime" value="1753680371881" />
</Conversation>
<Conversation>
<option name="createTime" value="1753405176017" />
<option name="id" value="01983f17b8d173dda926d0ffa5422bbf" />
<option name="title" value="新对话 2025年7月25日 08:59:36" />
<option name="updateTime" value="1753405176017" />
</Conversation>
<Conversation>
<option name="createTime" value="1753065086744" />
<option name="id" value="01982ad25f18712f862c5c18b627f40d" />
<option name="title" value="新对话 2025年7月21日 10:31:26" />
<option name="updateTime" value="1753065086744" />
</Conversation>
<Conversation>
<option name="createTime" value="1752195523240" />
<option name="id" value="0197f6fde2a87e68b893b3a36dfc838f" />

View File

@ -16,24 +16,24 @@ base:
# 模型配置
models:
backbone: 'resnet18'
channel_ratio: 0.75
channel_ratio: 1.0
# 训练参数
training:
epochs: 600 # 总训练轮次
epochs: 400 # 总训练轮次
batch_size: 128 # 批次大小
lr: 0.007 # 初始学习率
lr: 0.01 # 初始学习率
optimizer: "sgd" # 优化器类型
metric: 'arcface' # 损失函数类型可选arcface/cosface/sphereface/softmax
loss: "cross_entropy" # 损失函数类型可选cross_entropy/cross_entropy_smooth/center_loss/center_loss_smooth/arcface/cosface/sphereface/softmax
lr_step: 10 # 学习率调整间隔epoch
lr_step: 5 # 学习率调整间隔epoch
lr_decay: 0.95 # 学习率衰减率
weight_decay: 0.0005 # 权重衰减
scheduler: "cosine" # 学习率调度器可选cosine/cosine_warm/step/None
scheduler: "step" # 学习率调度器可选cosine/cosine_warm/step/None
num_workers: 32 # 数据加载线程数
checkpoints: "./checkpoints/resnet18_20250717_scale=0.75_nosub/" # 模型保存目录
restore: true
restore_model: "./checkpoints/resnet18_20250716_scale=0.75_nosub/best.pth" # 模型恢复路径
checkpoints: "./checkpoints/resnet18_electornic_20250806/" # 模型保存目录
restore: false
restore_model: "./checkpoints/resnet18_20250717_scale=0.75_nosub/best.pth" # 模型恢复路径
cosine_t_0: 10 # 初始周期长度
cosine_t_mult: 1 # 周期长度倍率
cosine_eta_min: 0.00001 # 最小学习率
@ -49,8 +49,8 @@ data:
train_batch_size: 128 # 训练批次大小
val_batch_size: 128 # 验证批次大小
num_workers: 32 # 数据加载线程数
data_train_dir: "../data_center/contrast_data/v2/train" # 训练数据集根目录
data_val_dir: "../data_center/contrast_data/v2/val" # 验证数据集根目录
data_train_dir: "../data_center/electornic/v1/train" # 训练数据集根目录
data_val_dir: "../data_center/electornic/v1/val" # 验证数据集根目录
transform:
img_size: 224 # 图像尺寸

View File

@ -0,0 +1,53 @@
# configs/similar_analysis.yml
# 专为模型训练对比设计的配置文件
# 支持对比不同训练策略如蒸馏vs独立训练
# 基础配置
base:
experiment_name: "model_comparison" # 实验名称(用于结果保存目录)
device: "cuda" # 训练设备cuda/cpu
embedding_size: 256 # 特征维度
pin_memory: true # 是否启用pin_memory
distributed: true # 是否启用分布式训练
# 模型配置
models:
backbone: 'resnet18'
channel_ratio: 0.75
model_path: "../checkpoints/resnet18_1009/best.pth"
heatmap:
feature_layer: "layer4"
show_heatmap: true
# 数据配置
data:
dataset: "imagenet" # 数据集名称(示例用,可替换为实际数据集)
train_batch_size: 128 # 训练批次大小
val_batch_size: 8 # 验证批次大小
num_workers: 32 # 数据加载线程数
data_dir: "/home/lc/data_center/image_analysis/pic_pic_similar_maxtrix"
image_joint_pth: "/home/lc/data_center/image_analysis/error_compare_result"
total_pkl: "/home/lc/data_center/image_analysis/pic_pic_similar_maxtrix/total.pkl"
result_txt: "/home/lc/data_center/image_analysis/pic_pic_similar_maxtrix/result.txt"
transform:
img_size: 224 # 图像尺寸
img_mean: 0.5 # 图像均值
img_std: 0.5 # 图像方差
RandomHorizontalFlip: 0.5 # 随机水平翻转概率
RandomRotation: 180 # 随机旋转角度
ColorJitter: 0.5 # 随机颜色抖动强度
# 日志与监控
logging:
logging_dir: "./logs/resnet18_scale=0.75_nosub_log" # 日志保存目录
tensorboard: true # 是否启用TensorBoard
checkpoint_interval: 30 # 检查点保存间隔epoch
event:
oneToOne_max_th: 0.9
oneToSn_min_th: 0.6
event_save_dir: "/home/lc/works/realtime_yolov10s/online_yolov10s_resnetv11_20250702/yolos_tracking"
stdlib_image_path: "/testDataAndLogs/module_test_record/comparison/标准图测试数据/pic/stlib_base"
pickle_path: "event.pickle"

View File

@ -4,10 +4,10 @@
# 数据配置
data:
dataset: "imagenet" # 数据集名称(示例用,可替换为实际数据集)
source_dir: "../../data_center/scatter/v5/source" # 原始数据
train_dir: "../../data_center/scatter/v5/train" # 训练数据集根目录
val_dir: "../../data_center/scatter/v5/val" # 验证数据集根目录
extra_dir: "../../data_center/scatter/v5/extra" # 验证数据集根目录
source_dir: "../../data_center/electornic/source" # 原始数据
train_dir: "../../data_center/electornic/v1/train" # 训练数据集根目录
val_dir: "../../data_center/electornic/v1/val" # 验证数据集根目录
extra_dir: "../../data_center/electornic/v1/extra" # 验证数据集根目录
split_ratio: 0.9
max_files: 10 # 数据集小于该阈值则归纳至extra

View File

@ -43,7 +43,11 @@ logging:
tensorboard: true # 是否启用TensorBoard
checkpoint_interval: 30 # 检查点保存间隔epoch
# 分布式训练(可选)
distributed:
enabled: false # 是否启用分布式训练
backend: "nccl" # 分布式后端nccl/gloo
event:
oneToOneTxt: "/home/lc/detecttracking/oneToOne.txt"
oneToSnTxt: "/home/lc/detecttracking/oneToSn.txt"
oneToOne_max_th: 0.9
oneToSn_min_th: 0.6
event_save_dir: "/home/lc/works/realtime_yolov10s/online_yolov10s_resnetv11_20250702/yolos_tracking"
stdlib_image_path: "/testDataAndLogs/module_test_record/comparison/标准图测试数据/pic/stlib_base"
pickle_path: "event.pickle"

View File

@ -13,8 +13,10 @@ base:
# 模型配置
models:
backbone: 'resnet18'
channel_ratio: 1.0
model_path: "checkpoints/resnet18_scatter_7.3/best.pth"
channel_ratio: 0.75
model_path: "checkpoints/resnet18_1009/best.pth"
#resnet18_20250715_scale=0.75_sub
#resnet18_20250718_scale=0.75_nosub
half: false # 是否启用半精度测试fp16
contrast_learning: false
@ -22,9 +24,9 @@ models:
data:
test_batch_size: 128 # 训练批次大小
num_workers: 32 # 数据加载线程数
test_dir: "../data_center/scatter/v4/val" # 验证数据集根目录
test_dir: "../data_center/contrast_data/v1/extra" # 验证数据集根目录
test_group_json: "../data_center/contrast_learning/model_test_data/test/inner_group_pairs.json"
test_list: "../data_center/scatter/v4/standard_cross_same.txt"
test_list: "../data_center/contrast_data/v1/extra_cross_same.txt"
group_test: false
save_image_joint: true
image_joint_pth: "./joint_images"

View File

@ -14,7 +14,7 @@ base:
models:
backbone: 'resnet18'
channel_ratio: 0.75
checkpoints: "../checkpoints/resnet18_1009/best.pth"
checkpoints: "../checkpoints/resnet18_20250715_scale=0.75_sub/best.pth"
# 数据配置
data:
@ -42,7 +42,7 @@ logging:
save:
json_bin: "../search_library/yunhedian_05-09.json" # 保存整个json文件
json_path: "/home/lc/data_center/baseStlib/feature_json/stlib_base" # 保存单个json文件路径
json_path: "/home/lc/data_center/baseStlib/feature_json/stlib_base_resnet18_sub" # 保存单个json文件路径
error_barcodes: "error_barcodes.txt"
barcodes_statistics: "../search_library/barcodes_statistics.txt"
create_single_json: true # 是否保存单个json文件

View File

@ -2,7 +2,7 @@ import os
import shutil
import random
from pathlib import Path
import yaml
def is_image_file(filename):
"""检查文件是否为图像文件"""
image_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.gif', '.tiff')
@ -61,10 +61,12 @@ def control_train_number():
pass
if __name__ == "__main__":
# 设置目录路径
TRAIN_DIR = "scatter_data/train"
VAL_DIR = "scatter_data/val"
# # 设置目录路径
# TRAIN_DIR = "/home/lc/data_center/electornic/v1/train"
# VAL_DIR = "/home/lc/data_center/electornic/v1/val"
with open('../configs/scatter_data.yml', 'r') as f:
conf = yaml.load(f, Loader=yaml.FullLoader)
print("开始分割数据集...")
split_directory(TRAIN_DIR, VAL_DIR)
split_directory(conf)
print("数据集分割完成")

View File

@ -141,7 +141,7 @@ class ImageExtendProcessor:
same_directory,
dir_name)
def random_remove_image(self, subdir_path, max_count=200):
def random_remove_image(self, subdir_path, max_count=1000):
"""
随机删除子目录中的图像文件直到数量不超过max_count
:param subdir_path: 子目录路径

View File

@ -17,7 +17,7 @@ from configs import trainer_tools
import yaml
from datetime import datetime
with open('../configs/test.yml', 'r') as f:
with open('./configs/test.yml', 'r') as f:
conf = yaml.load(f, Loader=yaml.FullLoader)
# Constants from config
@ -141,7 +141,7 @@ def threshold_search(y_score, y_true):
def showgrid(recall, recall_TN, PrecisePos, PreciseNeg, Correct):
x = np.linspace(start=0, stop=1.0, num=50, endpoint=True).tolist()
x = np.linspace(start=-1, stop=1.0, num=100, endpoint=True).tolist()
plt.figure(figsize=(10, 6))
plt.plot(x, recall, color='red', label='recall:TP/TPFN')
plt.plot(x, recall_TN, color='black', label='recall_TN:TN/TNFP')
@ -151,6 +151,7 @@ def showgrid(recall, recall_TN, PrecisePos, PreciseNeg, Correct):
plt.legend()
plt.xlabel('threshold')
# plt.ylabel('Similarity')
plt.grid(True, linestyle='--', alpha=0.5)
plt.savefig('grid.png')
plt.show()
@ -162,19 +163,19 @@ def showHist(same, cross):
Cross = np.array(cross)
fig, axs = plt.subplots(2, 1)
axs[0].hist(Same, bins=50, edgecolor='black')
axs[0].set_xlim([-0.1, 1])
axs[0].hist(Same, bins=100, edgecolor='black')
axs[0].set_xlim([-1, 1])
axs[0].set_title('Same Barcode')
axs[1].hist(Cross, bins=50, edgecolor='black')
axs[1].set_xlim([-0.1, 1])
axs[1].hist(Cross, bins=100, edgecolor='black')
axs[1].set_xlim([-1, 1])
axs[1].set_title('Cross Barcode')
plt.savefig('plot.png')
def compute_accuracy_recall(score, labels):
th = 0.1
squence = np.linspace(-1, 1, num=50)
squence = np.linspace(-1, 1, num=100)
recall, PrecisePos, PreciseNeg, recall_TN, Correct = [], [], [], [], []
Same = score[:len(score) // 2]
Cross = score[len(score) // 2:]

View File

@ -24,7 +24,7 @@ def get_transform(cfg):
T.Normalize(mean=[cfg['transform']['img_mean']], std=[cfg['transform']['img_std']]),
])
test_transform = T.Compose([
# T.Lambda(pad_to_square), # 补边
T.Lambda(pad_to_square), # 补边
T.ToTensor(),
T.Resize((cfg['transform']['img_size'], cfg['transform']['img_size']), antialias=True),
T.ConvertImageDtype(torch.float32),

View File

@ -0,0 +1,144 @@
from similar_analysis import SimilarAnalysis
import os
import pickle
from tools.image_joint import merge_imgs
class EventSimilarAnalysis(SimilarAnalysis):
def __init__(self):
super(EventSimilarAnalysis, self).__init__()
self.fn_one2one_event, self.fp_one2one_event = self.One2one_similar_analysis()
self.fn_one2sn_event, self.fp_one2sn_event = self.One2Sn_similar_analysis()
if os.path.exists(self.conf['event']['pickle_path']):
print('pickle file exists')
else:
self.target_image = self.get_path()
def get_path(self):
events = [self.fn_one2one_event, self.fp_one2one_event,
self.fn_one2sn_event, self.fp_one2sn_event]
event_image_path = []
barcode_image_path = []
for event in events:
for event_name, bcd in event:
event_sub_image = os.sep.join([self.conf['event']['event_save_dir'],
event_name,
'subimgs'])
barcode_images = os.sep.join([self.conf['event']['stdlib_image_path'],
bcd])
for image_name in os.listdir(event_sub_image):
event_image_path.append(os.sep.join([event_sub_image, image_name]))
for barcode in os.listdir(barcode_images):
barcode_image_path.append(os.sep.join([barcode_images, barcode]))
return list(set(event_image_path + barcode_image_path))
def write_dict_to_pickle(self, data):
"""将字典写入pickle文件."""
with open(self.conf['event']['pickle_path'], 'wb') as file:
pickle.dump(data, file)
def get_dict_to_pickle(self):
with open(self.conf['event']['pickle_path'], 'rb') as f:
data = pickle.load(f)
return data
def create_total_feature(self):
feature_dicts = self.get_feature_map(self.target_image)
self.write_dict_to_pickle(feature_dicts)
print(feature_dicts)
def One2one_similar_analysis(self):
fn_event, fp_event = [], []
with open(self.conf['event']['oneToOneTxt'], 'r') as f:
lines = f.readlines()
for line in lines:
print(line.strip().split(' '))
event_infor = line.strip().split(' ')
label = event_infor[0]
event_name = event_infor[1]
bcd = event_infor[2]
simi1 = event_infor[3]
simi2 = event_infor[4]
if label == 'same' and float(simi2) < self.conf['event']['oneToOne_max_th']:
print(event_name, bcd, simi1)
fn_event.append((event_name, bcd))
elif label == 'diff' and float(simi2) > self.conf['event']['oneToSn_min_th']:
fp_event.append((event_name, bcd))
return fn_event, fp_event
def One2Sn_similar_analysis(self):
fn_event, fp_event = [], []
with open(self.conf['event']['oneToOneTxt'], 'r') as f:
lines = f.readlines()
for line in lines:
print(line.strip().split(' '))
event_infor = line.strip().split(' ')
label = event_infor[0]
event_name = event_infor[1]
bcd = event_infor[2]
simi = event_infor[3]
if label == 'fn':
print(event_name, bcd, simi)
fn_event.append((event_name, bcd))
elif label == 'fp':
fp_event.append((event_name, bcd))
return fn_event, fp_event
def save_joint_image(self, img_pth1, img_pth2, feature_dicts, record):
feature_dict1 = feature_dicts[img_pth1]
feature_dict2 = feature_dicts[img_pth2]
similarity = self.get_similarity(feature_dict1.cpu().numpy(),
feature_dict2.cpu().numpy())
dir_name = img_pth1.split('/')[-3]
save_path = os.sep.join([self.conf['data']['image_joint_pth'], dir_name, record])
if "fp" in record:
if similarity > 0.8:
merge_imgs(img_pth1,
img_pth2,
self.conf,
similarity,
label=None,
cam=self.cam,
save_path=save_path)
else:
if similarity < 0.8:
merge_imgs(img_pth1,
img_pth2,
self.conf,
similarity,
label=None,
cam=self.cam,
save_path=save_path)
print(similarity)
def get_contrast(self, feature_dicts):
events_compare = [self.fp_one2one_event, self.fn_one2one_event, self.fp_one2sn_event, self.fn_one2sn_event]
event_record = ['fp_one2one', 'fn_one2one', 'fp_one2sn', 'fn_one2sn']
for event_compare, record in zip(events_compare, event_record):
for img, img_std in event_compare:
imgs_pth1 = os.sep.join([self.conf['event']['event_save_dir'],
img,
'subimgs'])
imgs_pth2 = os.sep.join([self.conf['event']['stdlib_image_path'],
img_std])
for img1 in os.listdir(imgs_pth1):
for img2 in os.listdir(imgs_pth2):
img_pth1 = os.sep.join([imgs_pth1, img1])
img_pth2 = os.sep.join([imgs_pth2, img2])
try:
self.save_joint_image(img_pth1, img_pth2, feature_dicts, record)
except Exception as e:
continue
print(e)
if __name__ == '__main__':
event_similar_analysis = EventSimilarAnalysis()
if os.path.exists(event_similar_analysis.conf['event']['pickle_path']):
print('pickle file exists')
else:
event_similar_analysis.create_total_feature() # 生成pickle文件, 生成时间较长,生成一个文件即可
feature_dicts = event_similar_analysis.get_dict_to_pickle()
# all_compare_img = event_similar_analysis.get_image_map()
event_similar_analysis.get_contrast(feature_dicts) # 获取比对结果

View File

@ -9,8 +9,23 @@ import logging
class PairGenerator:
"""Generate positive and negative image pairs for contrastive learning."""
def __init__(self):
def __init__(self, original_path):
self._setup_logging()
self.original_path = original_path
self._delete_space()
def _delete_space(self): # 删除图片文件名中的空格
print(self.original_path)
for root, dirs, files in os.walk(self.original_path):
for file_name in files:
if file_name.endswith('.jpg' or '.png'):
n_file_name = file_name.replace(' ', '')
os.rename(os.path.join(root, file_name), os.path.join(root, n_file_name))
if 'rotate' in file_name:
os.remove(os.path.join(root, file_name))
for dir_name in dirs:
n_dir_name = dir_name.replace(' ', '')
os.rename(os.path.join(root, dir_name), os.path.join(root, n_dir_name))
def _setup_logging(self):
"""Configure logging settings."""
@ -188,11 +203,11 @@ class PairGenerator:
if __name__ == "__main__":
original_path = '/home/lc/data_center/scatter/v4/val'
original_path = '/home/lc/data_center/contrast_data/v1/extra'
parent_dir = str(Path(original_path).parent)
generator = PairGenerator()
generator = PairGenerator(original_path)
# Example usage:
pairs = generator.get_pairs(original_path,
output_txt=os.sep.join([parent_dir, 'cross_same.txt'])) # Individual pairs
output_txt=os.sep.join([parent_dir, 'extra_cross_same.txt'])) # Individual pairs
# groups = generator.get_group_pairs('val') # Group pairs

View File

@ -18,31 +18,49 @@ def merge_imgs(img1_path, img2_path, conf, similar=None, label=None, cam=None, s
img2 = Image.open(img2_path)
img1 = img1.resize((224, 224))
img2 = img2.resize((224, 224))
new_img = Image.new('RGB', (img1.width + img2.width + 10, img1.height))
# save_path = conf['data']['image_joint_pth']
else:
assert cam is not None, 'cam is None'
img1 = cam.get_hot_map(img1_path)
img2 = cam.get_hot_map(img2_path)
img1_ori = Image.open(img1_path)
img2_ori = Image.open(img2_path)
img1_ori = img1_ori.resize((224, 224))
img2_ori = img2_ori.resize((224, 224))
new_img = Image.new('RGB',
(img1.width + img2.width + 10,
img1.height + img2.width + 10))
# save_path = conf['heatmap']['image_joint_pth']
# print('img1_path', img1)
# print('img2_path', img2)
if not os.path.exists(os.sep.join([save_path, str(label)])):
if not os.path.exists(os.sep.join([save_path, str(label)])) and (label is not None):
os.makedirs(os.sep.join([save_path, str(label)]))
if save_path is None:
save_path = os.sep.join([save_path, str(label)])
img_name = os.path.basename(img1_path).split('.')[0] + '_' + os.path.basename(img2_path).split('.')[0] + '.png'
if save_path is None:
# save_path = os.sep.join([save_path, str(label)])
pass
# img_name = os.path.basename(img1_path).split('.')[0] + '_' + os.path.basename(img2_path).split('.')[0] + '.png'
img_name = os.path.basename(img1_path).split('.')[0][:30] + '_' + os.path.basename(img2_path).split('.')[0][
:30] + '.png'
assert img1.height == img2.height
new_img = Image.new('RGB', (img1.width + img2.width + 10, img1.height))
# print('new_img', new_img)
if not conf['heatmap']['show_heatmap']:
new_img.paste(img1, (0, 0))
new_img.paste(img2, (img1.width + 10, 0))
else:
new_img.paste(img1_ori, (10, 10))
new_img.paste(img2_ori, (img2_ori.width + 20, 10))
new_img.paste(img1, (10, img1.height+20))
new_img.paste(img2, (img2.width+20, img2.height+20))
if similar is not None:
if label == '1' and similar > 0.5:
if label == '1' and (similar > 0.5 or similar < 0.25):
save = False
elif label == '0' and similar < 0.5:
elif label == '0' and similar > 0.25:
save = False
similar = str(similar) + '_' + str(label)
draw = ImageDraw.Draw(new_img)

View File

@ -122,7 +122,7 @@ if __name__ == '__main__':
# Build model
print('--> Building model')
ret = rknn.build(do_quantization=True,
ret = rknn.build(do_quantization=False, # True
dataset='./dataset.txt',
rknn_batch_size=conf['models']['rknn_batch_size'])
# ret = rknn.build(do_quantization=False, dataset='./dataset.txt')

View File

@ -0,0 +1,242 @@
from similar_analysis import SimilarAnalysis
import os
import pickle
from tools.image_joint import merge_imgs
import yaml
from PIL import Image
import torch
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import matplotlib.pyplot as plt
'''
轨迹图与标准库之间的相似度分析
1.用于生成轨迹图与标准库中所有图片的相似度
2.用于分析轨迹图与标准库比对选取策略的判断
'''
class picDirSimilarAnalysis(SimilarAnalysis):
def __init__(self):
super(picDirSimilarAnalysis, self).__init__()
with open('../configs/pic_pic_similar.yml', 'r') as f:
self.conf = yaml.load(f, Loader=yaml.FullLoader)
if not os.path.exists(self.conf['data']['total_pkl']):
# self.create_total_feature()
self.create_total_pkl()
if os.path.exists(self.conf['data']['total_pkl']):
self.all_dicts = self.load_dict_from_pkl()
def is_image_file(self, filename):
"""
检查文件是否为图像文件
"""
image_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.gif', '.tiff')
return filename.lower().endswith(image_extensions)
def create_total_pkl(self): # 将目录下所有的图片特征存入pkl文件
all_images_feature_dict = {}
for roots, dirs, files in os.walk(self.conf['data']['data_dir']):
for file_name in files:
if self.is_image_file(file_name):
try:
print(f"处理图像 {os.sep.join([roots, file_name])}")
feature = self.extract_features(os.sep.join([roots, file_name]))
except Exception as e:
print(f"处理图像 {os.sep.join([roots, file_name])} 时出错: {e}")
feature = None
all_images_feature_dict[os.sep.join([roots, file_name])] = feature
if not os.path.exists(self.conf['data']['total_pkl']):
with open(self.conf['data']['total_pkl'], 'wb') as f:
pickle.dump(all_images_feature_dict, f)
def load_dict_from_pkl(self):
with open(self.conf['data']['total_pkl'], 'rb') as f:
data = pickle.load(f)
print(f"字典已从 {self.conf['data']['total_pkl']} 加载")
return data
def get_image_files(self, folder_path):
"""
获取文件夹中的所有图像文件
"""
image_files = []
for root, _, files in os.walk(folder_path):
for file in files:
if self.is_image_file(file):
image_files.append(os.path.join(root, file))
return image_files
def extract_features(self, image_path):
feature_dict = self.get_feature(image_path)
return feature_dict[image_path]
def create_one_similarity_matrix(self, folder1_path, folder2_path):
images1 = self.get_image_files(folder1_path)
images2 = self.get_image_files(folder2_path)
print(f"文件夹1 ({folder1_path}) 包含 {len(images1)} 张图像")
print(f"文件夹2 ({folder2_path}) 包含 {len(images2)} 张图像")
if len(images1) == 0 or len(images2) == 0:
raise ValueError("至少有一个文件夹中没有图像文件")
# 提取文件夹1中的所有图像特征
features1 = []
print("正在提取文件夹1中的图像特征...")
for i, img_path in enumerate(images1):
try:
# feature = self.extract_features(img_path)
feature = self.all_dicts[img_path]
features1.append(feature.cpu().numpy())
# if (i + 1) % 10 == 0:
# print(f"已处理 {i + 1}/{len(images1)} 张图像")
except Exception as e:
print(f"处理图像 {img_path} 时出错: {e}")
features1.append(None)
# 提取文件夹2中的所有图像特征
features2 = []
print("正在提取文件夹2中的图像特征...")
for i, img_path in enumerate(images2):
try:
# feature = self.extract_features(img_path)
feature = self.all_dicts[img_path]
features2.append(feature.cpu().numpy())
# if (i + 1) % 10 == 0:
# print(f"已处理 {i + 1}/{len(images2)} 张图像")
except Exception as e:
print(f"处理图像 {img_path} 时出错: {e}")
features2.append(None)
# 移除处理失败的图像
valid_features1 = []
valid_images1 = []
for i, feature in enumerate(features1):
if feature is not None:
valid_features1.append(feature)
valid_images1.append(images1[i])
valid_features2 = []
valid_images2 = []
for i, feature in enumerate(features2):
if feature is not None:
valid_features2.append(feature)
valid_images2.append(images2[i])
# print(f"文件夹1中成功处理 {len(valid_features1)} 张图像")
# print(f"文件夹2中成功处理 {len(valid_features2)} 张图像")
if len(valid_features1) == 0 or len(valid_features2) == 0:
raise ValueError("没有成功处理任何图像")
# 计算相似度矩阵
print("正在计算相似度矩阵...")
similarity_matrix = cosine_similarity(valid_features1, valid_features2)
return similarity_matrix, valid_images1, valid_images2
def get_group_similarity_matrix(self, folder_path):
tracking_folder = os.sep.join([folder_path, 'tracking'])
standard_folder = os.sep.join([folder_path, 'standard_slim'])
for dir_name in os.listdir(tracking_folder):
tracking_dir = os.sep.join([tracking_folder, dir_name])
standard_dir = os.sep.join([standard_folder, dir_name])
similarity_matrix, valid_images1, valid_images2 = self.create_one_similarity_matrix(tracking_dir,
standard_dir)
mean_similarity = np.mean(similarity_matrix)
std_similarity = np.std(similarity_matrix)
max_similarity = np.max(similarity_matrix)
min_similarity = np.min(similarity_matrix)
print(f"文件夹 {dir_name} 的相似度矩阵已计算完成 "
f"均值:{mean_similarity} 标准差:{std_similarity} 最大值:{max_similarity} 最小值:{min_similarity}")
result = f"{os.path.basename(standard_folder)} {dir_name} {mean_similarity:.3f} {std_similarity:.3f} {max_similarity:.3f} {min_similarity:.3f}"
with open(self.conf['data']['result_txt'], 'a') as f:
f.write(result + '\n')
def read_result_txt():
parts = []
value_num = 2
with open('../configs/pic_pic_similar.yml', 'r') as f:
conf = yaml.load(f, Loader=yaml.FullLoader)
f.close()
with open(conf['data']['result_txt'], 'r') as f:
lines = f.readlines()
for line in lines:
line = line.strip()
if line:
parts.append(line.split(' '))
parts = np.array(parts)
print(parts)
labels = ['Mean', 'Std', 'Max', 'Min']
while value_num < 6:
dicts = {}
for barcode, value in zip(parts[:, 1], parts[:, value_num]):
if barcode in dicts:
dicts[barcode].append(float(value))
else:
dicts[barcode] = [float(value)]
get_histogram(dicts, labels[value_num - 2])
value_num += 1
f.close()
def get_histogram(data, label=None):
# 准备数据
categories = list(data.keys())
values1 = [data[cat][0] for cat in categories] # 第一个值
values2 = [data[cat][1] for cat in categories] # 第二个值
# 设置柱状图的位置
x = np.arange(len(categories)) # 标签位置
width = 0.35 # 柱状图的宽度
# 创建图形和轴
fig, ax = plt.subplots(figsize=(10, 6))
# 绘制柱状图
bars1 = ax.bar(x - width / 2, values1, width, label='standard', color='red', alpha=0.7)
bars2 = ax.bar(x + width / 2, values2, width, label='standard_slim', color='green', alpha=0.7)
# 在每个柱状图上显示数值
for bar in bars1:
height = bar.get_height()
ax.annotate(f'{height:.3f}',
xy=(bar.get_x() + bar.get_width() / 2, height),
xytext=(0, 3), # 3点垂直偏移
textcoords="offset points",
ha='center', va='bottom',
fontsize=12)
for bar in bars2:
height = bar.get_height()
ax.annotate(f'{height:.3f}',
xy=(bar.get_x() + bar.get_width() / 2, height),
xytext=(0, 3), # 3点垂直偏移
textcoords="offset points",
ha='center', va='bottom',
fontsize=12)
# 添加标签和标题
if label is None:
label = ''
ax.set_xlabel('barcode')
ax.set_ylabel('Values')
ax.set_title(label)
ax.set_xticks(x)
ax.set_xticklabels(categories)
ax.legend()
# 添加网格
ax.grid(True, alpha=0.3)
# 调整布局并显示
plt.tight_layout()
plt.show()
if __name__ == '__main__':
# picTopic_matrix = picDirSimilarAnalysis()
# picTopic_matrix.get_group_similarity_matrix('/home/lc/data_center/image_analysis/pic_pic_similar_maxtrix')
read_result_txt()

View File

@ -10,7 +10,7 @@ import yaml
import os
class analysis:
class SimilarAnalysis:
def __init__(self):
with open('../configs/similar_analysis.yml', 'r') as f:
self.conf = yaml.load(f, Loader=yaml.FullLoader)
@ -53,6 +53,7 @@ class analysis:
def get_feature_map(self, all_imgs):
feature_dicts = {}
for img_pth in all_imgs:
print(f"Processing {img_pth}")
feature_dict = self.get_feature(img_pth)
feature_dicts = dict(ChainMap(feature_dict, feature_dicts))
return feature_dicts
@ -85,7 +86,7 @@ class analysis:
feature_dict2 = feature_dicts[img_pth2]
similarity = self.get_similarity(feature_dict1.cpu().numpy(),
feature_dict2.cpu().numpy())
dir_name = img_pth1.split(os.sep)[-3]
dir_name = img_pth1.split('/')[-3]
save_path = os.sep.join([self.conf['data']['image_joint_pth'], dir_name])
if similarity > 0.7:
merge_imgs(img_pth1,
@ -99,7 +100,7 @@ class analysis:
if __name__ == '__main__':
ana = analysis()
ana = SimilarAnalysis()
all_imgs = ana.create_total_feature()
feature_dicts = ana.get_feature_map(all_imgs)
all_compare_img = ana.get_image_map()