智能秤分析
This commit is contained in:
@ -24,7 +24,7 @@ def get_transform(cfg):
|
||||
T.Normalize(mean=[cfg['transform']['img_mean']], std=[cfg['transform']['img_std']]),
|
||||
])
|
||||
test_transform = T.Compose([
|
||||
# T.Lambda(pad_to_square), # 补边
|
||||
T.Lambda(pad_to_square), # 补边
|
||||
T.ToTensor(),
|
||||
T.Resize((cfg['transform']['img_size'], cfg['transform']['img_size']), antialias=True),
|
||||
T.ConvertImageDtype(torch.float32),
|
||||
|
144
tools/event_similar_analysis.py
Normal file
144
tools/event_similar_analysis.py
Normal file
@ -0,0 +1,144 @@
|
||||
from similar_analysis import SimilarAnalysis
|
||||
import os
|
||||
import pickle
|
||||
from tools.image_joint import merge_imgs
|
||||
|
||||
|
||||
class EventSimilarAnalysis(SimilarAnalysis):
|
||||
def __init__(self):
|
||||
super(EventSimilarAnalysis, self).__init__()
|
||||
self.fn_one2one_event, self.fp_one2one_event = self.One2one_similar_analysis()
|
||||
self.fn_one2sn_event, self.fp_one2sn_event = self.One2Sn_similar_analysis()
|
||||
if os.path.exists(self.conf['event']['pickle_path']):
|
||||
print('pickle file exists')
|
||||
else:
|
||||
self.target_image = self.get_path()
|
||||
|
||||
def get_path(self):
|
||||
events = [self.fn_one2one_event, self.fp_one2one_event,
|
||||
self.fn_one2sn_event, self.fp_one2sn_event]
|
||||
event_image_path = []
|
||||
barcode_image_path = []
|
||||
for event in events:
|
||||
for event_name, bcd in event:
|
||||
event_sub_image = os.sep.join([self.conf['event']['event_save_dir'],
|
||||
event_name,
|
||||
'subimgs'])
|
||||
barcode_images = os.sep.join([self.conf['event']['stdlib_image_path'],
|
||||
bcd])
|
||||
for image_name in os.listdir(event_sub_image):
|
||||
event_image_path.append(os.sep.join([event_sub_image, image_name]))
|
||||
for barcode in os.listdir(barcode_images):
|
||||
barcode_image_path.append(os.sep.join([barcode_images, barcode]))
|
||||
return list(set(event_image_path + barcode_image_path))
|
||||
|
||||
|
||||
def write_dict_to_pickle(self, data):
|
||||
"""将字典写入pickle文件."""
|
||||
with open(self.conf['event']['pickle_path'], 'wb') as file:
|
||||
pickle.dump(data, file)
|
||||
|
||||
def get_dict_to_pickle(self):
|
||||
with open(self.conf['event']['pickle_path'], 'rb') as f:
|
||||
data = pickle.load(f)
|
||||
return data
|
||||
|
||||
def create_total_feature(self):
|
||||
feature_dicts = self.get_feature_map(self.target_image)
|
||||
self.write_dict_to_pickle(feature_dicts)
|
||||
print(feature_dicts)
|
||||
|
||||
def One2one_similar_analysis(self):
|
||||
fn_event, fp_event = [], []
|
||||
with open(self.conf['event']['oneToOneTxt'], 'r') as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
print(line.strip().split(' '))
|
||||
event_infor = line.strip().split(' ')
|
||||
label = event_infor[0]
|
||||
event_name = event_infor[1]
|
||||
bcd = event_infor[2]
|
||||
simi1 = event_infor[3]
|
||||
simi2 = event_infor[4]
|
||||
if label == 'same' and float(simi2) < self.conf['event']['oneToOne_max_th']:
|
||||
print(event_name, bcd, simi1)
|
||||
fn_event.append((event_name, bcd))
|
||||
elif label == 'diff' and float(simi2) > self.conf['event']['oneToSn_min_th']:
|
||||
fp_event.append((event_name, bcd))
|
||||
return fn_event, fp_event
|
||||
|
||||
def One2Sn_similar_analysis(self):
|
||||
fn_event, fp_event = [], []
|
||||
with open(self.conf['event']['oneToOneTxt'], 'r') as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
print(line.strip().split(' '))
|
||||
event_infor = line.strip().split(' ')
|
||||
label = event_infor[0]
|
||||
event_name = event_infor[1]
|
||||
bcd = event_infor[2]
|
||||
simi = event_infor[3]
|
||||
if label == 'fn':
|
||||
print(event_name, bcd, simi)
|
||||
fn_event.append((event_name, bcd))
|
||||
elif label == 'fp':
|
||||
fp_event.append((event_name, bcd))
|
||||
return fn_event, fp_event
|
||||
|
||||
def save_joint_image(self, img_pth1, img_pth2, feature_dicts, record):
|
||||
feature_dict1 = feature_dicts[img_pth1]
|
||||
feature_dict2 = feature_dicts[img_pth2]
|
||||
similarity = self.get_similarity(feature_dict1.cpu().numpy(),
|
||||
feature_dict2.cpu().numpy())
|
||||
dir_name = img_pth1.split('/')[-3]
|
||||
save_path = os.sep.join([self.conf['data']['image_joint_pth'], dir_name, record])
|
||||
if "fp" in record:
|
||||
if similarity > 0.8:
|
||||
merge_imgs(img_pth1,
|
||||
img_pth2,
|
||||
self.conf,
|
||||
similarity,
|
||||
label=None,
|
||||
cam=self.cam,
|
||||
save_path=save_path)
|
||||
else:
|
||||
if similarity < 0.8:
|
||||
merge_imgs(img_pth1,
|
||||
img_pth2,
|
||||
self.conf,
|
||||
similarity,
|
||||
label=None,
|
||||
cam=self.cam,
|
||||
save_path=save_path)
|
||||
print(similarity)
|
||||
|
||||
def get_contrast(self, feature_dicts):
|
||||
events_compare = [self.fp_one2one_event, self.fn_one2one_event, self.fp_one2sn_event, self.fn_one2sn_event]
|
||||
event_record = ['fp_one2one', 'fn_one2one', 'fp_one2sn', 'fn_one2sn']
|
||||
for event_compare, record in zip(events_compare, event_record):
|
||||
for img, img_std in event_compare:
|
||||
imgs_pth1 = os.sep.join([self.conf['event']['event_save_dir'],
|
||||
img,
|
||||
'subimgs'])
|
||||
imgs_pth2 = os.sep.join([self.conf['event']['stdlib_image_path'],
|
||||
img_std])
|
||||
for img1 in os.listdir(imgs_pth1):
|
||||
for img2 in os.listdir(imgs_pth2):
|
||||
img_pth1 = os.sep.join([imgs_pth1, img1])
|
||||
img_pth2 = os.sep.join([imgs_pth2, img2])
|
||||
try:
|
||||
self.save_joint_image(img_pth1, img_pth2, feature_dicts, record)
|
||||
except Exception as e:
|
||||
continue
|
||||
print(e)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
event_similar_analysis = EventSimilarAnalysis()
|
||||
if os.path.exists(event_similar_analysis.conf['event']['pickle_path']):
|
||||
print('pickle file exists')
|
||||
else:
|
||||
event_similar_analysis.create_total_feature() # 生成pickle文件, 生成时间较长,生成一个文件即可
|
||||
feature_dicts = event_similar_analysis.get_dict_to_pickle()
|
||||
# all_compare_img = event_similar_analysis.get_image_map()
|
||||
event_similar_analysis.get_contrast(feature_dicts) # 获取比对结果
|
@ -9,8 +9,23 @@ import logging
|
||||
class PairGenerator:
|
||||
"""Generate positive and negative image pairs for contrastive learning."""
|
||||
|
||||
def __init__(self):
|
||||
def __init__(self, original_path):
|
||||
self._setup_logging()
|
||||
self.original_path = original_path
|
||||
self._delete_space()
|
||||
|
||||
def _delete_space(self): # 删除图片文件名中的空格
|
||||
print(self.original_path)
|
||||
for root, dirs, files in os.walk(self.original_path):
|
||||
for file_name in files:
|
||||
if file_name.endswith('.jpg' or '.png'):
|
||||
n_file_name = file_name.replace(' ', '')
|
||||
os.rename(os.path.join(root, file_name), os.path.join(root, n_file_name))
|
||||
if 'rotate' in file_name:
|
||||
os.remove(os.path.join(root, file_name))
|
||||
for dir_name in dirs:
|
||||
n_dir_name = dir_name.replace(' ', '')
|
||||
os.rename(os.path.join(root, dir_name), os.path.join(root, n_dir_name))
|
||||
|
||||
def _setup_logging(self):
|
||||
"""Configure logging settings."""
|
||||
@ -188,11 +203,11 @@ class PairGenerator:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
original_path = '/home/lc/data_center/scatter/v4/val'
|
||||
original_path = '/home/lc/data_center/contrast_data/v1/extra'
|
||||
parent_dir = str(Path(original_path).parent)
|
||||
generator = PairGenerator()
|
||||
generator = PairGenerator(original_path)
|
||||
|
||||
# Example usage:
|
||||
pairs = generator.get_pairs(original_path,
|
||||
output_txt=os.sep.join([parent_dir, 'cross_same.txt'])) # Individual pairs
|
||||
output_txt=os.sep.join([parent_dir, 'extra_cross_same.txt'])) # Individual pairs
|
||||
# groups = generator.get_group_pairs('val') # Group pairs
|
||||
|
@ -18,31 +18,49 @@ def merge_imgs(img1_path, img2_path, conf, similar=None, label=None, cam=None, s
|
||||
img2 = Image.open(img2_path)
|
||||
img1 = img1.resize((224, 224))
|
||||
img2 = img2.resize((224, 224))
|
||||
new_img = Image.new('RGB', (img1.width + img2.width + 10, img1.height))
|
||||
# save_path = conf['data']['image_joint_pth']
|
||||
else:
|
||||
assert cam is not None, 'cam is None'
|
||||
img1 = cam.get_hot_map(img1_path)
|
||||
img2 = cam.get_hot_map(img2_path)
|
||||
img1_ori = Image.open(img1_path)
|
||||
img2_ori = Image.open(img2_path)
|
||||
img1_ori = img1_ori.resize((224, 224))
|
||||
img2_ori = img2_ori.resize((224, 224))
|
||||
new_img = Image.new('RGB',
|
||||
(img1.width + img2.width + 10,
|
||||
img1.height + img2.width + 10))
|
||||
# save_path = conf['heatmap']['image_joint_pth']
|
||||
# print('img1_path', img1)
|
||||
# print('img2_path', img2)
|
||||
if not os.path.exists(os.sep.join([save_path, str(label)])):
|
||||
if not os.path.exists(os.sep.join([save_path, str(label)])) and (label is not None):
|
||||
os.makedirs(os.sep.join([save_path, str(label)]))
|
||||
if save_path is None:
|
||||
save_path = os.sep.join([save_path, str(label)])
|
||||
img_name = os.path.basename(img1_path).split('.')[0] + '_' + os.path.basename(img2_path).split('.')[0] + '.png'
|
||||
if save_path is None:
|
||||
# save_path = os.sep.join([save_path, str(label)])
|
||||
pass
|
||||
# img_name = os.path.basename(img1_path).split('.')[0] + '_' + os.path.basename(img2_path).split('.')[0] + '.png'
|
||||
img_name = os.path.basename(img1_path).split('.')[0][:30] + '_' + os.path.basename(img2_path).split('.')[0][
|
||||
:30] + '.png'
|
||||
assert img1.height == img2.height
|
||||
|
||||
new_img = Image.new('RGB', (img1.width + img2.width + 10, img1.height))
|
||||
|
||||
|
||||
# print('new_img', new_img)
|
||||
new_img.paste(img1, (0, 0))
|
||||
new_img.paste(img2, (img1.width + 10, 0))
|
||||
if not conf['heatmap']['show_heatmap']:
|
||||
new_img.paste(img1, (0, 0))
|
||||
new_img.paste(img2, (img1.width + 10, 0))
|
||||
else:
|
||||
new_img.paste(img1_ori, (10, 10))
|
||||
new_img.paste(img2_ori, (img2_ori.width + 20, 10))
|
||||
new_img.paste(img1, (10, img1.height+20))
|
||||
new_img.paste(img2, (img2.width+20, img2.height+20))
|
||||
|
||||
if similar is not None:
|
||||
if label == '1' and similar > 0.5:
|
||||
if label == '1' and (similar > 0.5 or similar < 0.25):
|
||||
save = False
|
||||
elif label == '0' and similar < 0.5:
|
||||
elif label == '0' and similar > 0.25:
|
||||
save = False
|
||||
similar = str(similar) + '_' + str(label)
|
||||
draw = ImageDraw.Draw(new_img)
|
||||
|
@ -122,7 +122,7 @@ if __name__ == '__main__':
|
||||
|
||||
# Build model
|
||||
print('--> Building model')
|
||||
ret = rknn.build(do_quantization=True,
|
||||
ret = rknn.build(do_quantization=False, # True
|
||||
dataset='./dataset.txt',
|
||||
rknn_batch_size=conf['models']['rknn_batch_size'])
|
||||
# ret = rknn.build(do_quantization=False, dataset='./dataset.txt')
|
||||
|
242
tools/picdir_to_picdir_similar.py
Normal file
242
tools/picdir_to_picdir_similar.py
Normal file
@ -0,0 +1,242 @@
|
||||
from similar_analysis import SimilarAnalysis
|
||||
import os
|
||||
import pickle
|
||||
from tools.image_joint import merge_imgs
|
||||
import yaml
|
||||
from PIL import Image
|
||||
import torch
|
||||
from sklearn.metrics.pairwise import cosine_similarity
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
'''
|
||||
轨迹图与标准库之间的相似度分析
|
||||
1.用于生成轨迹图与标准库中所有图片的相似度
|
||||
2.用于分析轨迹图与标准库比对选取策略的判断
|
||||
'''
|
||||
|
||||
|
||||
class picDirSimilarAnalysis(SimilarAnalysis):
|
||||
def __init__(self):
|
||||
super(picDirSimilarAnalysis, self).__init__()
|
||||
with open('../configs/pic_pic_similar.yml', 'r') as f:
|
||||
self.conf = yaml.load(f, Loader=yaml.FullLoader)
|
||||
if not os.path.exists(self.conf['data']['total_pkl']):
|
||||
# self.create_total_feature()
|
||||
self.create_total_pkl()
|
||||
if os.path.exists(self.conf['data']['total_pkl']):
|
||||
self.all_dicts = self.load_dict_from_pkl()
|
||||
|
||||
def is_image_file(self, filename):
|
||||
"""
|
||||
检查文件是否为图像文件
|
||||
"""
|
||||
image_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.gif', '.tiff')
|
||||
return filename.lower().endswith(image_extensions)
|
||||
|
||||
def create_total_pkl(self): # 将目录下所有的图片特征存入pkl文件
|
||||
all_images_feature_dict = {}
|
||||
for roots, dirs, files in os.walk(self.conf['data']['data_dir']):
|
||||
for file_name in files:
|
||||
if self.is_image_file(file_name):
|
||||
try:
|
||||
print(f"处理图像 {os.sep.join([roots, file_name])}")
|
||||
feature = self.extract_features(os.sep.join([roots, file_name]))
|
||||
except Exception as e:
|
||||
print(f"处理图像 {os.sep.join([roots, file_name])} 时出错: {e}")
|
||||
feature = None
|
||||
all_images_feature_dict[os.sep.join([roots, file_name])] = feature
|
||||
if not os.path.exists(self.conf['data']['total_pkl']):
|
||||
with open(self.conf['data']['total_pkl'], 'wb') as f:
|
||||
pickle.dump(all_images_feature_dict, f)
|
||||
|
||||
def load_dict_from_pkl(self):
|
||||
with open(self.conf['data']['total_pkl'], 'rb') as f:
|
||||
data = pickle.load(f)
|
||||
print(f"字典已从 {self.conf['data']['total_pkl']} 加载")
|
||||
return data
|
||||
|
||||
def get_image_files(self, folder_path):
|
||||
"""
|
||||
获取文件夹中的所有图像文件
|
||||
"""
|
||||
image_files = []
|
||||
for root, _, files in os.walk(folder_path):
|
||||
for file in files:
|
||||
if self.is_image_file(file):
|
||||
image_files.append(os.path.join(root, file))
|
||||
return image_files
|
||||
|
||||
def extract_features(self, image_path):
|
||||
feature_dict = self.get_feature(image_path)
|
||||
return feature_dict[image_path]
|
||||
|
||||
def create_one_similarity_matrix(self, folder1_path, folder2_path):
|
||||
images1 = self.get_image_files(folder1_path)
|
||||
images2 = self.get_image_files(folder2_path)
|
||||
|
||||
print(f"文件夹1 ({folder1_path}) 包含 {len(images1)} 张图像")
|
||||
print(f"文件夹2 ({folder2_path}) 包含 {len(images2)} 张图像")
|
||||
|
||||
if len(images1) == 0 or len(images2) == 0:
|
||||
raise ValueError("至少有一个文件夹中没有图像文件")
|
||||
|
||||
# 提取文件夹1中的所有图像特征
|
||||
features1 = []
|
||||
print("正在提取文件夹1中的图像特征...")
|
||||
for i, img_path in enumerate(images1):
|
||||
try:
|
||||
# feature = self.extract_features(img_path)
|
||||
feature = self.all_dicts[img_path]
|
||||
features1.append(feature.cpu().numpy())
|
||||
# if (i + 1) % 10 == 0:
|
||||
# print(f"已处理 {i + 1}/{len(images1)} 张图像")
|
||||
except Exception as e:
|
||||
print(f"处理图像 {img_path} 时出错: {e}")
|
||||
features1.append(None)
|
||||
|
||||
# 提取文件夹2中的所有图像特征
|
||||
features2 = []
|
||||
print("正在提取文件夹2中的图像特征...")
|
||||
for i, img_path in enumerate(images2):
|
||||
try:
|
||||
# feature = self.extract_features(img_path)
|
||||
feature = self.all_dicts[img_path]
|
||||
features2.append(feature.cpu().numpy())
|
||||
# if (i + 1) % 10 == 0:
|
||||
# print(f"已处理 {i + 1}/{len(images2)} 张图像")
|
||||
except Exception as e:
|
||||
print(f"处理图像 {img_path} 时出错: {e}")
|
||||
features2.append(None)
|
||||
|
||||
# 移除处理失败的图像
|
||||
valid_features1 = []
|
||||
valid_images1 = []
|
||||
for i, feature in enumerate(features1):
|
||||
if feature is not None:
|
||||
valid_features1.append(feature)
|
||||
valid_images1.append(images1[i])
|
||||
|
||||
valid_features2 = []
|
||||
valid_images2 = []
|
||||
for i, feature in enumerate(features2):
|
||||
if feature is not None:
|
||||
valid_features2.append(feature)
|
||||
valid_images2.append(images2[i])
|
||||
|
||||
# print(f"文件夹1中成功处理 {len(valid_features1)} 张图像")
|
||||
# print(f"文件夹2中成功处理 {len(valid_features2)} 张图像")
|
||||
|
||||
if len(valid_features1) == 0 or len(valid_features2) == 0:
|
||||
raise ValueError("没有成功处理任何图像")
|
||||
|
||||
# 计算相似度矩阵
|
||||
print("正在计算相似度矩阵...")
|
||||
similarity_matrix = cosine_similarity(valid_features1, valid_features2)
|
||||
|
||||
return similarity_matrix, valid_images1, valid_images2
|
||||
|
||||
def get_group_similarity_matrix(self, folder_path):
|
||||
tracking_folder = os.sep.join([folder_path, 'tracking'])
|
||||
standard_folder = os.sep.join([folder_path, 'standard_slim'])
|
||||
for dir_name in os.listdir(tracking_folder):
|
||||
tracking_dir = os.sep.join([tracking_folder, dir_name])
|
||||
standard_dir = os.sep.join([standard_folder, dir_name])
|
||||
similarity_matrix, valid_images1, valid_images2 = self.create_one_similarity_matrix(tracking_dir,
|
||||
standard_dir)
|
||||
mean_similarity = np.mean(similarity_matrix)
|
||||
std_similarity = np.std(similarity_matrix)
|
||||
max_similarity = np.max(similarity_matrix)
|
||||
min_similarity = np.min(similarity_matrix)
|
||||
print(f"文件夹 {dir_name} 的相似度矩阵已计算完成 "
|
||||
f"均值:{mean_similarity} 标准差:{std_similarity} 最大值:{max_similarity} 最小值:{min_similarity}")
|
||||
result = f"{os.path.basename(standard_folder)} {dir_name} {mean_similarity:.3f} {std_similarity:.3f} {max_similarity:.3f} {min_similarity:.3f}"
|
||||
with open(self.conf['data']['result_txt'], 'a') as f:
|
||||
f.write(result + '\n')
|
||||
|
||||
|
||||
def read_result_txt():
|
||||
parts = []
|
||||
value_num = 2
|
||||
with open('../configs/pic_pic_similar.yml', 'r') as f:
|
||||
conf = yaml.load(f, Loader=yaml.FullLoader)
|
||||
f.close()
|
||||
with open(conf['data']['result_txt'], 'r') as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
line = line.strip()
|
||||
if line:
|
||||
parts.append(line.split(' '))
|
||||
parts = np.array(parts)
|
||||
print(parts)
|
||||
labels = ['Mean', 'Std', 'Max', 'Min']
|
||||
while value_num < 6:
|
||||
dicts = {}
|
||||
for barcode, value in zip(parts[:, 1], parts[:, value_num]):
|
||||
if barcode in dicts:
|
||||
dicts[barcode].append(float(value))
|
||||
else:
|
||||
dicts[barcode] = [float(value)]
|
||||
get_histogram(dicts, labels[value_num - 2])
|
||||
value_num += 1
|
||||
f.close()
|
||||
|
||||
|
||||
def get_histogram(data, label=None):
|
||||
# 准备数据
|
||||
categories = list(data.keys())
|
||||
values1 = [data[cat][0] for cat in categories] # 第一个值
|
||||
values2 = [data[cat][1] for cat in categories] # 第二个值
|
||||
|
||||
# 设置柱状图的位置
|
||||
x = np.arange(len(categories)) # 标签位置
|
||||
width = 0.35 # 柱状图的宽度
|
||||
|
||||
# 创建图形和轴
|
||||
fig, ax = plt.subplots(figsize=(10, 6))
|
||||
|
||||
# 绘制柱状图
|
||||
bars1 = ax.bar(x - width / 2, values1, width, label='standard', color='red', alpha=0.7)
|
||||
bars2 = ax.bar(x + width / 2, values2, width, label='standard_slim', color='green', alpha=0.7)
|
||||
|
||||
# 在每个柱状图上显示数值
|
||||
for bar in bars1:
|
||||
height = bar.get_height()
|
||||
ax.annotate(f'{height:.3f}',
|
||||
xy=(bar.get_x() + bar.get_width() / 2, height),
|
||||
xytext=(0, 3), # 3点垂直偏移
|
||||
textcoords="offset points",
|
||||
ha='center', va='bottom',
|
||||
fontsize=12)
|
||||
|
||||
for bar in bars2:
|
||||
height = bar.get_height()
|
||||
ax.annotate(f'{height:.3f}',
|
||||
xy=(bar.get_x() + bar.get_width() / 2, height),
|
||||
xytext=(0, 3), # 3点垂直偏移
|
||||
textcoords="offset points",
|
||||
ha='center', va='bottom',
|
||||
fontsize=12)
|
||||
|
||||
# 添加标签和标题
|
||||
if label is None:
|
||||
label = ''
|
||||
ax.set_xlabel('barcode')
|
||||
ax.set_ylabel('Values')
|
||||
ax.set_title(label)
|
||||
ax.set_xticks(x)
|
||||
ax.set_xticklabels(categories)
|
||||
ax.legend()
|
||||
|
||||
# 添加网格
|
||||
ax.grid(True, alpha=0.3)
|
||||
|
||||
# 调整布局并显示
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# picTopic_matrix = picDirSimilarAnalysis()
|
||||
# picTopic_matrix.get_group_similarity_matrix('/home/lc/data_center/image_analysis/pic_pic_similar_maxtrix')
|
||||
read_result_txt()
|
@ -10,7 +10,7 @@ import yaml
|
||||
import os
|
||||
|
||||
|
||||
class analysis:
|
||||
class SimilarAnalysis:
|
||||
def __init__(self):
|
||||
with open('../configs/similar_analysis.yml', 'r') as f:
|
||||
self.conf = yaml.load(f, Loader=yaml.FullLoader)
|
||||
@ -53,6 +53,7 @@ class analysis:
|
||||
def get_feature_map(self, all_imgs):
|
||||
feature_dicts = {}
|
||||
for img_pth in all_imgs:
|
||||
print(f"Processing {img_pth}")
|
||||
feature_dict = self.get_feature(img_pth)
|
||||
feature_dicts = dict(ChainMap(feature_dict, feature_dicts))
|
||||
return feature_dicts
|
||||
@ -85,7 +86,7 @@ class analysis:
|
||||
feature_dict2 = feature_dicts[img_pth2]
|
||||
similarity = self.get_similarity(feature_dict1.cpu().numpy(),
|
||||
feature_dict2.cpu().numpy())
|
||||
dir_name = img_pth1.split(os.sep)[-3]
|
||||
dir_name = img_pth1.split('/')[-3]
|
||||
save_path = os.sep.join([self.conf['data']['image_joint_pth'], dir_name])
|
||||
if similarity > 0.7:
|
||||
merge_imgs(img_pth1,
|
||||
@ -99,7 +100,7 @@ class analysis:
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
ana = analysis()
|
||||
ana = SimilarAnalysis()
|
||||
all_imgs = ana.create_total_feature()
|
||||
feature_dicts = ana.get_feature_map(all_imgs)
|
||||
all_compare_img = ana.get_image_map()
|
||||
|
Reference in New Issue
Block a user