训练数据前置处理与提升训练效率

This commit is contained in:
lee
2025-07-10 14:24:05 +08:00
parent 0701538a73
commit 09f41f6289
15 changed files with 430 additions and 116 deletions

View File

@ -3,6 +3,18 @@
<component name="CopilotChatHistory"> <component name="CopilotChatHistory">
<option name="conversations"> <option name="conversations">
<list> <list>
<Conversation>
<option name="createTime" value="1752114061266" />
<option name="id" value="0197f222dfd27515a3dbfea638532ee5" />
<option name="title" value="新对话 2025年7月10日 10:21:01" />
<option name="updateTime" value="1752114061266" />
</Conversation>
<Conversation>
<option name="createTime" value="1751970991660" />
<option name="id" value="0197e99bce2c7a569dee594fb9b6e152" />
<option name="title" value="新对话 2025年7月08日 18:36:31" />
<option name="updateTime" value="1751970991660" />
</Conversation>
<Conversation> <Conversation>
<option name="createTime" value="1751441743239" /> <option name="createTime" value="1751441743239" />
<option name="id" value="0197ca101d8771bd80f2bc4aaf1a8f19" /> <option name="id" value="0197ca101d8771bd80f2bc4aaf1a8f19" />

26
configs/sub_data.yml Normal file
View File

@ -0,0 +1,26 @@
# configs/sub_data.yml
# 专为对比模型训练的数据集设计的配置文件
# 支持对比不同训练策略如蒸馏vs独立训练
# 数据配置
data:
source_dir: "../../data_center/contrast_data/total" # 数据集名称(示例用,可替换为实际数据集)
train_dir: "../../data_center/contrast_data/v1/train" # 训练数据集根目录
val_dir: "../../data_center/contrast_data/v1/val" # 验证数据集根目录
data_extra_dir: "../../data_center/contrast_data/v1/extra"
max_files_ratio: 0.1
min_files: 10
split_ratio: 0.9
extend:
extend_same_dir: true
extend_extra: true
extend_extra_dir: "../../data_center/contrast_data/v1/extra"
extend_train: true
extend_train_dir: "../../data_center/contrast_data/v1/train"
limit:
count_limit: true
limit_count: 200
limit_dir: "../../data_center/contrast_data/v1/train"

View File

@ -8,13 +8,13 @@ base:
log_level: "info" # 日志级别debug/info/warning/error log_level: "info" # 日志级别debug/info/warning/error
embedding_size: 256 # 特征维度 embedding_size: 256 # 特征维度
pin_memory: true # 是否启用pin_memory pin_memory: true # 是否启用pin_memory
distributed: true # 是否启用分布式训练 distributed: false # 是否启用分布式训练
# 模型配置 # 模型配置
models: models:
backbone: 'resnet18' backbone: 'resnet18'
channel_ratio: 1.0 channel_ratio: 1.0
model_path: "checkpoints/resnet18_scatter_6.26/best.pth" model_path: "checkpoints/resnet18_scatter_7.3/best.pth"
half: false # 是否启用半精度测试fp16 half: false # 是否启用半精度测试fp16
contrast_learning: false contrast_learning: false
@ -22,9 +22,9 @@ models:
data: data:
test_batch_size: 128 # 训练批次大小 test_batch_size: 128 # 训练批次大小
num_workers: 32 # 数据加载线程数 num_workers: 32 # 数据加载线程数
test_dir: "../data_center/scatter/v2/val_extar" # 验证数据集根目录 test_dir: "../data_center/scatter/v4/val" # 验证数据集根目录
test_group_json: "../data_center/contrast_learning/model_test_data/test/inner_group_pairs.json" test_group_json: "../data_center/contrast_learning/model_test_data/test/inner_group_pairs.json"
test_list: "../data_center/scatter/val_extar_cross_same.txt" test_list: "../data_center/scatter/v4/standard_cross_same.txt"
group_test: false group_test: false
save_image_joint: true save_image_joint: true
image_joint_pth: "./joint_images" image_joint_pth: "./joint_images"
@ -37,6 +37,11 @@ transform:
RandomRotation: 180 # 随机旋转角度 RandomRotation: 180 # 随机旋转角度
ColorJitter: 0.5 # 随机颜色抖动强度 ColorJitter: 0.5 # 随机颜色抖动强度
heatmap:
image_joint_pth: "./heatmap_joint_images"
feature_layer: "layer4"
show_heatmap: true
save: save:
save_dir: "" save_dir: ""
save_name: "" save_name: ""

View File

@ -15,11 +15,11 @@ base:
# 模型配置 # 模型配置
models: models:
backbone: 'resnet18' backbone: 'resnet18'
channel_ratio: 0.75 channel_ratio: 1.0
model_path: "../checkpoints/resnet18_1009/best.pth" model_path: "../checkpoints/resnet18_1009/best.pth"
onnx_model: "../checkpoints/resnet18_1009/best.onnx" onnx_model: "../checkpoints/resnet18_3399_sancheng/best.onnx"
rknn_model: "../checkpoints/resnet18_1009/best_rknn2.3.2_batch16.rknn" rknn_model: "../checkpoints/resnet18_3399_sancheng/best_rknn2.3.2_RK3566.rknn"
rknn_batch_size: 16 rknn_batch_size: 1
# 日志与监控 # 日志与监控
logging: logging:

View File

@ -1,7 +1,7 @@
import os import os
import shutil import shutil
from pathlib import Path from pathlib import Path
import yaml
def count_files(directory): def count_files(directory):
"""统计目录中的文件数量""" """统计目录中的文件数量"""
try: try:
@ -26,6 +26,20 @@ def clear_empty_dirs(path):
except Exception as e: except Exception as e:
print(f"Error: {e.strerror}") print(f"Error: {e.strerror}")
def get_max_files(conf):
max_files_ratio = conf['data']['max_files_ratio']
files_number = []
for root, dirs, files in os.walk(conf['data']['source_dir']):
if len(dirs) == 0:
if len(files) == 0:
print(root, dirs,files)
files_number.append(len(files))
files_number = sorted(files_number, reverse=False)
max_files = files_number[int(max_files_ratio * len(files_number))]
print(f"max_files: {max_files}")
if max_files < conf['data']['min_files']:
max_files = conf['data']['min_files']
return max_files
def megre_subdirs(pth): def megre_subdirs(pth):
for roots, dir_names, files in os.walk(pth): for roots, dir_names, files in os.walk(pth):
print(f"image {dir_names}") print(f"image {dir_names}")
@ -41,19 +55,24 @@ def megre_subdirs(pth):
clear_empty_dirs(pth) clear_empty_dirs(pth)
def split_subdirs(source_dir, target_dir, max_files=10): # def split_subdirs(source_dir, target_dir, max_files=10):
def split_subdirs(conf):
""" """
复制文件数≤max_files的子目录到目标目录 复制文件数≤max_files的子目录到目标目录
:param source_dir: 源目录路径 :param source_dir: 源目录路径
:param target_dir: 目标目录路径 :param target_dir: 目标目录路径
:param max_files: 最大文件数阈值 :param max_files: 最大文件数阈值
""" """
source_dir = conf['data']['source_dir']
target_extra_dir = conf['data']['data_extra_dir']
train_dir = conf['data']['train_dir']
max_files = get_max_files(conf)
megre_subdirs(source_dir) # 合并子目录,删除上级目录 megre_subdirs(source_dir) # 合并子目录,删除上级目录
# 创建目标目录 # 创建目标目录
Path(target_dir).mkdir(parents=True, exist_ok=True) Path(target_extra_dir).mkdir(parents=True, exist_ok=True)
print(f"开始处理目录: {source_dir}") print(f"开始处理目录: {source_dir}")
print(f"目标目录: {target_dir}") print(f"目标目录: {target_extra_dir}")
print(f"筛选条件: 文件数 ≤ {max_files}\n") print(f"筛选条件: 文件数 ≤ {max_files}\n")
# 遍历源目录 # 遍历源目录
@ -65,18 +84,18 @@ def split_subdirs(source_dir, target_dir, max_files=10):
try: try:
file_count = count_files(subdir_path) file_count = count_files(subdir_path)
print(f"复制 {subdir} (包含 {file_count} 个文件)")
if file_count <= max_files: if file_count <= max_files:
print(f"复制 {subdir} (包含 {file_count} 个文件)") dest_path = os.path.join(target_extra_dir, subdir)
dest_path = os.path.join(target_dir, subdir) else:
dest_path = os.path.join(train_dir, subdir)
# 如果目标目录已存在则跳过 # 如果目标目录已存在则跳过
if os.path.exists(dest_path): if os.path.exists(dest_path):
print(f"目录已存在,跳过: {dest_path}") print(f"目录已存在,跳过: {dest_path}")
continue continue
print(f"复制 {subdir} (包含 {file_count} 个文件) 至 {dest_path}")
# shutil.copytree(subdir_path, dest_path) shutil.copytree(subdir_path, dest_path)
shutil.move(subdir_path, dest_path) # shutil.move(subdir_path, dest_path)
except Exception as e: except Exception as e:
print(f"处理目录 {subdir} 时出错: {e}") print(f"处理目录 {subdir} 时出错: {e}")
@ -85,8 +104,8 @@ def split_subdirs(source_dir, target_dir, max_files=10):
if __name__ == "__main__": if __name__ == "__main__":
# 配置路径 # 配置路径
SOURCE_DIR = r"C:\Users\123\Desktop\test1\scatter_sub_class" with open('../configs/sub_data.yml', 'r') as f:
TARGET_DIR = "scatter_mini" conf = yaml.load(f, Loader=yaml.FullLoader)
# 执行复制操作 # 执行复制操作
split_subdirs(SOURCE_DIR, TARGET_DIR) split_subdirs(conf)

View File

@ -8,7 +8,9 @@ def is_image_file(filename):
image_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.gif', '.tiff') image_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.gif', '.tiff')
return filename.lower().endswith(image_extensions) return filename.lower().endswith(image_extensions)
def split_directory(src_dir, train_dir, val_dir, split_ratio=0.9):
def split_directory(conf):
""" """
分割目录中的图像文件到train和val目录 分割目录中的图像文件到train和val目录
:param src_dir: 源目录路径 :param src_dir: 源目录路径
@ -17,22 +19,22 @@ def split_directory(src_dir, train_dir, val_dir, split_ratio=0.9):
:param split_ratio: 训练集比例(默认0.9) :param split_ratio: 训练集比例(默认0.9)
""" """
# 创建目标目录 # 创建目标目录
Path(train_dir).mkdir(parents=True, exist_ok=True) train_dir = conf['data']['train_dir']
val_dir = conf['data']['val_dir']
split_ratio = conf['data']['split_ratio']
Path(val_dir).mkdir(parents=True, exist_ok=True) Path(val_dir).mkdir(parents=True, exist_ok=True)
# 遍历源目录 # 遍历源目录
for root, dirs, files in os.walk(src_dir): for root, dirs, files in os.walk(train_dir):
# 获取相对路径(相对于src_dir) # 获取相对路径(train_dir)
rel_path = os.path.relpath(root, src_dir) rel_path = os.path.relpath(root, train_dir)
# 跳过当前目录(.) # 跳过当前目录(.)
if rel_path == '.': if rel_path == '.':
continue continue
# 创建对应的目标子目录 # 创建对应的目标子目录
train_subdir = os.path.join(train_dir, rel_path)
val_subdir = os.path.join(val_dir, rel_path) val_subdir = os.path.join(val_dir, rel_path)
os.makedirs(train_subdir, exist_ok=True)
os.makedirs(val_subdir, exist_ok=True) os.makedirs(val_subdir, exist_ok=True)
# 筛选图像文件 # 筛选图像文件
@ -46,13 +48,6 @@ def split_directory(src_dir, train_dir, val_dir, split_ratio=0.9):
# 计算分割点 # 计算分割点
split_point = int(len(image_files) * split_ratio) split_point = int(len(image_files) * split_ratio)
# 复制文件到训练集
for file in image_files[:split_point]:
src = os.path.join(root, file)
dst = os.path.join(train_subdir, file)
# shutil.copy2(src, dst)
shutil.move(src, dst)
# 复制文件到验证集 # 复制文件到验证集
for file in image_files[split_point:]: for file in image_files[split_point:]:
src = os.path.join(root, file) src = os.path.join(root, file)
@ -62,12 +57,14 @@ def split_directory(src_dir, train_dir, val_dir, split_ratio=0.9):
print(f"处理完成: {rel_path} (共 {len(image_files)} 个图像, 训练集: {split_point}, 验证集: {len(image_files)-split_point})") print(f"处理完成: {rel_path} (共 {len(image_files)} 个图像, 训练集: {split_point}, 验证集: {len(image_files)-split_point})")
def control_train_number():
pass
if __name__ == "__main__": if __name__ == "__main__":
# 设置目录路径 # 设置目录路径
SOURCE_DIR = "scatter_add"
TRAIN_DIR = "scatter_data/train" TRAIN_DIR = "scatter_data/train"
VAL_DIR = "scatter_data/val" VAL_DIR = "scatter_data/val"
print("开始分割数据集...") print("开始分割数据集...")
split_directory(SOURCE_DIR, TRAIN_DIR, VAL_DIR) split_directory(TRAIN_DIR, VAL_DIR)
print("数据集分割完成") print("数据集分割完成")

View File

@ -5,6 +5,9 @@ from PIL import Image, ImageEnhance
class ImageExtendProcessor: class ImageExtendProcessor:
def __init__(self, conf):
self.conf = conf
def is_image_file(self, filename): def is_image_file(self, filename):
"""检查文件是否为图像文件""" """检查文件是否为图像文件"""
image_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.gif', '.tiff') image_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.gif', '.tiff')
@ -80,7 +83,7 @@ class ImageExtendProcessor:
print(f"处理图像 {image_path} 时出错: {e}") print(f"处理图像 {image_path} 时出错: {e}")
return False return False
def process_image_directory(self, src_dir, dst_dir, same_directory, **kwargs): def process_extra_directory(self, src_dir, dst_dir, same_directory, dir_name):
""" """
处理单个目录中的图像文件 处理单个目录中的图像文件
:param src_dir: 源目录路径 :param src_dir: 源目录路径
@ -99,19 +102,24 @@ class ImageExtendProcessor:
if not same_directory: if not same_directory:
# 复制原始文件 (另存文件夹时启用) # 复制原始文件 (另存文件夹时启用)
shutil.copy2(src_path, os.path.join(dst_dir, img_file)) shutil.copy2(src_path, os.path.join(dst_dir, img_file))
if dir_name == 'extra':
# 生成并保存旋转后的图像
for angle in [90, 180, 270]:
dst_path = os.path.join(dst_dir, f"{base_name}_rotated_{angle}{ext}")
self.rotate_image(src_path, dst_path, angle)
for ratio in [0.8, 0.85, 0.9]:
dst_path = os.path.join(dst_dir, f"{base_name}_cute_{ratio}{ext}")
self.random_cute_image(src_path, dst_path, ratio)
for brightness_factor in [0.8, 0.9, 1.0]:
dst_path = os.path.join(dst_dir, f"{base_name}_brightness_{brightness_factor}{ext}")
self.random_brightness(src_path, dst_path, brightness_factor)
elif dir_name == 'train':
# 生成并保存旋转后的图像
for angle in [90, 180, 270]:
dst_path = os.path.join(dst_dir, f"{base_name}_rotated_{angle}{ext}")
self.rotate_image(src_path, dst_path, angle)
# 生成并保存旋转后的图像 def image_extend(self, src_dir, dst_dir, same_directory=False, dir_name=None):
for angle in [90, 180, 270]:
dst_path = os.path.join(dst_dir, f"{base_name}_rotated_{angle}{ext}")
self.rotate_image(src_path, dst_path, angle)
for ratio in [0.8, 0.85, 0.9]:
dst_path = os.path.join(dst_dir, f"{base_name}_cute_{ratio}{ext}")
self.random_cute_image(src_path, dst_path, ratio)
for brightness_factor in [0.8, 0.9, 1.0]:
dst_path = os.path.join(dst_dir, f"{base_name}_brightness_{brightness_factor}{ext}")
self.random_brightness(src_path, dst_path, brightness_factor)
def image_extend(self, src_dir, dst_dir, same_directory=False, **kwargs):
if same_directory: if same_directory:
n_dst_dir = src_dir n_dst_dir = src_dir
print(f"处理目录 {src_dir} 中的图像文件 保存至同一目录下") print(f"处理目录 {src_dir} 中的图像文件 保存至同一目录下")
@ -121,7 +129,60 @@ class ImageExtendProcessor:
for src_subdir in os.listdir(src_dir): for src_subdir in os.listdir(src_dir):
src_subdir_path = os.path.join(src_dir, src_subdir) src_subdir_path = os.path.join(src_dir, src_subdir)
dst_subdir_path = os.path.join(n_dst_dir, src_subdir) dst_subdir_path = os.path.join(n_dst_dir, src_subdir)
self.process_image_directory(src_subdir_path, dst_subdir_path, same_directory) if dir_name == 'extra':
self.process_extra_directory(src_subdir_path,
dst_subdir_path,
same_directory,
dir_name)
if dir_name == 'train':
if len(os.listdir(src_subdir_path)) < 50:
self.process_extra_directory(src_subdir_path,
dst_subdir_path,
same_directory,
dir_name)
def random_remove_image(self, subdir_path, max_count=200):
"""
随机删除子目录中的图像文件直到数量不超过max_count
:param subdir_path: 子目录路径
:param max_count: 最大允许的图像数量
"""
# 统计图像文件数量
image_files = [f for f in os.listdir(subdir_path)
if self.is_image_file(f) and os.path.isfile(os.path.join(subdir_path, f))]
current_count = len(image_files)
# 如果图像数量不超过max_count则无需删除
if current_count <= max_count:
print(f"无需处理 {subdir_path} (包含 {current_count} 个图像)")
return
# 计算需要删除的文件数
remove_count = current_count - max_count
# 随机选择要删除的文件
files_to_remove = random.sample(image_files, remove_count)
# 删除选中的文件
for file in files_to_remove:
file_path = os.path.join(subdir_path, file)
os.remove(file_path)
print(f"已删除 {file_path}")
def control_number(self):
if self.conf['extend']['extend_extra']:
self.image_extend(self.conf['extend']['extend_extra_dir'],
'',
same_directory=self.conf['extend']['extend_same_dir'],
dir_name='extra')
if self.conf['extend']['extend_train']:
self.image_extend(self.conf['extend']['extend_train_dir'],
'',
same_directory=self.conf['extend']['extend_same_dir'],
dir_name='train')
if self.conf['limit']['count_limit']:
self.random_remove_image(self.conf['limit']['limit_dir'],
max_count=self.conf['limit']['limit_count'])
if __name__ == "__main__": if __name__ == "__main__":

View File

@ -1,20 +0,0 @@
from create_extra import split_subdirs
from data_split import split_directory
from extend import ImageExtendProcessor
import yaml
def data_preprocessing(conf):
split_subdirs(conf['data']['source_dir'], conf['data']['data_extra_dir'], conf['data']['max_files'])
split_directory(conf['data']['source_dir'], conf['data']['train_dir'],
conf['data']['val_dir'], conf['data']['split_ratio'])
image_ex = ImageExtendProcessor()
image_ex.image_extend(conf['data']['extra_dir'],
'',
same_directory=True)
if __name__ == '__main__':
with open('../configs/scatter_data.yml', 'r') as f:
conf = yaml.load(f, Loader=yaml.FullLoader)
data_preprocessing(conf)

View File

@ -0,0 +1,17 @@
from create_extra import split_subdirs
from data_split import split_directory
from extend import ImageExtendProcessor
import yaml
def data_preprocessing(conf):
# split_subdirs(conf)
# image_ex = ImageExtendProcessor(conf)
# image_ex.control_number()
split_directory(conf)
if __name__ == '__main__':
with open('../configs/sub_data.yml', 'r') as f:
conf = yaml.load(f, Loader=yaml.FullLoader)
data_preprocessing(conf)

View File

@ -222,13 +222,13 @@ class ResNet(nn.Module):
self.bn1 = norm_layer(self.inplanes) self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True) self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.adaptiveMaxPool = nn.AdaptiveMaxPool2d((1, 1)) # self.adaptiveMaxPool = nn.AdaptiveMaxPool2d((1, 1))
self.maxpool2 = nn.Sequential( # self.maxpool2 = nn.Sequential(
nn.MaxPool2d(kernel_size=2, stride=2, padding=0), # nn.MaxPool2d(kernel_size=2, stride=2, padding=0),
nn.MaxPool2d(kernel_size=2, stride=2, padding=0), # nn.MaxPool2d(kernel_size=2, stride=2, padding=0),
nn.MaxPool2d(kernel_size=2, stride=2, padding=0), # nn.MaxPool2d(kernel_size=2, stride=2, padding=0),
nn.MaxPool2d(kernel_size=2, stride=1, padding=0) # nn.MaxPool2d(kernel_size=2, stride=1, padding=0)
) # )
self.layer1 = self._make_layer(block, int(64 * scale), layers[0]) self.layer1 = self._make_layer(block, int(64 * scale), layers[0])
self.layer2 = self._make_layer(block, int(128 * scale), layers[1], stride=2, self.layer2 = self._make_layer(block, int(128 * scale), layers[1], stride=2,
dilate=replace_stride_with_dilation[0]) dilate=replace_stride_with_dilation[0])

View File

@ -12,6 +12,7 @@ import matplotlib.pyplot as plt
# from config import config as conf # from config import config as conf
from tools.dataset import get_transform from tools.dataset import get_transform
from tools.image_joint import merge_imgs from tools.image_joint import merge_imgs
from tools.getHeatMap import cal_cam
from configs import trainer_tools from configs import trainer_tools
import yaml import yaml
from datetime import datetime from datetime import datetime
@ -201,10 +202,11 @@ def compute_accuracy_recall(score, labels):
def compute_accuracy( def compute_accuracy(
feature_dict: Dict[str, torch.Tensor], feature_dict: Dict[str, torch.Tensor],
pair_list: str, cam: cal_cam,
test_root: str
) -> Tuple[float, float]: ) -> Tuple[float, float]:
try: try:
pair_list = conf['data']['test_list']
test_root = conf['data']['test_dir']
with open(pair_list, 'r') as f: with open(pair_list, 'r') as f:
pairs = f.readlines() pairs = f.readlines()
except IOError as e: except IOError as e:
@ -220,6 +222,7 @@ def compute_accuracy(
continue continue
# try: # try:
print(f"Processing pair: {pair}")
img1, img2, label = pair.split() img1, img2, label = pair.split()
img1_path = osp.join(test_root, img1) img1_path = osp.join(test_root, img1)
img2_path = osp.join(test_root, img2) img2_path = osp.join(test_root, img2)
@ -236,9 +239,10 @@ def compute_accuracy(
if conf['data']['save_image_joint']: if conf['data']['save_image_joint']:
merge_imgs(img1_path, merge_imgs(img1_path,
img2_path, img2_path,
conf['data']['image_joint_pth'], conf,
similarity, similarity,
label) label,
cam)
similarities.append(similarity) similarities.append(similarity)
labels.append(int(label)) labels.append(int(label))
@ -306,7 +310,8 @@ def init_model():
if torch.cuda.device_count() > 1 and conf['base']['distributed']: if torch.cuda.device_count() > 1 and conf['base']['distributed']:
model = nn.DataParallel(model).to(conf['base']['device']) model = nn.DataParallel(model).to(conf['base']['device'])
###############正常模型加载################ ###############正常模型加载################
model.load_state_dict(torch.load(conf['models']['model_path'], map_location=conf['base']['device'])) model.load_state_dict(torch.load(conf['models']['model_path'],
map_location=conf['base']['device']))
####################################### #######################################
####### 对比学习模型临时运用### ####### 对比学习模型临时运用###
# state_dict = torch.load(conf['models']['model_path'], map_location=conf['base']['device']) # state_dict = torch.load(conf['models']['model_path'], map_location=conf['base']['device'])
@ -321,7 +326,18 @@ def init_model():
first_param_dtype = next(model.parameters()).dtype first_param_dtype = next(model.parameters()).dtype
print("模型的第一个参数的数据类型: {}".format(first_param_dtype)) print("模型的第一个参数的数据类型: {}".format(first_param_dtype))
else: else:
model.load_state_dict(torch.load(conf['models']['model_path'], map_location=conf['base']['device'])) try:
model.load_state_dict(torch.load(conf['models']['model_path'],
map_location=conf['base']['device']))
except:
state_dict = torch.load(conf['models']['model_path'],
map_location=conf['base']['device'])
new_state_dict = {}
for k, v in state_dict.items():
new_key = k.replace("module.", "")
new_state_dict[new_key] = v
model.load_state_dict(new_state_dict, strict=False)
if conf['models']['half']: if conf['models']['half']:
model.half() model.half()
first_param_dtype = next(model.parameters()).dtype first_param_dtype = next(model.parameters()).dtype
@ -332,7 +348,7 @@ def init_model():
if __name__ == '__main__': if __name__ == '__main__':
model = init_model() model = init_model()
model.eval() model.eval()
cam = cal_cam(model, conf)
if not conf['data']['group_test']: if not conf['data']['group_test']:
images = unique_image(conf['data']['test_list']) images = unique_image(conf['data']['test_list'])
images = [osp.join(conf['data']['test_dir'], img) for img in images] images = [osp.join(conf['data']['test_dir'], img) for img in images]
@ -342,7 +358,7 @@ if __name__ == '__main__':
for group in groups: for group in groups:
d = featurize(group, test_transform, model, conf['base']['device']) d = featurize(group, test_transform, model, conf['base']['device'])
feature_dict.update(d) feature_dict.update(d)
accuracy, threshold = compute_accuracy(feature_dict, conf['data']['test_list'], conf['data']['test_dir']) accuracy, threshold = compute_accuracy(feature_dict, cam)
print( print(
"Test Model: {} Accuracy: {} Threshold: {}".format(conf['models']['model_path'], accuracy, threshold) "Test Model: {} Accuracy: {} Threshold: {}".format(conf['models']['model_path'], accuracy, threshold)
) )

164
tools/getHeatMap.py Normal file
View File

@ -0,0 +1,164 @@
# -*- coding: UTF-8 -*-
import os
import torch
from torchvision import models
import torch.nn as nn
import torchvision.transforms as tfs
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import cv2
# from tools.config import cfg
# from comparative.tools.initmodel import initSimilarityModel
import yaml
from dataset import get_transform
class cal_cam(nn.Module):
def __init__(self, model, conf):
super(cal_cam, self).__init__()
self.conf = conf
self.device = self.conf['base']['device']
self.model = model
self.model.to(self.device)
# 要求梯度的层
self.feature_layer = conf['heatmap']['feature_layer']
# 记录梯度
self.gradient = []
# 记录输出的特征图
self.output = []
_, self.transform = get_transform(self.conf)
def get_conf(self, yaml_pth):
with open(yaml_pth, 'r') as f:
conf = yaml.load(f, Loader=yaml.FullLoader)
return conf
def save_grad(self, grad):
self.gradient.append(grad)
def get_grad(self):
return self.gradient[-1].cpu().data
def get_feature(self):
return self.output[-1][0]
def process_img(self, input):
input = self.transform(input)
input = input.unsqueeze(0)
return input
# 计算最后一个卷积层的梯度,输出梯度和最后一个卷积层的特征图
def getGrad(self, input_):
self.gradient = [] # 清除之前的梯度
self.output = [] # 清除之前的特征图
# print(f"cuda.memory_allocated 1 {torch.cuda.memory_allocated()/ (1024 ** 3)}G")
input_ = input_.to(self.device).requires_grad_(True)
num = 1
for name, module in self.model._modules.items():
# print(f'module_name: {name}')
# print(f'module: {module}')
if (num == 1):
input = module(input_)
num = num + 1
continue
# 是待提取特征图的层
if (name == self.feature_layer):
input = module(input)
input.register_hook(self.save_grad)
self.output.append([input])
# 马上要到全连接层了
elif (name == "avgpool"):
input = module(input)
input = input.reshape(input.shape[0], -1)
# 普通的层
else:
input = module(input)
# print(f"cuda.memory_allocated 2 {torch.cuda.memory_allocated() / (1024 ** 3)}G")
# 到这里input就是最后全连接层的输出了
index = torch.max(input, dim=-1)[1]
one_hot = torch.zeros((1, input.shape[-1]), dtype=torch.float32)
one_hot[0][index] = 1
confidenct = one_hot * input.cpu()
confidenct = torch.sum(confidenct, dim=-1).requires_grad_(True)
# print(f"cuda.memory_allocated 3 {torch.cuda.memory_allocated() / (1024 ** 3)}G")
# 清除之前的所有梯度
self.model.zero_grad()
# 反向传播获取梯度
grad_output = torch.ones_like(confidenct)
confidenct.backward(grad_output)
# 获取特征图的梯度
grad_val = self.get_grad()
feature = self.get_feature()
# print(f"cuda.memory_allocated 4 {torch.cuda.memory_allocated() / (1024 ** 3)}G")
return grad_val, feature, input_.grad
# 计算CAM
def getCam(self, grad_val, feature):
# 对特征图的每个通道进行全局池化
alpha = torch.mean(grad_val, dim=(2, 3)).cpu()
feature = feature.cpu()
# 将池化后的结果和相应通道特征图相乘
cam = torch.zeros((feature.shape[2], feature.shape[3]), dtype=torch.float32)
for idx in range(alpha.shape[1]):
cam = cam + alpha[0][idx] * feature[0][idx]
# 进行ReLU操作
cam = np.maximum(cam.detach().numpy(), 0)
# plt.imshow(cam)
# plt.colorbar()
# plt.savefig("cam.jpg")
# 将cam区域放大到输入图片大小
cam_ = cv2.resize(cam, (224, 224))
cam_ = cam_ - np.min(cam_)
cam_ = cam_ / np.max(cam_)
# plt.imshow(cam_)
# plt.savefig("cam_.jpg")
cam = torch.from_numpy(cam)
return cam, cam_
def show_img(self, cam_, img, heatmap_save_pth, imgname):
heatmap = cv2.applyColorMap(np.uint8(255 * cam_), cv2.COLORMAP_JET)
cam_img = 0.3 * heatmap + 0.7 * np.float32(img)
# cv2.imwrite("img.jpg", cam_img)
cv2.imwrite(os.sep.join([heatmap_save_pth, imgname]), cam_img)
def get_hot_map(self, img_pth):
img = Image.open(img_pth)
img = img.resize((224, 224))
input = self.process_img(img)
grad_val, feature, input_grad = self.getGrad(input)
cam, cam_ = self.getCam(grad_val, feature)
heatmap = cv2.applyColorMap(np.uint8(255 * cam_), cv2.COLORMAP_JET)
cam_img = 0.3 * heatmap + 0.7 * np.float32(img)
cam_img = Image.fromarray(np.uint8(cam_img))
return cam_img
# def __call__(self, img_root, heatmap_save_pth):
# for imgname in os.listdir(img_root):
# img = Image.open(os.sep.join([img_root, imgname]))
# img = img.resize((224, 224))
# # plt.imshow(img)
# # plt.savefig("airplane.jpg")
# input = self.process_img(img)
# grad_val, feature, input_grad = self.getGrad(input)
# cam, cam_ = self.getCam(grad_val, feature)
# self.show_img(cam_, img, heatmap_save_pth, imgname)
# return cam
if __name__ == "__main__":
cam = cal_cam()
img_root = "test_img/"
heatmap_save_pth = "heatmap_result"
cam(img_root, heatmap_save_pth)

View File

@ -188,7 +188,7 @@ class PairGenerator:
if __name__ == "__main__": if __name__ == "__main__":
original_path = '/home/lc/data_center/scatter/val_extar' original_path = '/home/lc/data_center/scatter/v4/val'
parent_dir = str(Path(original_path).parent) parent_dir = str(Path(original_path).parent)
generator = PairGenerator() generator = PairGenerator()

View File

@ -1,33 +1,50 @@
from PIL import Image, ImageDraw, ImageFont from PIL import Image, ImageDraw, ImageFont
from tools.getHeatMap import cal_cam
import os import os
def merge_imgs(img1_path, img2_path, save_path, similar=None, label=None): def merge_imgs(img1_path, img2_path, conf, similar=None, label=None, cam=None):
position = (50, 50) # 文字的左上角坐标 save = True
color = (255, 0, 0) # 红色文字,格式为 RGB position = (50, 50) # 文字的左上角坐标
if not os.path.exists(os.sep.join([save_path, str(label)])): color = (255, 0, 0) # 红色文字,格式为 RGB
os.makedirs(os.sep.join([save_path, str(label)])) # if not os.path.exists(os.sep.join([save_path, str(label)])):
save_path = os.sep.join([save_path, str(label)]) # os.makedirs(os.sep.join([save_path, str(label)]))
img_name = os.path.basename(img1_path).split('.')[0]+'_'+os.path.basename(img2_path).split('.')[0]+'.png' # save_path = os.sep.join([save_path, str(label)])
# img_name = os.path.basename(img1_path).split('.')[0] + '_' + os.path.basename(img2_path).split('.')[0] + '.png'
if not conf['heatmap']['show_heatmap']:
img1 = Image.open(img1_path) img1 = Image.open(img1_path)
img2 = Image.open(img2_path) img2 = Image.open(img2_path)
img1 = img1.resize((224,224)) img1 = img1.resize((224, 224))
img2 = img2.resize((224,224)) img2 = img2.resize((224, 224))
print('img1_path', img1) save_path = conf['data']['image_joint_pth']
print('img2_path', img2) else:
assert img1.height == img2.height assert cam is not None, 'cam is None'
img1 = cam.get_hot_map(img1_path)
img2 = cam.get_hot_map(img2_path)
save_path = conf['heatmap']['image_joint_pth']
# print('img1_path', img1)
# print('img2_path', img2)
if not os.path.exists(os.sep.join([save_path, str(label)])):
os.makedirs(os.sep.join([save_path, str(label)]))
save_path = os.sep.join([save_path, str(label)])
img_name = os.path.basename(img1_path).split('.')[0] + '_' + os.path.basename(img2_path).split('.')[0] + '.png'
assert img1.height == img2.height
new_img = Image.new('RGB', (img1.width + img2.width + 10, img1.height)) new_img = Image.new('RGB', (img1.width + img2.width + 10, img1.height))
# print('new_img', new_img) # print('new_img', new_img)
new_img.paste(img1, (0, 0)) new_img.paste(img1, (0, 0))
new_img.paste(img2, (img1.width + 10, 0)) new_img.paste(img2, (img1.width + 10, 0))
if similar is not None: if similar is not None:
similar = str(similar)+'_'+str(label) if label == '1' and similar > 0.5:
draw = ImageDraw.Draw(new_img) save = False
draw.text(position, str(similar), color, font_size=36) elif label == '0' and similar < 0.5:
os.makedirs(save_path, exist_ok=True) save = False
img_save = os.path.join(save_path, img_name) similar = str(similar) + '_' + str(label)
draw = ImageDraw.Draw(new_img)
draw.text(position, str(similar), color, font_size=36)
os.makedirs(save_path, exist_ok=True)
img_save = os.path.join(save_path, img_name)
if save:
new_img.save(img_save) new_img.save(img_save)

View File

@ -96,7 +96,7 @@ if __name__ == '__main__':
rknn.config( rknn.config(
mean_values=[[127.5, 127.5, 127.5]], mean_values=[[127.5, 127.5, 127.5]],
std_values=[[127.5, 127.5, 127.5]], std_values=[[127.5, 127.5, 127.5]],
target_platform='rk3588', target_platform='rk3566',
model_pruning=False, model_pruning=False,
compress_weight=False, compress_weight=False,
single_core_mode=True, single_core_mode=True,