散称训练数据前置处理

This commit is contained in:
lee
2025-07-07 15:19:22 +08:00
parent 6640f2bc5e
commit 0701538a73
7 changed files with 342 additions and 7 deletions

View File

@ -18,9 +18,9 @@ models:
# 训练参数
training:
epochs: 600 # 总训练轮次
epochs: 800 # 总训练轮次
batch_size: 64 # 批次大小
lr: 0.0004 # 初始学习率
lr: 0.01 # 初始学习率
optimizer: "sgd" # 优化器类型
metric: 'arcface' # 损失函数类型可选arcface/cosface/sphereface/softmax
loss: "cross_entropy" # 损失函数类型可选cross_entropy/cross_entropy_smooth/center_loss/center_loss_smooth/arcface/cosface/sphereface/softmax
@ -29,8 +29,8 @@ training:
weight_decay: 0.0005 # 权重衰减
scheduler: "step" # 学习率调度器可选cosine_annealing/step/none
num_workers: 32 # 数据加载线程数
checkpoints: "./checkpoints/resnet18_scatter_6.26/" # 模型保存目录
restore: True
checkpoints: "./checkpoints/resnet18_scatter_7.4/" # 模型保存目录
restore: false
restore_model: "checkpoints/resnet18_scatter_6.25/best.pth" # 模型恢复路径
@ -46,8 +46,8 @@ data:
train_batch_size: 128 # 训练批次大小
val_batch_size: 100 # 验证批次大小
num_workers: 32 # 数据加载线程数
data_train_dir: "../data_center/scatter/v2/train" # 训练数据集根目录
data_val_dir: "../data_center/scatter/v2/val" # 验证数据集根目录
data_train_dir: "../data_center/scatter/v4/train" # 训练数据集根目录
data_val_dir: "../data_center/scatter/v4/val" # 验证数据集根目录
transform:
img_size: 224 # 图像尺寸
@ -59,7 +59,7 @@ transform:
# 日志与监控
logging:
logging_dir: "./log/2025.6.25-scatter.txt" # 日志保存目录
logging_dir: "./log/2025.7.4-scatter.txt" # 日志保存目录
tensorboard: true # 是否启用TensorBoard
checkpoint_interval: 30 # 检查点保存间隔epoch

19
configs/scatter_data.yml Normal file
View File

@ -0,0 +1,19 @@
# configs/scatter_data.yml
# 专为散称前处理的配置文件
# 数据配置
data:
dataset: "imagenet" # 数据集名称(示例用,可替换为实际数据集)
source_dir: "../../data_center/scatter/v5/source" # 原始数据
train_dir: "../../data_center/scatter/v5/train" # 训练数据集根目录
val_dir: "../../data_center/scatter/v5/val" # 验证数据集根目录
extra_dir: "../../data_center/scatter/v5/extra" # 验证数据集根目录
split_ratio: 0.9
max_files: 10 # 数据集小于该阈值则归纳至extra
# 日志与监控
logging:
logging_dir: "./log/2025.7.4-scatter.txt" # 日志保存目录
log_level: "info" # 日志级别debug/info/warning/error

View File

View File

@ -0,0 +1,92 @@
import os
import shutil
from pathlib import Path
def count_files(directory):
"""统计目录中的文件数量"""
try:
return len([f for f in os.listdir(directory)
if os.path.isfile(os.path.join(directory, f))])
except Exception as e:
print(f"无法统计目录 {directory}: {e}")
return 0
def clear_empty_dirs(path):
"""
删除空目录
:param path: 目录路径
"""
for root, dirs, files in os.walk(path, topdown=False):
for dir_name in dirs:
dir_path = os.path.join(root, dir_name)
try:
if not os.listdir(dir_path):
os.rmdir(dir_path)
print(f"Deleted empty directory: {dir_path}")
except Exception as e:
print(f"Error: {e.strerror}")
def megre_subdirs(pth):
for roots, dir_names, files in os.walk(pth):
print(f"image {dir_names}")
for image in dir_names:
inner_dir_path = os.path.join(pth, image)
for inner_roots, inner_dirs, inner_files in os.walk(inner_dir_path):
for inner_dir in inner_dirs:
src_dir = os.path.join(inner_roots, inner_dir)
dest_dir = os.path.join(pth, inner_dir)
# shutil.copytree(src_dir, dest_dir)
shutil.move(src_dir, dest_dir)
print(f"Copied {inner_dir} to {pth}")
clear_empty_dirs(pth)
def split_subdirs(source_dir, target_dir, max_files=10):
"""
复制文件数≤max_files的子目录到目标目录
:param source_dir: 源目录路径
:param target_dir: 目标目录路径
:param max_files: 最大文件数阈值
"""
megre_subdirs(source_dir) # 合并子目录,删除上级目录
# 创建目标目录
Path(target_dir).mkdir(parents=True, exist_ok=True)
print(f"开始处理目录: {source_dir}")
print(f"目标目录: {target_dir}")
print(f"筛选条件: 文件数 ≤ {max_files}\n")
# 遍历源目录
for subdir in os.listdir(source_dir):
subdir_path = os.path.join(source_dir, subdir)
if not os.path.isdir(subdir_path):
continue
try:
file_count = count_files(subdir_path)
if file_count <= max_files:
print(f"复制 {subdir} (包含 {file_count} 个文件)")
dest_path = os.path.join(target_dir, subdir)
# 如果目标目录已存在则跳过
if os.path.exists(dest_path):
print(f"目录已存在,跳过: {dest_path}")
continue
# shutil.copytree(subdir_path, dest_path)
shutil.move(subdir_path, dest_path)
except Exception as e:
print(f"处理目录 {subdir} 时出错: {e}")
print("\n处理完成")
if __name__ == "__main__":
# 配置路径
SOURCE_DIR = r"C:\Users\123\Desktop\test1\scatter_sub_class"
TARGET_DIR = "scatter_mini"
# 执行复制操作
split_subdirs(SOURCE_DIR, TARGET_DIR)

View File

@ -0,0 +1,73 @@
import os
import shutil
import random
from pathlib import Path
def is_image_file(filename):
"""检查文件是否为图像文件"""
image_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.gif', '.tiff')
return filename.lower().endswith(image_extensions)
def split_directory(src_dir, train_dir, val_dir, split_ratio=0.9):
"""
分割目录中的图像文件到train和val目录
:param src_dir: 源目录路径
:param train_dir: 训练集目录路径
:param val_dir: 验证集目录路径
:param split_ratio: 训练集比例(默认0.9)
"""
# 创建目标目录
Path(train_dir).mkdir(parents=True, exist_ok=True)
Path(val_dir).mkdir(parents=True, exist_ok=True)
# 遍历源目录
for root, dirs, files in os.walk(src_dir):
# 获取相对路径(相对于src_dir)
rel_path = os.path.relpath(root, src_dir)
# 跳过当前目录(.)
if rel_path == '.':
continue
# 创建对应的目标子目录
train_subdir = os.path.join(train_dir, rel_path)
val_subdir = os.path.join(val_dir, rel_path)
os.makedirs(train_subdir, exist_ok=True)
os.makedirs(val_subdir, exist_ok=True)
# 筛选图像文件
image_files = [f for f in files if is_image_file(f)]
if not image_files:
continue
# 随机打乱文件列表
random.shuffle(image_files)
# 计算分割点
split_point = int(len(image_files) * split_ratio)
# 复制文件到训练集
for file in image_files[:split_point]:
src = os.path.join(root, file)
dst = os.path.join(train_subdir, file)
# shutil.copy2(src, dst)
shutil.move(src, dst)
# 复制文件到验证集
for file in image_files[split_point:]:
src = os.path.join(root, file)
dst = os.path.join(val_subdir, file)
# shutil.copy2(src, dst)
shutil.move(src, dst)
print(f"处理完成: {rel_path} (共 {len(image_files)} 个图像, 训练集: {split_point}, 验证集: {len(image_files)-split_point})")
if __name__ == "__main__":
# 设置目录路径
SOURCE_DIR = "scatter_add"
TRAIN_DIR = "scatter_data/train"
VAL_DIR = "scatter_data/val"
print("开始分割数据集...")
split_directory(SOURCE_DIR, TRAIN_DIR, VAL_DIR)
print("数据集分割完成")

View File

@ -0,0 +1,131 @@
import os
import random
import shutil
from PIL import Image, ImageEnhance
class ImageExtendProcessor:
def is_image_file(self, filename):
"""检查文件是否为图像文件"""
image_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.gif', '.tiff')
return filename.lower().endswith(image_extensions)
def random_cute_image(self, image_path, output_path, ratio=0.8):
"""
对图像进行随机裁剪
:param image_path: 输入图像路径
:param output_path: 输出图像路径
:param ratio: 裁剪比例决定裁剪区域的大小默认为0.8
"""
try:
with Image.open(image_path) as img:
# 获取图像尺寸
width, height = img.size
# 计算裁剪后的尺寸
new_width = int(width * ratio)
new_height = int(height * ratio)
# 随机生成裁剪起始点
left = random.randint(0, width - new_width)
top = random.randint(0, height - new_height)
right = left + new_width
bottom = top + new_height
# 执行裁剪
cropped_img = img.crop((left, top, right, bottom))
# 保存裁剪后的图像
cropped_img.save(output_path)
return True
except Exception as e:
print(f"处理图像 {image_path} 时出错: {e}")
return False
def random_brightness(self, image_path, output_path, brightness_factor=None):
"""
对图像进行随机亮度调整
:param image_path: 输入图像路径
:param output_path: 输出图像路径
:param brightness_factor: 亮度调整因子,默认为随机值
"""
try:
with Image.open(image_path) as img:
# 创建一个ImageEnhance.Brightness对象
enhancer = ImageEnhance.Brightness(img)
# 如果没有指定亮度因子,则随机生成
if brightness_factor is None:
brightness_factor = random.uniform(0.5, 1.5)
# 应用亮度调整
brightened_img = enhancer.enhance(brightness_factor)
# 保存调整后的图像
brightened_img.save(output_path)
return True
except Exception as e:
print(f"处理图像 {image_path} 时出错: {e}")
return False
def rotate_image(self, image_path, output_path, degrees):
"""旋转图像并保存到指定路径"""
try:
with Image.open(image_path) as img:
# 旋转图像并自动调整画布大小
rotated = img.rotate(degrees, expand=True)
rotated.save(output_path)
return True
except Exception as e:
print(f"处理图像 {image_path} 时出错: {e}")
return False
def process_image_directory(self, src_dir, dst_dir, same_directory, **kwargs):
"""
处理单个目录中的图像文件
:param src_dir: 源目录路径
:param dst_dir: 目标目录路径
"""
if not os.path.exists(dst_dir):
os.makedirs(dst_dir)
# 获取目录中所有图像文件
image_files = [f for f in os.listdir(src_dir)
if self.is_image_file(f) and os.path.isfile(os.path.join(src_dir, f))]
# 处理每个图像文件
for img_file in image_files:
src_path = os.path.join(src_dir, img_file)
base_name, ext = os.path.splitext(img_file)
if not same_directory:
# 复制原始文件 (另存文件夹时启用)
shutil.copy2(src_path, os.path.join(dst_dir, img_file))
# 生成并保存旋转后的图像
for angle in [90, 180, 270]:
dst_path = os.path.join(dst_dir, f"{base_name}_rotated_{angle}{ext}")
self.rotate_image(src_path, dst_path, angle)
for ratio in [0.8, 0.85, 0.9]:
dst_path = os.path.join(dst_dir, f"{base_name}_cute_{ratio}{ext}")
self.random_cute_image(src_path, dst_path, ratio)
for brightness_factor in [0.8, 0.9, 1.0]:
dst_path = os.path.join(dst_dir, f"{base_name}_brightness_{brightness_factor}{ext}")
self.random_brightness(src_path, dst_path, brightness_factor)
def image_extend(self, src_dir, dst_dir, same_directory=False, **kwargs):
if same_directory:
n_dst_dir = src_dir
print(f"处理目录 {src_dir} 中的图像文件 保存至同一目录下")
else:
n_dst_dir = dst_dir
print(f"处理目录 {src_dir} 中的图像文件 保存至不同目录下")
for src_subdir in os.listdir(src_dir):
src_subdir_path = os.path.join(src_dir, src_subdir)
dst_subdir_path = os.path.join(n_dst_dir, src_subdir)
self.process_image_directory(src_subdir_path, dst_subdir_path, same_directory)
if __name__ == "__main__":
src_dir = "./scatter_mini"
dst_dir = "./scatter_add"
image_ex = ImageExtendProcessor()
image_ex.image_extend(src_dir, dst_dir, same_directory=False)

View File

@ -0,0 +1,20 @@
from create_extra import split_subdirs
from data_split import split_directory
from extend import ImageExtendProcessor
import yaml
def data_preprocessing(conf):
split_subdirs(conf['data']['source_dir'], conf['data']['data_extra_dir'], conf['data']['max_files'])
split_directory(conf['data']['source_dir'], conf['data']['train_dir'],
conf['data']['val_dir'], conf['data']['split_ratio'])
image_ex = ImageExtendProcessor()
image_ex.image_extend(conf['data']['extra_dir'],
'',
same_directory=True)
if __name__ == '__main__':
with open('../configs/scatter_data.yml', 'r') as f:
conf = yaml.load(f, Loader=yaml.FullLoader)
data_preprocessing(conf)