83 lines
3.2 KiB
Python
83 lines
3.2 KiB
Python
import torch.nn as nn
|
|
import torchvision
|
|
from torch.nn import init
|
|
|
|
class Flatten(nn.Module):
|
|
def forward(self, x):
|
|
return x.view(x.shape[0], -1)
|
|
|
|
class ChannelAttention(nn.Module):
|
|
def __int__(self,channel,reduction, num_layers):
|
|
super(ChannelAttention,self).__init__()
|
|
self.avgpool = nn.AdaptiveAvgPool2d(1)
|
|
gate_channels = [channel]
|
|
gate_channels += [len(channel)//reduction]*num_layers
|
|
gate_channels += [channel]
|
|
|
|
self.ca = nn.Sequential()
|
|
self.ca.add_module('flatten', Flatten())
|
|
for i in range(len(gate_channels)-2):
|
|
self.ca.add_module('',nn.Linear(gate_channels[i], gate_channels[i+1]))
|
|
self.ca.add_module('',nn.BatchNorm1d(gate_channels[i+1]))
|
|
self.ca.add_module('',nn.ReLU())
|
|
self.ca.add_module('',nn.Linear(gate_channels[-2], gate_channels[-1]))
|
|
|
|
def forward(self, x):
|
|
res = self.avgpool(x)
|
|
res = self.ca(res)
|
|
res = res.unsqueeze(-1).unsqueeze(-1).expand_as(x)
|
|
return res
|
|
|
|
class SpatialAttention(nn.Module):
|
|
def __int__(self, channel,reduction=16,num_lay=3,dilation=2):
|
|
super(SpatialAttention).__init__()
|
|
self.sa = nn.Sequential()
|
|
self.sa.add_module('', nn.Conv2d(kernel_size=1, in_channels=channel, out_channels=(channel//reduction)*3))
|
|
self.sa.add_module('',nn.BatchNorm2d(num_features=(channel//reduction)))
|
|
self.sa.add_module('',nn.ReLU())
|
|
for i in range(num_lay):
|
|
self.sa.add_module('', nn.Conv2d(kernel_size=3,
|
|
in_channels=(channel//reduction),
|
|
out_channels=(channel//reduction),
|
|
padding=1,
|
|
dilation= 2))
|
|
self.sa.add_module('',nn.BatchNorm2d(channel//reduction))
|
|
self.sa.add_module('',nn.ReLU())
|
|
self.sa.add_module('',nn.Conv2d(channel//reduction, 1, kernel_size=1))
|
|
def forward(self,x):
|
|
res = self.sa(x)
|
|
res = res.expand_as(x)
|
|
return res
|
|
|
|
class BAMblock(nn.Module):
|
|
def __init__(self,channel=512, reduction=16, dia_val=2):
|
|
super(BAMblock, self).__init__()
|
|
self.ca = ChannelAttention(channel, reduction)
|
|
self.sa = SpatialAttention(channel,reduction,dia_val)
|
|
self.sigmoid = nn.Sigmoid()
|
|
|
|
def init_weights(self):
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
init.kaiming_normal(m.weight, mode='fan_out')
|
|
if m.bais is not None:
|
|
init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
init.constant_(m.weight, 1)
|
|
init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.Linear):
|
|
init.normal_(m.weight, std=0.001)
|
|
if m.bias is not None:
|
|
init.constant_(m.bias, 0)
|
|
|
|
def forward(self,x):
|
|
b, c, _, _ = x.size()
|
|
sa_out=self.sa(x)
|
|
ca_out=self.ca(x)
|
|
weight=self.sigmoid(sa_out+ca_out)
|
|
out=(1+weight)*x
|
|
return out
|
|
|
|
if __name__ =="__main__":
|
|
|
|
print(512//14) |