Files
detecttracking/tracking/dotrack/track_back.py
2024-05-20 20:01:06 +08:00

329 lines
13 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# -*- coding: utf-8 -*-
"""
Created on Mon Mar 4 18:28:47 2024
@author: ym
"""
import cv2
import numpy as np
from scipy.spatial.distance import cdist
from sklearn.decomposition import PCA
from .dotracks import MoveState, Track
class backTrack(Track):
# boxes: [x1, y1, x2, y2, track_id, score, cls, frame_index, box_index]
# 0, 1, 2, 3, 4, 5, 6, 7, 8
def __init__(self, boxes, imgshape=(1024, 1280)):
super().__init__(boxes, imgshape)
'''该函数依赖项: self.cornpoints'''
self.isCornpoint = self.isimgborder()
'''该函数依赖项: self.isCornpoint不能在父类中初始化'''
self.trajfeature()
'''静止点帧索引'''
self.static_index = self.compute_static_fids()
'''运动点帧索引(运动帧两端的静止帧索引)'''
self.moving_index = self.compute_dynamic_fids()
self.static_dynamic_fids = self.compute_static_dynamic_fids()
'''该函数依赖项: self.cornpoints定义 4 个商品位置变量:
self.Cent_isIncart, self.LB_isIncart, self.RB_isIncart
self.posState = self.Cent_isIncart+self.LB_isIncart+self.RB_isIncart'''
self.PositionState()
'''self.feature_ious = (incart_iou, outcart_iou, cartboarder_iou, maxbox_iou, minbox_iou)
self.incartrates = incartrates'''
self.compute_ious_feat()
# self.PCA()
def isimgborder(self, BoundPixel=10, BoundThresh=0.3):
x1, y1 = self.cornpoints[:,2], self.cornpoints[:,3],
x2, y2 = self.cornpoints[:,8], self.cornpoints[:,9]
cont1 = sum(abs(x1)<BoundPixel) / self.frnum > BoundThresh
cont2 = sum(abs(y1)<BoundPixel) / self.frnum > BoundThresh
cont3 = sum(abs(x2-self.imgshape[0])<BoundPixel) / self.frnum > BoundThresh
cont4 = sum(abs(y2-self.imgshape[1])<BoundPixel) / self.frnum > BoundThresh
cont = cont1 or cont2 or cont3 or cont4
isCornpoint = False
if cont:
isCornpoint = True
return isCornpoint
def PositionState(self, camerType="back"):
'''
camerType: back, 后置摄像头
front, 前置摄像头
'''
if camerType=="front":
incart = cv2.imread("./shopcart/cart_tempt/incart.png", cv2.IMREAD_GRAYSCALE)
else:
incart = cv2.imread("./shopcart/cart_tempt/incart_ftmp.png", cv2.IMREAD_GRAYSCALE)
xc, yc = self.cornpoints[:,0].clip(0,self.imgshape[0]-1).astype(np.int64), self.cornpoints[:,1].clip(0,self.imgshape[1]-1).astype(np.int64)
x1, y1 = self.cornpoints[:,6].clip(0,self.imgshape[0]-1).astype(np.int64), self.cornpoints[:,7].clip(0,self.imgshape[1]-1).astype(np.int64)
x2, y2 = self.cornpoints[:,8].clip(0,self.imgshape[0]-1).astype(np.int64), self.cornpoints[:,9].clip(0,self.imgshape[1]-1).astype(np.int64)
# print(self.tid)
Cent_inCartnum = np.count_nonzero(incart[(yc, xc)])
LB_inCartnum = np.count_nonzero(incart[(y1, x1)])
RB_inCartnum = np.count_nonzero(incart[(y2, x2)])
self.Cent_isIncart = False
self.LB_isIncart = False
self.RB_isIncart = False
if Cent_inCartnum: self.Cent_isIncart = True
if LB_inCartnum: self.LB_isIncart = True
if RB_inCartnum: self.RB_isIncart = True
self.posState = self.Cent_isIncart+self.LB_isIncart+self.RB_isIncart
def PCA(self):
self.pca = PCA()
X = self.cornpoints[:, 0:2]
self.pca.fit(X)
def compute_ious_feat(self):
'''输出:
self.feature_ious = (incart_iou, outcart_iou, cartboarder_iou, maxbox_iou, minbox_iou)
self.incartrates = incartrates
其中:
boxes流track中所有boxes形成的轨迹图可分为三部分incart, outcart, cartboarder
incart_iou, outcart_iou, cartboarder_iou各部分和 boxes流的 iou。
incart_iou = 0track在购物车外
outcart_iou = 0track在购物车内也可能是通过左下角、右下角置入购物车
maxbox_iou, minbox_ioutrack中最大、最小 box 和boxes流的iou二者差值越小越接近 1表明track的运动型越小。
incartrates: 各box和incart的iou时序由小变大反应的是置入过程由大变小反应的是取出过程
'''
incart = cv2.imread("./shopcart/cart_tempt/incart.png", cv2.IMREAD_GRAYSCALE)
outcart = cv2.imread("./shopcart/cart_tempt/outcart.png", cv2.IMREAD_GRAYSCALE)
cartboarder = cv2.imread("./shopcart/cart_tempt/cartboarder.png", cv2.IMREAD_GRAYSCALE)
incartrates = []
temp = np.zeros(incart.shape, np.uint8)
maxarea, minarea = 0, self.imgshape[0]*self.imgshape[1]
for i in range(self.frnum):
# x, y, w, h = self.boxes[i, 0:4]
x = (self.boxes[i, 2] + self.boxes[i, 0]) / 2
w = (self.boxes[i, 2] - self.boxes[i, 0]) / 2
y = (self.boxes[i, 3] + self.boxes[i, 1]) / 2
h = (self.boxes[i, 3] - self.boxes[i, 1]) / 2
if w*h > maxarea: maxarea = w*h
if w*h < minarea: minarea = w*h
cv2.rectangle(temp, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), 255, cv2.FILLED)
temp1 = np.zeros(incart.shape, np.uint8)
cv2.rectangle(temp1, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), 255, cv2.FILLED)
temp2 = cv2.bitwise_and(incart, temp1)
inrate = cv2.countNonZero(temp1)/(w*h)
incartrates.append(inrate)
isincart = cv2.bitwise_and(incart, temp)
isoutcart = cv2.bitwise_and(outcart, temp)
iscartboarder = cv2.bitwise_and(cartboarder, temp)
num_temp = cv2.countNonZero(temp)
num_incart = cv2.countNonZero(isincart)
num_outcart = cv2.countNonZero(isoutcart)
num_cartboarder = cv2.countNonZero(iscartboarder)
incart_iou = num_incart/num_temp
outcart_iou = num_outcart/num_temp
cartboarder_iou = num_cartboarder/num_temp
maxbox_iou = maxarea/num_temp
minbox_iou = minarea/num_temp
self.feature_ious = (incart_iou, outcart_iou, cartboarder_iou, maxbox_iou, minbox_iou)
self.incartrates = incartrates
def compute_static_fids(self, thresh1 = 12, thresh2 = 3):
'''
计算 track 的轨迹中相对处于静止状态的轨迹点的start_frame_id, end_frame_id
thresh1: 相邻两帧目标中心点是否静止的的阈值,以像素为单位,
thresh2: 连续捕捉到目标处于静止状态的帧数,当 thresh2 = 3时,至少连续 4个点,
产生3个相邻点差值均小于 thresh1 时,判定为连续静止.
处理过程中利用了插值技术因此start、end并非 self.boxes 中对应的帧索引
'''
BoundPixel = 8
x1, y1 = self.cornpoints[:,2], self.cornpoints[:,3],
x2, y2 = self.cornpoints[:,8], self.cornpoints[:,9]
cont1 = sum(abs(x1)<BoundPixel) > 3
# cont2 = sum(abs(y1)<BoundPixel) > 3
cont3 = sum(abs(x2-self.imgshape[0])<BoundPixel) > 3
# cont4 = sum(abs(y2-self.imgshape[1])<BoundPixel) > 3
cont = not(cont1 or cont3)
## ============== 下一步,启用中心点,选择具有最小运动幅度的角点作为参考点
static_index = []
if self.frnum>=2 and cont:
x1 = self.boxes[1:,7]
x2 = [i for i in range(int(min(x1)), int(max(x1)+1))]
dist_adjc = np.interp(x2, x1, self.trajmin)
# dist_adjc = self.trajmin
static_thresh = (dist_adjc < thresh1)[:, None].astype(np.uint8)
static_cnts, _ = cv2.findContours(static_thresh, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
for cnt in static_cnts:
_, start, _, num = cv2.boundingRect(cnt)
end = start + num
if num < thresh2:
continue
static_index.append((start, end))
static_index = np.array(static_index)
if static_index.size:
indx = np.argsort(static_index[:, 0])
static_index = static_index[indx]
return static_index
def compute_dynamic_fids(self, thresh1 = 12, thresh2 = 3):
'''
计算 track 的轨迹中运动轨迹点的start_frame_id, end_frame_id
thresh1: 相邻两帧目标中心点是否运动的阈值,以像素为单位,
thresh2: 连续捕捉到目标连续运动的帧数
目标:
1. 计算轨迹方向
2. 计算和手部运动的关联性
'''
moving_index = []
if self.frnum>=2:
x1 = self.boxes[1:,7]
x2 = [i for i in range(int(min(x1)), int(max(x1)+1))]
dist_adjc = np.interp(x2, x1, self.trajmin)
moving_thresh = (dist_adjc >= thresh1)[:, None].astype(np.uint8)
moving_cnts, _ = cv2.findContours(moving_thresh, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
for cnt in moving_cnts:
_, start, _, num = cv2.boundingRect(cnt)
if num < thresh2:
continue
end = start + num
moving_index.append((start, end))
# =============================================================================
# '''========= 输出帧id不太合适 ========='''
# moving_fids = []
# for i in range(len(moving_index)):
# i1, i2 = moving_index[i]
# fid1, fid2 = boxes[i1, 7], boxes[i2, 7]
# moving_fids.append([fid1, fid2])
# moving_fids = np.array(moving_fids)
# =============================================================================
moving_index = np.array(moving_index)
if moving_index.size:
indx = np.argsort(moving_index[:, 0])
moving_index = moving_index[indx]
return moving_index
def compute_static_dynamic_fids(self):
static_dynamic_fids = []
for traj in self.trajectory:
static, dynamic = self.compute_static_fids(traj)
static_dynamic_fids.append((static, dynamic))
return static_dynamic_fids
def is_static(self):
'''静态情况 1: 目标关键点最小相对运动轨迹 < 0.2, 指标值偏大
feature = [trajlen_min, trajlen_max,
trajdist_min, trajdist_max,
trajlen_rate, trajdist_rate]
'''
condt1 = self.feature[5] < 0.2 or self.feature[3] < 120
'''静态情况 2: 目标初始状态为静止,适当放宽关键点最小相对运动轨迹 < 0.5'''
condt2 = self.static_index.size > 0 \
and self.static_index[0, 0] <= 2 \
and self.feature[5] < 0.5
'''静态情况 3: 目标初始状态和最终状态均为静止'''
condt3 = self.static_index.shape[0] >= 2 \
and self.static_index[0, 0] <= 2 \
and self.static_index[-1, 1] >= self.frnum-3 \
condt = condt1 or condt2 or condt3
return condt
# =============================================================================
# track1 = [t for t in tracks if t.feature[5] < 0.2
# or t.feature[3] < 120
# ]
#
# track2 = [t for t in tracks if t.static_index.size > 0
# and t.static_index[0, 0] <= 2
# and t.feature[5] < 0.5]
#
# track3 = [t for t in tracks if t.static_index.shape[0] >= 2
# and t.static_index[0, 0] <= 2
# and t.static_index[-1, 1] >= t.frnum-3]
#
# track12 = self.join_tracks(track1, track2)
#
# '''提取静止状态的 track'''
# static_tracks = self.join_tracks(track12, track3)
# self.Static.extend(static_tracks)
#
# =============================================================================
def is_OutTrack(self):
if self.posState <= 1:
isout = True
else:
isout = False
return isout
def compute_distance(self):
pass
def move_start_fid(self):
pass
def move_end_fid(self):
pass