198 lines
6.2 KiB
Python
198 lines
6.2 KiB
Python
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Sun Sep 29 08:59:21 2024
|
|
|
|
@author: ym
|
|
"""
|
|
import os
|
|
import cv2
|
|
import pickle
|
|
import numpy as np
|
|
from pathlib import Path
|
|
from track_reid import parse_opt, yolo_resnet_tracker
|
|
|
|
from tracking.dotrack.dotracks_back import doBackTracks
|
|
from tracking.dotrack.dotracks_front import doFrontTracks
|
|
from tracking.utils.drawtracks import plot_frameID_y2, draw_all_trajectories
|
|
from utils.getsource import get_image_pairs, get_video_pairs
|
|
|
|
def get_interbcd_inputenents():
|
|
bcdpath = r"\\192.168.1.28\share\测试_202406\contrast\std_barcodes_2192"
|
|
eventpath = r"\\192.168.1.28\share\测试_202406\0918"
|
|
|
|
barcodes = []
|
|
eventpaths = []
|
|
for featname in os.listdir(bcdpath):
|
|
barcode, ext = os.path.splitext(featname)
|
|
barcodes.append(barcode)
|
|
|
|
input_enents = []
|
|
for root, dirs, files in os.walk(eventpath):
|
|
input_enent = [os.path.join(root, d) for d in dirs if d.split('_')[-1] in barcodes]
|
|
|
|
input_enents.extend(input_enent)
|
|
|
|
|
|
return input_enents
|
|
|
|
def pipeline(eventpath, stdfeat_path=None, SourceType = "image"):
|
|
'''
|
|
inputs:
|
|
eventpath: 事件文件夹
|
|
stdfeat_path: 标准特征文件地址
|
|
outputs:
|
|
|
|
'''
|
|
# SourceType = "image" # image
|
|
# eventpath = r"\\192.168.1.28\share\测试_202406\0918\images1\20240918-110822-1bc3902e-5a8e-4e23-8eca-fb3f02738551_6938314601726"
|
|
|
|
savepath = r"D:\contrast\detect"
|
|
|
|
opt = parse_opt()
|
|
optdict = vars(opt)
|
|
optdict["project"] = savepath
|
|
|
|
eventname = os.path.basename(eventpath)
|
|
# barcode = eventname.split('_')[-1]
|
|
|
|
|
|
if SourceType == "video":
|
|
vpaths = get_video_pairs(eventpath)
|
|
elif SourceType == "image":
|
|
vpaths = get_image_pairs(eventpath)
|
|
|
|
|
|
|
|
event_tracks = []
|
|
for vpath in vpaths:
|
|
'''事件结果文件夹'''
|
|
save_dir_event = Path(savepath) / Path(eventname)
|
|
if isinstance(vpath, list):
|
|
save_dir_video = save_dir_event / Path("images")
|
|
else:
|
|
save_dir_video = save_dir_event / Path(str(Path(vpath).stem))
|
|
|
|
if not save_dir_video.exists():
|
|
save_dir_video.mkdir(parents=True, exist_ok=True)
|
|
|
|
'''Yolo + Resnet + Tracker'''
|
|
optdict["source"] = vpath
|
|
optdict["save_dir"] = save_dir_video
|
|
optdict["is_save_img"] = True
|
|
optdict["is_save_video"] = True
|
|
|
|
tracksdict = yolo_resnet_tracker(**optdict)
|
|
|
|
bboxes = tracksdict['TrackBoxes']
|
|
|
|
bname = os.path.basename(vpath[0]) if isinstance(vpath, list) else os.path.basename(vpath)
|
|
if bname.split('_')[0] == "0" or bname.find('back')>=0:
|
|
vts = doBackTracks(bboxes, tracksdict)
|
|
vts.classify()
|
|
|
|
event_tracks.append(("back", vts))
|
|
|
|
if bname.split('_')[0] == "1" or bname.find('front')>=0:
|
|
vts = doFrontTracks(bboxes, tracksdict)
|
|
vts.classify()
|
|
event_tracks.append(("front", vts))
|
|
|
|
|
|
'''轨迹显示模块'''
|
|
illus = [None, None]
|
|
for CamerType, vts in event_tracks:
|
|
if CamerType == 'front':
|
|
edgeline = cv2.imread("./tracking/shopcart/cart_tempt/board_ftmp_line.png")
|
|
|
|
h, w = edgeline.shape[:2]
|
|
nh, nw = h//2, w//2
|
|
edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA)
|
|
|
|
img_tracking = draw_all_trajectories(vts, edgeline, save_dir_event, CamerType, draw5p=True)
|
|
illus[0] = img_tracking
|
|
|
|
|
|
plt = plot_frameID_y2(vts)
|
|
plt.savefig(os.path.join(save_dir_event, "front_y2.png"))
|
|
|
|
if CamerType == 'back':
|
|
edgeline = cv2.imread("./tracking/shopcart/cart_tempt/edgeline.png")
|
|
|
|
h, w = edgeline.shape[:2]
|
|
nh, nw = h//2, w//2
|
|
edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA)
|
|
|
|
img_tracking = draw_all_trajectories(vts, edgeline, save_dir_event, CamerType, draw5p=True)
|
|
illus[1] = img_tracking
|
|
|
|
illus = [im for im in illus if im is not None]
|
|
if len(illus):
|
|
img_cat = np.concatenate(illus, axis = 1)
|
|
if len(illus)==2:
|
|
H, W = img_cat.shape[:2]
|
|
cv2.line(img_cat, (int(W/2), 0), (int(W/2), int(H)), (128, 128, 255), 3)
|
|
|
|
trajpath = os.path.join(save_dir_event, "traj.png")
|
|
cv2.imwrite(trajpath, img_cat)
|
|
|
|
|
|
|
|
'''前后摄轨迹选择'''
|
|
if stdfeat_path is not None:
|
|
with open(stdfeat_path, 'rb') as f:
|
|
featDict = pickle.load(f)
|
|
|
|
|
|
def main_loop():
|
|
bcdpath = r"\\192.168.1.28\share\测试_202406\contrast\std_barcodes_2192"
|
|
eventpath = r"\\192.168.1.28\share\测试_202406\0918\images1"
|
|
SourceType = "image" # video, image
|
|
|
|
barcodes = []
|
|
input_enents = []
|
|
output_events = []
|
|
|
|
|
|
'''1. 获得barcode标准特征集列表'''
|
|
for featname in os.listdir(bcdpath):
|
|
barcode, ext = os.path.splitext(featname)
|
|
if not barcode.isdigit() or len(barcode)<=8 or ext != ".pickle" :
|
|
continue
|
|
barcodes.append(barcode)
|
|
|
|
'''2. 构造(放入事件,标准特征)对'''
|
|
for filename in os.listdir(eventpath):
|
|
'''barcode为时间文件夹的最后一个字段'''
|
|
bcd = filename.split('_')[-1]
|
|
|
|
event_path = os.path.join(eventpath, filename)
|
|
stdfeat_path = None
|
|
if bcd in barcodes:
|
|
stdfeat_path = os.path.join(bcdpath, f"{bcd}.pickle")
|
|
input_enents.append((event_path, stdfeat_path))
|
|
|
|
|
|
for eventpath, stdfeat_path in input_enents:
|
|
pipeline(eventpath, stdfeat_path, SourceType)
|
|
|
|
|
|
def main():
|
|
eventpath = r"D:\datasets\ym\exhibition\175836"
|
|
|
|
eventpath = r"\\192.168.1.28\share\测试视频数据以及日志\各模块测试记录\展厅测试\1120_展厅模型v801测试\扫A放A\20241121-144855-dce94b09-1100-43f1-92e8-33a1b538b159_6924743915848_6924743915848"
|
|
|
|
SourceType = 'image'
|
|
stdfeat_path = None
|
|
|
|
pipeline(eventpath, stdfeat_path, SourceType)
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|
|
|
|
|
|
|
|
|
|
|