Files
detecttracking/contrast/one2one_onsite.py
王庆刚 8bbee310ba bakeup
2024-11-25 18:05:08 +08:00

372 lines
12 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# -*- coding: utf-8 -*-
"""
Created on Wed Sep 11 11:57:30 2024
永辉现场试验输出数据的 1:1 性能评估
适用于202410前数据保存版本的需调用 OneToOneCompare.txt
@author: ym
"""
import os
import numpy as np
from pathlib import Path
import matplotlib.pyplot as plt
import sys
sys.path.append(r"D:\DetectTracking")
from tracking.utils.read_data import read_similar
def read_one2one_data(filepath):
simiList = []
with open(filepath, 'r', encoding='utf-8') as f:
lines = f.readlines()
split_flag = False
simi_dict = {}
for i, line in enumerate(lines):
line = line.strip()
if not line:
if len(simi_dict): simiList.append(simi_dict)
simi_dict = {}
continue
label = line.split(':')[0].strip()
value = line.split(':')[1].strip()
if label.find("SeqDir") >= 0:
simi_dict["SeqDir"] = value
if label.isdigit() and len(label) >= 8:
simi_max, simi_min = value.strip(',').split('.')
simi_dict["barcode"] = label
simi_dict["simi_max"] = float(simi_max) / 1000
simi_dict["simi_min"] = float(simi_min) / 1000
if len(simi_dict): simiList.append(simi_dict)
return simiList
def plot_pr_curve(matrix):
simimax, simimean = [], []
need_analysis = []
for simidict in matrix:
simimax.append(simidict["simi_max"])
simimean.append(simidict["simi_min"])
if simidict["simi_max"]>0.6:
need_analysis.append(simidict)
simimax = np.array(simimax)
simimean = np.array(simimean)
TPFN_max = len(simimax)
TPFN_mean = len(simimean)
fig, axs = plt.subplots(2, 1)
axs[0].hist(simimax, bins=60, edgecolor='black')
axs[0].set_xlim([-0.2, 1])
axs[0].set_title(f'Same Barcode, Num: {TPFN_max}')
axs[1].hist(simimean, bins=60, edgecolor='black')
axs[1].set_xlim([-0.2, 1])
axs[1].set_title(f'Cross Barcode, Num: {TPFN_mean}')
# plt.savefig(f'./result/{file}_hist.png') # svg, png, pdf
Recall_Neg = []
Thresh = np.linspace(-0.2, 1, 100)
for th in Thresh:
TN = np.sum(simimax < th)
Recall_Neg.append(TN/TPFN_max)
fig, ax = plt.subplots()
ax.plot(Thresh, Recall_Neg, 'b', label='Recall_Pos: TP/TPFN')
ax.set_xlim([0, 1])
ax.set_ylim([0, 1])
ax.grid(True)
ax.set_title('Positive recall')
ax.set_xlabel(f"Num: {TPFN_max}")
ax.legend()
plt.show()
# plt.savefig(f'./result/{file}_pr.png') # svg, png, pdf
print("Have done!")
pass
def test_compare():
filepaths = [r"\\192.168.1.28\share\测试_202406\0913_扫A放B\0913_1\OneToOneCompare.txt",
r"\\192.168.1.28\share\测试_202406\0913_扫A放B\0913_2\OneToOneCompare.txt",
r"\\192.168.1.28\share\测试_202406\0914_扫A放B\0914_1\OneToOneCompare.txt",
r"\\192.168.1.28\share\测试_202406\0914_扫A放B\0914_2\OneToOneCompare.txt"
]
simiList = []
for fp in filepaths:
slist = read_one2one_data(fp)
simiList.extend(slist)
plot_pr_curve(simiList)
def one2one_pr(paths):
paths = Path(paths)
evtpaths = [p for p in paths.iterdir() if p.is_dir() and len(p.name.split('_'))>=2]
events, similars = [], []
##===================================== 扫A放A, 扫A放B场景
one2oneAA, one2oneAB = [], []
##===================================== 应用于展厅 1N
tp_events, fn_events, fp_events, tn_events = [], [], [], []
tp_simi, fn_simi, tn_simi, fp_simi = [], [], [], []
##===================================== 应用于1:n
tpevents, fnevents, fpevents, tnevents = [], [], [], []
tpsimi, fnsimi, tnsimi, fpsimi = [], [], [], []
for path in evtpaths:
barcode = path.stem.split('_')[-1]
datapath = path.joinpath('process.data')
if not barcode.isdigit() or len(barcode)<10: continue
if not datapath.is_file(): continue
try:
SimiDict = read_similar(datapath)
except Exception as e:
print(f"{path.stem}, Error: {e}")
one2one = SimiDict['one2one']
one2n = SimiDict['one2n']
barcodes, similars = [], []
for dt in one2one:
barcodes.append(dt['barcode'])
similars.append(dt['similar'])
if len(barcodes)!=len(similars) or len(barcodes)==0:
continue
##===================================== 扫A放A, 扫A放B场景
simAA = [similars[i] for i in range(len(barcodes)) if barcodes[i]==barcode]
simAB = [similars[i] for i in range(len(barcodes)) if barcodes[i]!=barcode]
one2oneAA.extend(simAA)
one2oneAB.extend(simAB)
##===================================== 以下应用适用于展厅 1N
max_idx = similars.index(max(similars))
max_sim = similars[max_idx]
# max_bcd = barcodes[max_idx]
for i in range(len(one2one)):
bcd, simi = barcodes[i], similars[i]
if bcd==barcode and simi==max_sim:
tp_simi.append(simi)
tp_events.append(path.stem)
elif bcd==barcode and simi!=max_sim:
fn_simi.append(simi)
fn_events.append(path.stem)
elif bcd!=barcode and simi!=max_sim:
tn_simi.append(simi)
tn_events.append(path.stem)
else:
fp_simi.append(simi)
fp_events.append(path.stem)
##===================================== 以下应用适用1:n
events, evt_barcodes, evt_similars, evt_types = [], [], [], []
for dt in one2n:
events.append(dt["event"])
evt_barcodes.append(dt["barcode"])
evt_similars.append(dt["similar"])
evt_types.append(dt["type"])
if len(events)!=len(evt_barcodes) or len(evt_barcodes)!=len(evt_similars) \
or len(evt_barcodes)!=len(evt_similars) or len(events)==0: continue
maxsim = evt_similars[evt_similars.index(max(evt_similars))]
for i in range(len(one2n)):
bcd, simi = evt_barcodes[i], evt_similars[i]
if bcd==barcode and simi==maxsim:
tpsimi.append(simi)
tpevents.append(path.stem)
elif bcd==barcode and simi!=maxsim:
fnsimi.append(simi)
fnevents.append(path.stem)
elif bcd!=barcode and simi!=maxsim:
tnsimi.append(simi)
tnevents.append(path.stem)
else:
fpsimi.append(simi)
fpevents.append(path.stem)
'''命名规则:
1:1 1:n 1:N
TP_ TP TPX
PPrecise_ PPrecise PPreciseX
tpsimi tp_simi
'''
''' 1:1 数据存储'''
PPrecise_, PRecall_ = [], []
NPrecise_, NRecall_ = [], []
''' 1:n 数据存储'''
PPrecise, PRecall = [], []
NPrecise, NRecall = [], []
''' 展厅 1:N 数据存储'''
PPreciseX, PRecallX = [], []
NPreciseX, NRecallX = [], []
Thresh = np.linspace(-0.2, 1, 100)
for th in Thresh:
'''============================= 1:1'''
TP_ = sum(np.array(one2oneAA) >= th)
FP_ = sum(np.array(one2oneAB) >= th)
FN_ = sum(np.array(one2oneAA) < th)
TN_ = sum(np.array(one2oneAB) < th)
PPrecise_.append(TP_/(TP_+FP_+1e-6))
PRecall_.append(TP_/(TP_+FN_+1e-6))
NPrecise_.append(TN_/(TN_+FN_+1e-6))
NRecall_.append(TN_/(TN_+FP_+1e-6))
'''============================= 1:n'''
TP = sum(np.array(tpsimi) >= th)
FP = sum(np.array(fpsimi) >= th)
FN = sum(np.array(fnsimi) < th)
TN = sum(np.array(tnsimi) < th)
PPrecise.append(TP/(TP+FP+1e-6))
PRecall.append(TP/(TP+FN+1e-6))
NPrecise.append(TN/(TN+FN+1e-6))
NRecall.append(TN/(TN+FP+1e-6))
'''============================= 1:N 展厅'''
TPX = sum(np.array(tp_simi) >= th)
FPX = sum(np.array(fp_simi) >= th)
FNX = sum(np.array(fn_simi) < th)
TNX = sum(np.array(tn_simi) < th)
PPreciseX.append(TPX/(TPX+FPX+1e-6))
PRecallX.append(TPX/(TPX+FNX+1e-6))
NPreciseX.append(TNX/(TNX+FNX+1e-6))
NRecallX.append(TNX/(TNX+FPX+1e-6))
'''============================= 1:1 曲线'''
fig, ax = plt.subplots()
ax.plot(Thresh, PPrecise_, 'r', label='Precise_Pos: TP/TPFP')
ax.plot(Thresh, PRecall_, 'b', label='Recall_Pos: TP/TPFN')
ax.plot(Thresh, NPrecise_, 'g', label='Precise_Neg: TN/TNFP')
ax.plot(Thresh, NRecall_, 'c', label='Recall_Neg: TN/TNFN')
ax.set_xlim([0, 1])
ax.set_ylim([0, 1])
ax.grid(True)
ax.set_title('Precise & Recall')
ax.set_xlabel(f"Num: {len(evtpaths)}")
ax.legend()
plt.show()
'''============================= 1:1 直方图'''
fig, axes = plt.subplots(2, 1)
axes[0].hist(np.array(one2oneAA), bins=60, edgecolor='black')
axes[0].set_xlim([-0.2, 1])
axes[0].set_title('AA')
axes[1].hist(np.array(one2oneAB), bins=60, edgecolor='black')
axes[1].set_xlim([-0.2, 1])
axes[1].set_title('BB')
plt.show()
'''============================= 1:n 曲线'''
fig, ax = plt.subplots()
ax.plot(Thresh, PPrecise, 'r', label='Precise_Pos: TP/TPFP')
ax.plot(Thresh, PRecall, 'b', label='Recall_Pos: TP/TPFN')
ax.plot(Thresh, NPrecise, 'g', label='Precise_Neg: TN/TNFP')
ax.plot(Thresh, NRecall, 'c', label='Recall_Neg: TN/TNFN')
ax.set_xlim([0, 1])
ax.set_ylim([0, 1])
ax.grid(True)
ax.set_title('Precise & Recall')
ax.set_xlabel(f"Num: {len(evtpaths)}")
ax.legend()
plt.show()
'''============================= 1:n 直方图'''
fig, axes = plt.subplots(2, 2)
axes[0, 0].hist(tpsimi, bins=60, edgecolor='black')
axes[0, 0].set_xlim([-0.2, 1])
axes[0, 0].set_title('TP')
axes[0, 1].hist(fpsimi, bins=60, edgecolor='black')
axes[0, 1].set_xlim([-0.2, 1])
axes[0, 1].set_title('FP')
axes[1, 0].hist(tnsimi, bins=60, edgecolor='black')
axes[1, 0].set_xlim([-0.2, 1])
axes[1, 0].set_title('TN')
axes[1, 1].hist(fnsimi, bins=60, edgecolor='black')
axes[1, 1].set_xlim([-0.2, 1])
axes[1, 1].set_title('FN')
plt.show()
'''============================= 1:N 展厅 曲线'''
fig, ax = plt.subplots()
ax.plot(Thresh, PPreciseX, 'r', label='Precise_Pos: TP/TPFP')
ax.plot(Thresh, PRecallX, 'b', label='Recall_Pos: TP/TPFN')
ax.plot(Thresh, NPreciseX, 'g', label='Precise_Neg: TN/TNFP')
ax.plot(Thresh, NRecallX, 'c', label='Recall_Neg: TN/TNFN')
ax.set_xlim([0, 1])
ax.set_ylim([0, 1])
ax.grid(True)
ax.set_title('Precise & Recall')
ax.set_xlabel(f"Num: {len(evtpaths)}")
ax.legend()
plt.show()
'''============================= 1:N 展厅 直方图'''
fig, axes = plt.subplots(2, 2)
axes[0, 0].hist(tp_simi, bins=60, edgecolor='black')
axes[0, 0].set_xlim([-0.2, 1])
axes[0, 0].set_title('TP')
axes[0, 1].hist(fp_simi, bins=60, edgecolor='black')
axes[0, 1].set_xlim([-0.2, 1])
axes[0, 1].set_title('FP')
axes[1, 0].hist(tn_simi, bins=60, edgecolor='black')
axes[1, 0].set_xlim([-0.2, 1])
axes[1, 0].set_title('TN')
axes[1, 1].hist(fn_simi, bins=60, edgecolor='black')
axes[1, 1].set_xlim([-0.2, 1])
axes[1, 1].set_title('FN')
plt.show()
print('Done!')
if __name__ == "__main__":
evtpaths = r"\\192.168.1.28\share\测试视频数据以及日志\各模块测试记录\展厅测试\1120_展厅模型v801测试\扫A放A"
one2one_pr(evtpaths)