Files
detecttracking/contrast/one2one_contrast.py
王庆刚 8bbee310ba bakeup
2024-11-25 18:05:08 +08:00

597 lines
23 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# -*- coding: utf-8 -*-
"""
Created on Fri Aug 30 17:53:03 2024
功能1:1比对性能测试程序
1. 基于标准特征集所对应的原始图像样本,生成标准特征集并保存。
func: generate_event_and_stdfeatures():
(1) get_std_barcodeDict(stdSamplePath, stdBarcodePath)
提取 stdSamplePath 中样本地址,生成字典{barcode: [imgpath1, imgpath1, ...]}
并存储为 pickle 文件barcode.pickle'''
(2) stdfeat_infer(stdBarcodePath, stdFeaturePath, bcdSet=None)
标准特征提取,并保存至文件夹 stdFeaturePath 中,
也可在运行过程中根据与购物事件集合 barcodes 交集执行
2. 1:1 比对性能测试,
func: one2one_eval(resultPath)
(1) 求购物事件和标准特征级 Barcode 交集,构造 evtDict、stdDict
(2) 构造扫 A 放 A、扫 A 放 B 组合mergePairs = AA_list + AB_list
(3) 循环计算 mergePairs 中元素 "(A, A) 或 (A, B)" 相似度;
对于未保存的轨迹图像或标准 barcode 图像,保存图像
(4) 保存计算结果
3. precise、recall等指标计算
func: compute_precise_recall(pickpath)
@author: ym
"""
import numpy as np
import cv2
import os
import sys
import random
import pickle
# import torch
import time
# import json
from pathlib import Path
from scipy.spatial.distance import cdist
import matplotlib.pyplot as plt
import shutil
from datetime import datetime
# from openpyxl import load_workbook, Workbook
# from config import config as conf
# from model import resnet18 as resnet18
# from feat_inference import inference_image
sys.path.append(r"D:\DetectTracking")
from tracking.utils.read_data import extract_data, read_tracking_output, read_one2one_simi, read_deletedBarcode_file
from config import config as conf
from genfeats import model_init, genfeatures, stdfeat_infer
IMG_FORMAT = ['.bmp', '.jpg', '.jpeg', '.png']
def int8_to_ft16(arr_uint8, amin, amax):
arr_ft16 = (arr_uint8 / 255 * (amax-amin) + amin).astype(np.float16)
return arr_ft16
def ft16_to_uint8(arr_ft16):
# pickpath = r"\\192.168.1.28\share\测试_202406\contrast\std_features_ft32vsft16\6902265587712_ft16.pickle"
# with open(pickpath, 'rb') as f:
# edict = pickle.load(f)
# arr_ft16 = edict['feats']
amin = np.min(arr_ft16)
amax = np.max(arr_ft16)
arr_ft255 = (arr_ft16 - amin) * 255 / (amax-amin)
arr_uint8 = arr_ft255.astype(np.uint8)
arr_ft16_ = int8_to_ft16(arr_uint8, amin, amax)
arrDistNorm = np.linalg.norm(arr_ft16_ - arr_ft16) / arr_ft16_.size
return arr_uint8, arr_ft16_
def creat_shopping_event(eventPath):
'''构造放入商品事件字典,这些事件需满足条件:
1) 前后摄至少有一条轨迹输出
2) 保存有帧图像,以便裁剪出 boxe 子图
'''
'''evtName 为一次购物事件'''
evtName = os.path.basename(eventPath)
evtList = evtName.split('_')
'''================ 0. 检查 evtName 及 eventPath 正确性和有效性 ================'''
if evtName.find('2024')<0 and len(evtList[0])!=15:
return
if not os.path.isdir(eventPath):
return
if len(evtList)==1 or (len(evtList)==2 and len(evtList[1])==0):
barcode = ''
else:
barcode = evtList[-1]
if len(evtList)==3 and evtList[-1]== evtList[-2]:
evtType = 'input'
else:
evtType = 'other'
'''================ 1. 构造事件描述字典,暂定 9 items ==============='''
event = {}
event['barcode'] = barcode
event['type'] = evtType
event['filepath'] = eventPath
event['back_imgpaths'] = []
event['front_imgpaths'] = []
event['back_boxes'] = np.empty((0, 9), dtype=np.float64)
event['front_boxes'] = np.empty((0, 9), dtype=np.float64)
event['back_feats'] = np.empty((0, 256), dtype=np.float64)
event['front_feats'] = np.empty((0, 256), dtype=np.float64)
event['feats_compose'] = np.empty((0, 256), dtype=np.float64)
event['one2one_simi'] = None
event['feats_select'] = np.empty((0, 256), dtype=np.float64)
'''================= 2. 读取 data 文件 ============================='''
for dataname in os.listdir(eventPath):
# filename = '1_track.data'
datapath = os.path.join(eventPath, dataname)
if not os.path.isfile(datapath): continue
CamerType = dataname.split('_')[0]
''' 2.1 读取 0/1_track.data 中数据,暂不考虑'''
# if dataname.find("_track.data")>0:
# bboxes, ffeats, trackerboxes, tracker_feat_dict, trackingboxes, tracking_feat_dict = extract_data(datapath)
''' 2.2 读取 0/1_tracking_output.data 中数据'''
if dataname.find("_tracking_output.data")>0:
tracking_output_boxes, tracking_output_feats = read_tracking_output(datapath)
if len(tracking_output_boxes) != len(tracking_output_feats): continue
if CamerType == '0':
event['back_boxes'] = tracking_output_boxes
event['back_feats'] = tracking_output_feats
elif CamerType == '1':
event['front_boxes'] = tracking_output_boxes
event['front_feats'] = tracking_output_feats
if dataname.find("process.data")==0:
simiDict = read_one2one_simi(datapath)
event['one2one_simi'] = simiDict
if len(event['back_boxes'])==0 or len(event['front_boxes'])==0:
return None
'''2.3 事件的特征表征方式: 特征选择、特征集成'''
bk_feats = event['back_feats']
ft_feats = event['front_feats']
'''2.3.1 特征集成'''
feats_compose = np.empty((0, 256), dtype=np.float64)
if len(ft_feats):
feats_compose = np.concatenate((feats_compose, ft_feats), axis=0)
if len(bk_feats):
feats_compose = np.concatenate((feats_compose, bk_feats), axis=0)
event['feats_compose'] = feats_compose
'''2.3.1 特征选择'''
if len(ft_feats):
event['feats_select'] = ft_feats
'''================ 3. 读取图像文件地址并按照帧ID排序 ============='''
frontImgs, frontFid = [], []
backImgs, backFid = [], []
for imgname in os.listdir(eventPath):
name, ext = os.path.splitext(imgname)
if ext not in IMG_FORMAT or name.find('frameId')<0: continue
CamerType = name.split('_')[0]
frameId = int(name.split('_')[3])
imgpath = os.path.join(eventPath, imgname)
if CamerType == '0':
backImgs.append(imgpath)
backFid.append(frameId)
if CamerType == '1':
frontImgs.append(imgpath)
frontFid.append(frameId)
frontIdx = np.argsort(np.array(frontFid))
backIdx = np.argsort(np.array(backFid))
'''3.1 生成依据帧 ID 排序的前后摄图像地址列表'''
frontImgs = [frontImgs[i] for i in frontIdx]
backImgs = [backImgs[i] for i in backIdx]
'''3.2 将前、后摄图像路径添加至事件字典'''
bfid = event['back_boxes'][:, 7].astype(np.int64)
ffid = event['front_boxes'][:, 7].astype(np.int64)
if len(bfid) and max(bfid) <= len(backImgs):
event['back_imgpaths'] = [backImgs[i-1] for i in bfid]
if len(ffid) and max(ffid) <= len(frontImgs):
event['front_imgpaths'] = [frontImgs[i-1] for i in ffid]
'''================ 4. 判断当前事件有效性,并添加至事件列表 =========='''
condt1 = len(event['back_imgpaths'])==0 or len(event['front_imgpaths'])==0
condt2 = len(event['front_feats'])==0 and len(event['back_feats'])==0
if condt1 or condt2:
print(f"Event: {evtName}, Error, condt1: {condt1}, condt2: {condt2}")
return None
return event
def save_event_subimg(event, savepath):
'''
功能: 保存一次购物事件的轨迹子图
9 items: barcode, type, filepath, back_imgpaths, front_imgpaths,
back_boxes, front_boxes, back_feats, front_feats,
feats_compose, feats_select
子图保存次序:先前摄、后后摄,以 k 为编号,和 "feats_compose" 中次序相同
'''
cameras = ('front', 'back')
k = 0
for camera in cameras:
if camera == 'front':
boxes = event['front_boxes']
imgpaths = event['front_imgpaths']
else:
boxes = event['back_boxes']
imgpaths = event['back_imgpaths']
for i, box in enumerate(boxes):
x1, y1, x2, y2, tid, score, cls, fid, bid = box
imgpath = imgpaths[i]
image = cv2.imread(imgpath)
subimg = image[int(y1/2):int(y2/2), int(x1/2):int(x2/2), :]
camerType, timeTamp, _, frameID = os.path.basename(imgpath).split('.')[0].split('_')
subimgName = f"{k}_cam-{camerType}_tid-{int(tid)}_fid-({int(fid)}, {frameID}).png"
spath = os.path.join(savepath, subimgName)
cv2.imwrite(spath, subimg)
k += 1
# basename = os.path.basename(event['filepath'])
print(f"Image saved: {os.path.basename(event['filepath'])}")
def one2one_eval(resultPath):
# stdBarcode = [p.stem for p in Path(stdFeaturePath).iterdir() if p.is_file() and p.suffix=='.pickle']
stdBarcode = [p.stem for p in Path(stdBarcodePath).iterdir() if p.is_file() and p.suffix=='.pickle']
'''购物事件列表,该列表中的 Barcode 存在于标准的 stdBarcode 内'''
evtList = [(p.stem, p.stem.split('_')[-1]) for p in Path(eventFeatPath).iterdir()
if p.is_file()
and p.suffix=='.pickle'
and (len(p.stem.split('_'))==2 or len(p.stem.split('_'))==3)
and p.stem.split('_')[-1].isdigit()
and p.stem.split('_')[-1] in stdBarcode
]
barcodes = set([bcd for _, bcd in evtList])
'''标准特征集图像样本经特征提取并保存,运行一次后无需再运行'''
stdfeat_infer(stdBarcodePath, stdFeaturePath, barcodes)
'''========= 构建用于比对的标准特征字典 ============='''
stdDict = {}
for barcode in barcodes:
stdpath = os.path.join(stdFeaturePath, barcode+'.pickle')
with open(stdpath, 'rb') as f:
stddata = pickle.load(f)
stdDict[barcode] = stddata
'''========= 构建用于比对的操作事件字典 ============='''
evtDict = {}
for event, barcode in evtList:
evtpath = os.path.join(eventFeatPath, event+'.pickle')
with open(evtpath, 'rb') as f:
evtdata = pickle.load(f)
evtDict[event] = evtdata
'''===== 构造 3 个事件对: 扫 A 放 A, 扫 A 放 B, 合并 ===================='''
AA_list = [(event, barcode, "same") for event, barcode in evtList]
AB_list = []
for event, barcode in evtList:
dset = list(barcodes.symmetric_difference(set([barcode])))
idx = random.randint(0, len(dset)-1)
AB_list.append((event, dset[idx], "diff"))
mergePairs = AA_list + AB_list
'''读取事件、标准特征文件中数据,以 AA_list 和 AB_list 中关键字为 key 生成字典'''
rltdata, rltdata_ft16, rltdata_ft16_ = [], [], []
for evt, stdbcd, label in mergePairs:
event = evtDict[evt]
## 判断是否存在轨迹图像文件夹,不存在则创建文件夹并保存轨迹图像
pairpath = os.path.join(subimgPath, f"{evt}")
if not os.path.exists(pairpath):
os.makedirs(pairpath)
save_event_subimg(event, pairpath)
## 判断是否存在 barcode 标准样本集图像文件夹,不存在则创建文件夹并存储 barcode 样本集图像
stdImgpath = stdDict[stdbcd]["imgpaths"]
pstdpath = os.path.join(subimgPath, f"{stdbcd}")
if not os.path.exists(pstdpath):
os.makedirs(pstdpath)
ii = 1
for filepath in stdImgpath:
stdpath = os.path.join(pstdpath, f"{stdbcd}_{ii}.png")
shutil.copy2(filepath, stdpath)
ii += 1
##============================================ float32
stdfeat = stdDict[stdbcd]["feats"]
evtfeat = event["feats_compose"]
matrix = 1 - cdist(stdfeat, evtfeat, 'cosine')
simi_mean = np.mean(matrix)
simi_max = np.max(matrix)
stdfeatm = np.mean(stdfeat, axis=0, keepdims=True)
evtfeatm = np.mean(evtfeat, axis=0, keepdims=True)
simi_mfeat = 1- np.maximum(0.0, cdist(stdfeatm, evtfeatm, 'cosine'))
rltdata.append((label, stdbcd, evt, simi_mean, simi_max, simi_mfeat[0,0]))
##============================================ float16
stdfeat_ft16 = stdfeat.astype(np.float16)
evtfeat_ft16 = evtfeat.astype(np.float16)
stdfeat_ft16 /= np.linalg.norm(stdfeat_ft16, axis=1)[:, None]
evtfeat_ft16 /= np.linalg.norm(evtfeat_ft16, axis=1)[:, None]
matrix_ft16 = 1 - cdist(stdfeat_ft16, evtfeat_ft16, 'cosine')
simi_mean_ft16 = np.mean(matrix_ft16)
simi_max_ft16 = np.max(matrix_ft16)
stdfeatm_ft16 = np.mean(stdfeat_ft16, axis=0, keepdims=True)
evtfeatm_ft16 = np.mean(evtfeat_ft16, axis=0, keepdims=True)
simi_mfeat_ft16 = 1- np.maximum(0.0, cdist(stdfeatm_ft16, evtfeatm_ft16, 'cosine'))
rltdata_ft16.append((label, stdbcd, evt, simi_mean_ft16, simi_max_ft16, simi_mfeat_ft16[0,0]))
'''****************** uint8 is ok!!!!!! ******************'''
##============================================ uint8
# stdfeat_uint8, stdfeat_ft16_ = ft16_to_uint8(stdfeat_ft16)
# evtfeat_uint8, evtfeat_ft16_ = ft16_to_uint8(evtfeat_ft16)
stdfeat_uint8 = (stdfeat_ft16*128).astype(np.int8)
evtfeat_uint8 = (evtfeat_ft16*128).astype(np.int8)
stdfeat_ft16_ = stdfeat_uint8.astype(np.float16)/128
evtfeat_ft16_ = evtfeat_uint8.astype(np.float16)/128
absdiff = np.linalg.norm(stdfeat_ft16_ - stdfeat) / stdfeat.size
matrix_ft16_ = 1 - cdist(stdfeat_ft16_, evtfeat_ft16_, 'cosine')
simi_mean_ft16_ = np.mean(matrix_ft16_)
simi_max_ft16_ = np.max(matrix_ft16_)
stdfeatm_ft16_ = np.mean(stdfeat_ft16_, axis=0, keepdims=True)
evtfeatm_ft16_ = np.mean(evtfeat_ft16_, axis=0, keepdims=True)
simi_mfeat_ft16_ = 1- np.maximum(0.0, cdist(stdfeatm_ft16_, evtfeatm_ft16_, 'cosine'))
rltdata_ft16_.append((label, stdbcd, evt, simi_mean_ft16_, simi_max_ft16_, simi_mfeat_ft16_[0,0]))
tm = datetime.fromtimestamp(time.time()).strftime('%Y%m%d_%H%M%S')
##================================================ save as float32,
rppath = os.path.join(resultPath, f'{tm}.pickle')
with open(rppath, 'wb') as f:
pickle.dump(rltdata, f)
rtpath = os.path.join(resultPath, f'{tm}.txt')
with open(rtpath, 'w', encoding='utf-8') as f:
for result in rltdata:
part = [f"{x:.3f}" if isinstance(x, float) else str(x) for x in result]
line = ', '.join(part)
f.write(line + '\n')
##================================================ save as float16,
rppath_ft16 = os.path.join(resultPath, f'{tm}_ft16.pickle')
with open(rppath_ft16, 'wb') as f:
pickle.dump(rltdata_ft16, f)
rtpath_ft16 = os.path.join(resultPath, f'{tm}_ft16.txt')
with open(rtpath_ft16, 'w', encoding='utf-8') as f:
for result in rltdata_ft16:
part = [f"{x:.3f}" if isinstance(x, float) else str(x) for x in result]
line = ', '.join(part)
f.write(line + '\n')
##================================================ save as uint8,
rppath_uint8 = os.path.join(resultPath, f'{tm}_uint8.pickle')
with open(rppath_uint8, 'wb') as f:
pickle.dump(rltdata_ft16_, f)
rtpath_uint8 = os.path.join(resultPath, f'{tm}_uint8.txt')
with open(rtpath_uint8, 'w', encoding='utf-8') as f:
for result in rltdata_ft16_:
part = [f"{x:.3f}" if isinstance(x, float) else str(x) for x in result]
line = ', '.join(part)
f.write(line + '\n')
print("func: one2one_eval(), have finished!")
def compute_precise_recall(pickpath):
pickfile = os.path.basename(pickpath)
file, ext = os.path.splitext(pickfile)
if ext != '.pickle': return
if file.find('ft16') < 0: return
with open(pickpath, 'rb') as f:
results = pickle.load(f)
Same, Cross = [], []
for label, stdbcd, evt, simi_mean, simi_max, simi_mft in results:
if label == "same":
Same.append(simi_mean)
if label == "diff":
Cross.append(simi_mean)
Same = np.array(Same)
Cross = np.array(Cross)
TPFN = len(Same)
TNFP = len(Cross)
# fig, axs = plt.subplots(2, 1)
# axs[0].hist(Same, bins=60, edgecolor='black')
# axs[0].set_xlim([-0.2, 1])
# axs[0].set_title(f'Same Barcode, Num: {TPFN}')
# axs[1].hist(Cross, bins=60, edgecolor='black')
# axs[1].set_xlim([-0.2, 1])
# axs[1].set_title(f'Cross Barcode, Num: {TNFP}')
# plt.savefig(f'./result/{file}_hist.png') # svg, png, pdf
Recall_Pos, Recall_Neg = [], []
Precision_Pos, Precision_Neg = [], []
Correct = []
Thresh = np.linspace(-0.2, 1, 100)
for th in Thresh:
TP = np.sum(Same > th)
FN = TPFN - TP
TN = np.sum(Cross < th)
FP = TNFP - TN
Recall_Pos.append(TP/TPFN)
Recall_Neg.append(TN/TNFP)
Precision_Pos.append(TP/(TP+FP+1e-6))
Precision_Neg.append(TN/(TN+FN+1e-6))
Correct.append((TN+TP)/(TPFN+TNFP))
fig, ax = plt.subplots()
ax.plot(Thresh, Correct, 'r', label='Correct: (TN+TP)/(TPFN+TNFP)')
ax.plot(Thresh, Recall_Pos, 'b', label='Recall_Pos: TP/TPFN')
ax.plot(Thresh, Recall_Neg, 'g', label='Recall_Neg: TN/TNFP')
ax.plot(Thresh, Precision_Pos, 'c', label='Precision_Pos: TP/(TP+FP)')
ax.plot(Thresh, Precision_Neg, 'm', label='Precision_Neg: TN/(TN+FN)')
ax.set_xlim([0, 1])
ax.set_ylim([0, 1])
ax.grid(True)
ax.set_title('PrecisePos & PreciseNeg')
ax.set_xlabel(f"Same Num: {TPFN}, Cross Num: {TNFP}")
ax.legend()
plt.show()
plt.savefig(f'./result/{file}_pr.png') # svg, png, pdf
def gen_eventdict(eventDatePath, saveimg=True):
eventList = []
# k = 0
for datePath in eventDatePath:
for eventName in os.listdir(datePath):
pickpath = os.path.join(eventFeatPath, f"{eventName}.pickle")
if os.path.isfile(pickpath):
continue
eventPath = os.path.join(datePath, eventName)
eventDict = creat_shopping_event(eventPath)
if eventDict:
eventList.append(eventDict)
with open(pickpath, 'wb') as f:
pickle.dump(eventDict, f)
print(f"Event: {eventName}, have saved!")
# k += 1
# if k==1:
# break
## 保存轨迹中 boxes 子图
if not saveimg:
return
for event in eventList:
basename = os.path.basename(event['filepath'])
savepath = os.path.join(subimgPath, basename)
if not os.path.exists(savepath):
os.makedirs(savepath)
save_event_subimg(event, savepath)
def test_one2one():
eventDatePath = [r'\\192.168.1.28\share\测试_202406\1101\images',
# r'\\192.168.1.28\share\测试_202406\0910\images',
# r'\\192.168.1.28\share\测试_202406\0723\0723_1',
# r'\\192.168.1.28\share\测试_202406\0723\0723_2',
# r'\\192.168.1.28\share\测试_202406\0723\0723_3',
# r'\\192.168.1.28\share\测试_202406\0722\0722_01',
# r'\\192.168.1.28\share\测试_202406\0722\0722_02'
# r'\\192.168.1.28\share\测试_202406\0719\719_3',
# r'\\192.168.1.28\share\测试_202406\0716\0716_1',
# r'\\192.168.1.28\share\测试_202406\0716\0716_2',
# r'\\192.168.1.28\share\测试_202406\0716\0716_3',
# r'\\192.168.1.28\share\测试_202406\0712\0712_1', # 无帧图像
# r'\\192.168.1.28\share\测试_202406\0712\0712_2', # 无帧图像
]
bcdList = []
for evtpath in eventDatePath:
for evtname in os.listdir(evtpath):
evt = evtname.split('_')
if len(evt)>=2 and evt[-1].isdigit() and len(evt[-1])>=10:
bcdList.append(evt[-1])
bcdSet = set(bcdList)
model = model_init(conf)
'''==== 1. 生成标准特征集, 只需运行一次 ==============='''
genfeatures(model, stdSamplePath, stdBarcodePath, stdFeaturePath, bcdSet)
print("stdFeats have generated and saved!")
'''==== 2. 生成事件字典, 只需运行一次 ==============='''
gen_eventdict(eventDatePath)
print("eventList have generated and saved!")
'''==== 3. 1:1性能评估 ==============='''
one2one_eval(resultPath)
for filename in os.listdir(resultPath):
if filename.find('.pickle') < 0: continue
if filename.find('0911') < 0: continue
pickpath = os.path.join(resultPath, filename)
compute_precise_recall(pickpath)
if __name__ == '__main__':
'''
共6个地址
(1) stdSamplePath: 用于生成比对标准特征集的原始图像地址
(2) stdBarcodePath: 比对标准特征集原始图像地址的pickle文件存储{barcode: [imgpath1, imgpath1, ...]}
(3) stdFeaturePath: 比对标准特征集特征存储地址
(4) eventFeatPath: 用于1:1比对的购物事件特征存储地址、对应子图存储地址
(5) subimgPath: 1:1比对购物事件轨迹、标准barcode所对应的 subimgs 存储地址
(6) resultPath: 1:1比对结果存储地址
'''
stdSamplePath = r"\\192.168.1.28\share\已标注数据备份\对比数据\barcode\barcode_500_1979_已清洗"
stdBarcodePath = r"\\192.168.1.28\share\测试_202406\contrast\std_barcodes_2192"
stdFeaturePath = r"\\192.168.1.28\share\测试_202406\contrast\std_features_ft32"
eventFeatPath = r"\\192.168.1.28\share\测试_202406\contrast\events"
subimgPath = r'\\192.168.1.28\share\测试_202406\contrast\subimgs'
resultPath = r"D:\DetectTracking\contrast\result\pickle"
if not os.path.exists(resultPath):
os.makedirs(resultPath)
test_one2one()