146 lines
5.1 KiB
Python
146 lines
5.1 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
|
|
from .CBAM import CBAM
|
|
from .Tool import GeM as gem
|
|
# from model.CBAM import CBAM
|
|
# from model.Tool import GeM as gem
|
|
|
|
|
|
class Bottleneck(nn.Module):
|
|
expansion = 4
|
|
|
|
def __init__(self, inchannel, outchannel, stride=1, dowsample=None):
|
|
# super(Bottleneck, self).__init__()
|
|
super().__init__()
|
|
self.conv1 = nn.Conv2d(in_channels=inchannel, out_channels=outchannel, kernel_size=1, stride=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(outchannel)
|
|
self.conv2 = nn.Conv2d(in_channels=outchannel, out_channels=outchannel, kernel_size=3, bias=False,
|
|
stride=stride, padding=1)
|
|
self.bn2 = nn.BatchNorm2d(outchannel)
|
|
self.conv3 = nn.Conv2d(in_channels=outchannel, out_channels=outchannel * self.expansion, stride=1, bias=False,
|
|
kernel_size=1)
|
|
self.bn3 = nn.BatchNorm2d(outchannel * self.expansion)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.downsample = dowsample
|
|
|
|
def forward(self, x):
|
|
self.identity = x
|
|
# print('>>>>>>>>',type(x))
|
|
if self.downsample is not None:
|
|
# print('>>>>downsample>>>>', type(self.downsample))
|
|
self.identity = self.downsample(x)
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
out = self.relu(out)
|
|
out = self.conv3(out)
|
|
out = self.bn3(out)
|
|
# print('>>>>out>>>identity',out.size(),self.identity.size())
|
|
out = out + self.identity
|
|
out = self.relu(out)
|
|
return out
|
|
|
|
|
|
class resnet(nn.Module):
|
|
def __init__(self, block=Bottleneck, block_num=[3, 4, 6, 3], num_class=1000):
|
|
super().__init__()
|
|
self.in_channel = 64
|
|
self.conv1 = nn.Conv2d(in_channels=3,
|
|
out_channels=self.in_channel,
|
|
stride=2,
|
|
kernel_size=7,
|
|
padding=3,
|
|
bias=False)
|
|
self.bn1 = nn.BatchNorm2d(self.in_channel)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.cbam = CBAM(self.in_channel)
|
|
self.cbam1 = CBAM(2048)
|
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
|
self.layer1 = self._make_layer(block, 64, block_num[0], stride=1)
|
|
self.layer2 = self._make_layer(block, 128, block_num[1], stride=2)
|
|
self.layer3 = self._make_layer(block, 256, block_num[2], stride=2)
|
|
self.layer4 = self._make_layer(block, 512, block_num[3], stride=2)
|
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
|
self.gem = gem()
|
|
self.fc = nn.Linear(512 * block.expansion, num_class)
|
|
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.kaiming_normal(m.weight, mode='fan_out',
|
|
nonlinearity='relu')
|
|
if isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
|
nn.init.constant_(m.weight, 1.0)
|
|
nn.init.constant_(m.bias, 1.0)
|
|
|
|
def _make_layer(self, block, channel, block_num, stride=1):
|
|
downsample = None
|
|
if stride != 1 or self.in_channel != channel * block.expansion:
|
|
downsample = nn.Sequential(
|
|
nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
|
|
nn.BatchNorm2d(channel * block.expansion))
|
|
layer = []
|
|
layer.append(block(self.in_channel, channel, stride, downsample))
|
|
self.in_channel = channel * block.expansion
|
|
for _ in range(1, block_num):
|
|
layer.append(block(self.in_channel, channel))
|
|
return nn.Sequential(*layer)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.relu(x)
|
|
x = self.maxpool(x)
|
|
x = self.cbam(x)
|
|
|
|
x = self.layer1(x)
|
|
x = self.layer2(x)
|
|
x = self.layer3(x)
|
|
x = self.layer4(x)
|
|
|
|
x = self.cbam1(x)
|
|
# x = self.avgpool(x)
|
|
x = self.gem(x)
|
|
x = torch.flatten(x, 1)
|
|
x = self.fc(x)
|
|
return x
|
|
|
|
|
|
class TripletNet(nn.Module):
|
|
def __init__(self, num_class, flag=True):
|
|
super(TripletNet, self).__init__()
|
|
self.initnet = rescbam(num_class)
|
|
self.flag = flag
|
|
|
|
def forward(self, x1, x2=None, x3=None):
|
|
if self.flag:
|
|
output1 = self.initnet(x1)
|
|
output2 = self.initnet(x2)
|
|
output3 = self.initnet(x3)
|
|
return output1, output2, output3
|
|
else:
|
|
output = self.initnet(x1)
|
|
return output
|
|
|
|
|
|
def rescbam(num_class):
|
|
return resnet(block=Bottleneck, block_num=[3, 4, 6, 3], num_class=num_class)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
input1 = torch.randn(4, 3, 640, 640)
|
|
input2 = torch.randn(4, 3, 640, 640)
|
|
input3 = torch.randn(4, 3, 640, 640)
|
|
|
|
# rescbam测试
|
|
# Resnet50 = rescbam(512)
|
|
# output = Resnet50.forward(input1)
|
|
# print(Resnet50)
|
|
|
|
# trnet测试
|
|
trnet = TripletNet(512)
|
|
output = trnet(input1, input2, input3)
|
|
print(output)
|