269 lines
8.0 KiB
Python
269 lines
8.0 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
|
|
from einops import rearrange
|
|
|
|
# import sys
|
|
# sys.path.append(r"D:\DetectTracking")
|
|
from ..config import config as conf
|
|
|
|
|
|
def conv_1x1_bn(inp, oup):
|
|
return nn.Sequential(
|
|
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
|
|
nn.BatchNorm2d(oup),
|
|
nn.SiLU()
|
|
)
|
|
|
|
|
|
def conv_nxn_bn(inp, oup, kernal_size=3, stride=1):
|
|
return nn.Sequential(
|
|
nn.Conv2d(inp, oup, kernal_size, stride, 1, bias=False),
|
|
nn.BatchNorm2d(oup),
|
|
nn.SiLU()
|
|
)
|
|
|
|
|
|
class PreNorm(nn.Module):
|
|
def __init__(self, dim, fn):
|
|
super().__init__()
|
|
self.norm = nn.LayerNorm(dim)
|
|
self.fn = fn
|
|
|
|
def forward(self, x, **kwargs):
|
|
return self.fn(self.norm(x), **kwargs)
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(self, dim, hidden_dim, dropout=0.):
|
|
super().__init__()
|
|
self.net = nn.Sequential(
|
|
nn.Linear(dim, hidden_dim),
|
|
nn.SiLU(),
|
|
nn.Dropout(dropout),
|
|
nn.Linear(hidden_dim, dim),
|
|
nn.Dropout(dropout)
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.net(x)
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, dim, heads=8, dim_head=64, dropout=0.):
|
|
super().__init__()
|
|
inner_dim = dim_head * heads
|
|
project_out = not (heads == 1 and dim_head == dim)
|
|
|
|
self.heads = heads
|
|
self.scale = dim_head ** -0.5
|
|
|
|
self.attend = nn.Softmax(dim=-1)
|
|
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
|
|
|
|
self.to_out = nn.Sequential(
|
|
nn.Linear(inner_dim, dim),
|
|
nn.Dropout(dropout)
|
|
) if project_out else nn.Identity()
|
|
|
|
def forward(self, x):
|
|
qkv = self.to_qkv(x).chunk(3, dim=-1)
|
|
q, k, v = map(lambda t: rearrange(t, 'b p n (h d) -> b p h n d', h=self.heads), qkv)
|
|
|
|
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
|
attn = self.attend(dots)
|
|
out = torch.matmul(attn, v)
|
|
out = rearrange(out, 'b p h n d -> b p n (h d)')
|
|
return self.to_out(out)
|
|
|
|
|
|
class Transformer(nn.Module):
|
|
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.):
|
|
super().__init__()
|
|
self.layers = nn.ModuleList([])
|
|
for _ in range(depth):
|
|
self.layers.append(nn.ModuleList([
|
|
PreNorm(dim, Attention(dim, heads, dim_head, dropout)),
|
|
PreNorm(dim, FeedForward(dim, mlp_dim, dropout))
|
|
]))
|
|
|
|
def forward(self, x):
|
|
for attn, ff in self.layers:
|
|
x = attn(x) + x
|
|
x = ff(x) + x
|
|
return x
|
|
|
|
|
|
class MV2Block(nn.Module):
|
|
def __init__(self, inp, oup, stride=1, expansion=4):
|
|
super().__init__()
|
|
self.stride = stride
|
|
assert stride in [1, 2]
|
|
|
|
hidden_dim = int(inp * expansion)
|
|
self.use_res_connect = self.stride == 1 and inp == oup
|
|
|
|
if expansion == 1:
|
|
self.conv = nn.Sequential(
|
|
# dw
|
|
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
|
|
nn.BatchNorm2d(hidden_dim),
|
|
nn.SiLU(),
|
|
# pw-linear
|
|
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
|
nn.BatchNorm2d(oup),
|
|
)
|
|
else:
|
|
self.conv = nn.Sequential(
|
|
# pw
|
|
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
|
|
nn.BatchNorm2d(hidden_dim),
|
|
nn.SiLU(),
|
|
# dw
|
|
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
|
|
nn.BatchNorm2d(hidden_dim),
|
|
nn.SiLU(),
|
|
# pw-linear
|
|
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
|
nn.BatchNorm2d(oup),
|
|
)
|
|
|
|
def forward(self, x):
|
|
if self.use_res_connect:
|
|
return x + self.conv(x)
|
|
else:
|
|
return self.conv(x)
|
|
|
|
|
|
class MobileViTBlock(nn.Module):
|
|
def __init__(self, dim, depth, channel, kernel_size, patch_size, mlp_dim, dropout=0.):
|
|
super().__init__()
|
|
self.ph, self.pw = patch_size
|
|
|
|
self.conv1 = conv_nxn_bn(channel, channel, kernel_size)
|
|
self.conv2 = conv_1x1_bn(channel, dim)
|
|
|
|
self.transformer = Transformer(dim, depth, 4, 8, mlp_dim, dropout)
|
|
|
|
self.conv3 = conv_1x1_bn(dim, channel)
|
|
self.conv4 = conv_nxn_bn(2 * channel, channel, kernel_size)
|
|
|
|
def forward(self, x):
|
|
y = x.clone()
|
|
|
|
# Local representations
|
|
x = self.conv1(x)
|
|
x = self.conv2(x)
|
|
|
|
# Global representations
|
|
_, _, h, w = x.shape
|
|
x = rearrange(x, 'b d (h ph) (w pw) -> b (ph pw) (h w) d', ph=self.ph, pw=self.pw)
|
|
x = self.transformer(x)
|
|
x = rearrange(x, 'b (ph pw) (h w) d -> b d (h ph) (w pw)', h=h // self.ph, w=w // self.pw, ph=self.ph,
|
|
pw=self.pw)
|
|
|
|
# Fusion
|
|
x = self.conv3(x)
|
|
x = torch.cat((x, y), 1)
|
|
x = self.conv4(x)
|
|
return x
|
|
|
|
|
|
class MobileViT(nn.Module):
|
|
def __init__(self, image_size, dims, channels, num_classes, expansion=4, kernel_size=3, patch_size=(2, 2)):
|
|
super().__init__()
|
|
ih, iw = image_size
|
|
ph, pw = patch_size
|
|
assert ih % ph == 0 and iw % pw == 0
|
|
|
|
L = [2, 4, 3]
|
|
|
|
self.conv1 = conv_nxn_bn(3, channels[0], stride=2)
|
|
|
|
self.mv2 = nn.ModuleList([])
|
|
self.mv2.append(MV2Block(channels[0], channels[1], 1, expansion))
|
|
self.mv2.append(MV2Block(channels[1], channels[2], 2, expansion))
|
|
self.mv2.append(MV2Block(channels[2], channels[3], 1, expansion))
|
|
self.mv2.append(MV2Block(channels[2], channels[3], 1, expansion)) # Repeat
|
|
self.mv2.append(MV2Block(channels[3], channels[4], 2, expansion))
|
|
self.mv2.append(MV2Block(channels[5], channels[6], 2, expansion))
|
|
self.mv2.append(MV2Block(channels[7], channels[8], 2, expansion))
|
|
|
|
self.mvit = nn.ModuleList([])
|
|
self.mvit.append(MobileViTBlock(dims[0], L[0], channels[5], kernel_size, patch_size, int(dims[0] * 2)))
|
|
self.mvit.append(MobileViTBlock(dims[1], L[1], channels[7], kernel_size, patch_size, int(dims[1] * 4)))
|
|
self.mvit.append(MobileViTBlock(dims[2], L[2], channels[9], kernel_size, patch_size, int(dims[2] * 4)))
|
|
|
|
self.conv2 = conv_1x1_bn(channels[-2], channels[-1])
|
|
|
|
self.pool = nn.AvgPool2d(ih // 32, 1)
|
|
self.fc = nn.Linear(channels[-1], num_classes, bias=False)
|
|
|
|
def forward(self, x):
|
|
#print('x',x.shape)
|
|
x = self.conv1(x)
|
|
x = self.mv2[0](x)
|
|
|
|
x = self.mv2[1](x)
|
|
x = self.mv2[2](x)
|
|
x = self.mv2[3](x) # Repeat
|
|
|
|
x = self.mv2[4](x)
|
|
x = self.mvit[0](x)
|
|
|
|
x = self.mv2[5](x)
|
|
x = self.mvit[1](x)
|
|
|
|
x = self.mv2[6](x)
|
|
x = self.mvit[2](x)
|
|
x = self.conv2(x)
|
|
|
|
|
|
#print('pool_before',x.shape)
|
|
x = self.pool(x).view(-1, x.shape[1])
|
|
#print('self_pool',self.pool)
|
|
#print('pool_after',x.shape)
|
|
x = self.fc(x)
|
|
return x
|
|
|
|
|
|
def mobilevit_xxs():
|
|
dims = [64, 80, 96]
|
|
channels = [16, 16, 24, 24, 48, 48, 64, 64, 80, 80, 320]
|
|
return MobileViT((256, 256), dims, channels, num_classes=1000, expansion=2)
|
|
|
|
|
|
def mobilevit_xs():
|
|
dims = [96, 120, 144]
|
|
channels = [16, 32, 48, 48, 64, 64, 80, 80, 96, 96, 384]
|
|
return MobileViT((256, 256), dims, channels, num_classes=1000)
|
|
|
|
|
|
def mobilevit_s():
|
|
dims = [144, 192, 240]
|
|
channels = [16, 32, 64, 64, 96, 96, 128, 128, 160, 160, 640]
|
|
return MobileViT((conf.img_size, conf.img_size), dims, channels, num_classes=conf.embedding_size)
|
|
|
|
|
|
def count_parameters(model):
|
|
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
img = torch.randn(5, 3, 256, 256)
|
|
|
|
vit = mobilevit_xxs()
|
|
out = vit(img)
|
|
print(out.shape)
|
|
print(count_parameters(vit))
|
|
|
|
vit = mobilevit_xs()
|
|
out = vit(img)
|
|
print(out.shape)
|
|
print(count_parameters(vit))
|
|
|
|
vit = mobilevit_s()
|
|
out = vit(img)
|
|
print(out.shape)
|
|
print(count_parameters(vit))
|