Files
detecttracking/contrast/feat_extract/model/fmobilenet.py
王庆刚 8bbee310ba bakeup
2024-11-25 18:05:08 +08:00

125 lines
3.9 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
class Flatten(nn.Module):
def forward(self, x):
return x.view(x.shape[0], -1)
class ConvBn(nn.Module):
def __init__(self, in_c, out_c, kernel=(1, 1), stride=1, padding=0, groups=1):
super().__init__()
self.net = nn.Sequential(
nn.Conv2d(in_c, out_c, kernel, stride, padding, groups=groups, bias=False),
nn.BatchNorm2d(out_c)
)
def forward(self, x):
return self.net(x)
class ConvBnPrelu(nn.Module):
def __init__(self, in_c, out_c, kernel=(1, 1), stride=1, padding=0, groups=1):
super().__init__()
self.net = nn.Sequential(
ConvBn(in_c, out_c, kernel, stride, padding, groups),
nn.PReLU(out_c)
)
def forward(self, x):
return self.net(x)
class DepthWise(nn.Module):
def __init__(self, in_c, out_c, kernel=(3, 3), stride=2, padding=1, groups=1):
super().__init__()
self.net = nn.Sequential(
ConvBnPrelu(in_c, groups, kernel=(1, 1), stride=1, padding=0),
ConvBnPrelu(groups, groups, kernel=kernel, stride=stride, padding=padding, groups=groups),
ConvBn(groups, out_c, kernel=(1, 1), stride=1, padding=0),
)
def forward(self, x):
return self.net(x)
class DepthWiseRes(nn.Module):
"""DepthWise with Residual"""
def __init__(self, in_c, out_c, kernel=(3, 3), stride=2, padding=1, groups=1):
super().__init__()
self.net = DepthWise(in_c, out_c, kernel, stride, padding, groups)
def forward(self, x):
return self.net(x) + x
class MultiDepthWiseRes(nn.Module):
def __init__(self, num_block, channels, kernel=(3, 3), stride=1, padding=1, groups=1):
super().__init__()
self.net = nn.Sequential(*[
DepthWiseRes(channels, channels, kernel, stride, padding, groups)
for _ in range(num_block)
])
def forward(self, x):
return self.net(x)
class FaceMobileNet(nn.Module):
def __init__(self, embedding_size):
super().__init__()
self.conv1 = ConvBnPrelu(1, 64, kernel=(3, 3), stride=2, padding=1)
self.conv2 = ConvBn(64, 64, kernel=(3, 3), stride=1, padding=1, groups=64)
self.conv3 = DepthWise(64, 64, kernel=(3, 3), stride=2, padding=1, groups=128)
self.conv4 = MultiDepthWiseRes(num_block=4, channels=64, kernel=3, stride=1, padding=1, groups=128)
self.conv5 = DepthWise(64, 128, kernel=(3, 3), stride=2, padding=1, groups=256)
self.conv6 = MultiDepthWiseRes(num_block=6, channels=128, kernel=(3, 3), stride=1, padding=1, groups=256)
self.conv7 = DepthWise(128, 128, kernel=(3, 3), stride=2, padding=1, groups=512)
self.conv8 = MultiDepthWiseRes(num_block=2, channels=128, kernel=(3, 3), stride=1, padding=1, groups=256)
self.conv9 = ConvBnPrelu(128, 512, kernel=(1, 1))
self.conv10 = ConvBn(512, 512, groups=512, kernel=(7, 7))
self.flatten = Flatten()
self.linear = nn.Linear(2048, embedding_size, bias=False)
self.bn = nn.BatchNorm1d(embedding_size)
def forward(self, x):
#print('x',x.shape)
out = self.conv1(x)
out = self.conv2(out)
out = self.conv3(out)
out = self.conv4(out)
out = self.conv5(out)
out = self.conv6(out)
out = self.conv7(out)
out = self.conv8(out)
out = self.conv9(out)
out = self.conv10(out)
out = self.flatten(out)
out = self.linear(out)
out = self.bn(out)
return out
if __name__ == "__main__":
from PIL import Image
import numpy as np
x = Image.open("../samples/009.jpg").convert('L')
x = x.resize((128, 128))
x = np.asarray(x, dtype=np.float32)
x = x[None, None, ...]
x = torch.from_numpy(x)
net = FaceMobileNet(512)
net.eval()
with torch.no_grad():
out = net(x)
print(out.shape)