# -*- coding: utf-8 -*- """ Created on Mon Mar 4 18:36:31 2024 @author: ym """ import numpy as np from utils.mergetrack import track_equal_track from scipy.spatial.distance import cdist from .dotracks import doTracks, ShoppingCart from .track_back import backTrack class doBackTracks(doTracks): def __init__(self, bboxes, TracksDict): super().__init__(bboxes, TracksDict) self.tracks = [backTrack(b) for b in self.lboxes] # self.similar_dict = self.similarity() self.shopcart = ShoppingCart(bboxes) # ============================================================================= # def array2list(self): # ''' 0, 1, 2, 3, 4, 5, 6, 7, 8 # bboxes: [x1, y1, x2, y2, track_id, score, cls, frame_index, box_index] # lboxes:[x1, y1, x2, y2, track_id, score, cls, frame_index, box_index] # ''' # # track_ids = set(self.bboxes[:, 4]) # lboxes = [] # for t_id in track_ids: # idx = np.where(self.bboxes[:, 4] == t_id)[0] # box = self.bboxes[idx, :] # # x = (box[:, 0] + box[:, 2]) / 2 # y = (box[:, 1] + box[:, 3]) / 2 # # # box: [x, y, w, h, track_id, score, cls, frame_index] # box[:, 2] = box[:, 2] - box[:, 0] # box[:, 3] = box[:, 3] - box[:, 1] # box[:, 0] = x # box[:, 1] = y # # lboxes.append(box) # # # return lboxes # ============================================================================= def classify(self): ''' 功能:对 tracks 中元素分类 ''' tracks = super().classify() # tracks = self.tracks # shopcart = self.shopcart # # 提取手的frame_id,并和动目标的frame_id 进行关联 # hand_tracks = [t for t in tracks if t.cls==0] # self.Hands.extend(hand_tracks) # tracks = self.sub_tracks(tracks, hand_tracks) # # 提取小孩的track,并计算状态:left, right, incart # kid_tracks = [t for t in tracks if t.cls==9] # kid_states = [self.kid_state(t) for t in kid_tracks] # self.Kids = [x for x in zip(kid_tracks, kid_states)] # tracks = self.sub_tracks(tracks, kid_tracks) # static_tracks = [t for t in tracks if t.frnum>1 and t.is_static()] # self.Static.extend(static_tracks) # '''剔除静止目标后的 tracks''' # tracks = self.sub_tracks(tracks, static_tracks) '''购物框边界外具有运动状态的干扰目标''' out_trcak = [t for t in tracks if t.is_OutTrack()] tracks = self.sub_tracks(tracks, out_trcak) '''轨迹循环归并''' # merged_tracks = self.merge_tracks(tracks) merged_tracks = self.merge_tracks_loop(tracks) tracks = [t for t in merged_tracks if t.frnum > 1] self.Residual = tracks def merge_tracks(self, Residual): """ 对不同id,但可能是同一商品的目标进行归并 """ mergedTracks = self.base_merge_tracks(Residual) oldtracks, newtracks = [], [] for tracklist in mergedTracks: if len(tracklist) > 1: boxes = np.empty((0, 9), dtype=np.float32) for i, track in enumerate(tracklist): if i==0: ntid, ncls=track.boxes[0, 4], track.boxes[0, 6] iboxes = track.boxes.copy() iboxes[:, 4], iboxes[:, 6] = ntid, ncls boxes = np.concatenate((boxes, iboxes), axis=0) oldtracks.append(track) fid_indices = np.argsort(boxes[:, 7]) boxes_fid = boxes[fid_indices] newtracks.append(backTrack(boxes_fid)) elif len(tracklist) == 1: oldtracks.append(tracklist[0]) newtracks.append(tracklist[0]) redu = self.sub_tracks(Residual, oldtracks) merged = self.join_tracks(redu, newtracks) return merged def kid_state(self, track): left_dist = track.cornpoints[:, 2] right_dist = 1024 - track.cornpoints[:, 4] if np.sum(left_dist<30)/track.frnum>0.8 and np.sum(right_dist>512)/track.frnum>0.7: kidstate = "left" elif np.sum(left_dist>512)/track.frnum>0.7 and np.sum(right_dist<30)/track.frnum>0.8: kidstate = "right" else: kidstate = "incart" return kidstate def is_associate_with_hand(self): """ 分析商品和手之间的关联性 """ pass def isuptrack(self, track): Flag = False return Flag def isdowntrack(self, track): Flag = False return Flag def isfreetrack(self, track): Flag = False return Flag