# -*- coding: utf-8 -*- """ Created on Sun Sep 29 08:59:21 2024 @author: ym """ import os import cv2 import pickle import numpy as np from pathlib import Path from track_reid import parse_opt, yolo_resnet_tracker from tracking.dotrack.dotracks_back import doBackTracks from tracking.dotrack.dotracks_front import doFrontTracks from tracking.utils.drawtracks import plot_frameID_y2, draw_all_trajectories from utils.getsource import get_image_pairs, get_video_pairs std_feature_path = r"\\192.168.1.28\share\测试_202406\contrast\std_features_2192_ft32vsft16" def get_interbcd_inputenents(): bcdpath = r"\\192.168.1.28\share\测试_202406\contrast\std_barcodes_2192" eventpath = r"\\192.168.1.28\share\测试_202406\0918" barcodes = [] eventpaths = [] for featname in os.listdir(bcdpath): barcode, ext = os.path.splitext(featname) barcodes.append(barcode) input_enents = [] for root, dirs, files in os.walk(eventpath): input_enent = [os.path.join(root, d) for d in dirs if d.split('_')[-1] in barcodes] input_enents.extend(input_enent) return input_enents def pipeline(eventpath, stdfeat_path=None, SourceType = "image"): ''' inputs: eventpath: 事件文件夹 stdfeat_path: 标准特征文件地址 outputs: ''' SourceType = "image" # image # eventpath = r"\\192.168.1.28\share\测试_202406\0918\images1\20240918-110822-1bc3902e-5a8e-4e23-8eca-fb3f02738551_6938314601726" savepath = r"D:\contrast\detect" opt = parse_opt() optdict = vars(opt) optdict["project"] = savepath eventname = os.path.basename(eventpath) # barcode = eventname.split('_')[-1] if SourceType == "video": vpaths = get_video_pairs(eventpath) elif SourceType == "image": vpaths = get_image_pairs(eventpath) event_tracks = [] for vpath in vpaths: '''事件结果文件夹''' save_dir_event = Path(savepath) / Path(eventname) if isinstance(vpath, list): save_dir_video = save_dir_event / Path("images") else: save_dir_video = save_dir_event / Path(str(Path(vpath).stem)) if not save_dir_video.exists(): save_dir_video.mkdir(parents=True, exist_ok=True) '''Yolo + Resnet + Tracker''' optdict["source"] = vpath optdict["save_dir"] = save_dir_video optdict["is_save_img"] = True optdict["is_save_video"] = True tracksdict = yolo_resnet_tracker(**optdict) bboxes = tracksdict['TrackBoxes'] bname = os.path.basename(vpath[0]) if isinstance(vpath, list) else os.path.basename(vpath) if bname.split('_')[0] == "0" or bname.find('back')>=0: vts = doBackTracks(bboxes, tracksdict) vts.classify() event_tracks.append(("back", vts)) if bname.split('_')[0] == "1" or bname.find('front')>=0: vts = doFrontTracks(bboxes, tracksdict) vts.classify() event_tracks.append(("front", vts)) '''轨迹显示模块''' illus = [None, None] for CamerType, vts in event_tracks: if CamerType == 'front': edgeline = cv2.imread("./tracking/shopcart/cart_tempt/board_ftmp_line.png") img_tracking = draw_all_trajectories(vts, edgeline, save_dir_event, CamerType, draw5p=True) illus[0] = img_tracking plt = plot_frameID_y2(vts) plt.savefig(os.path.join(save_dir_event, "front_y2.png")) if CamerType == 'back': edgeline = cv2.imread("./tracking/shopcart/cart_tempt/edgeline.png") img_tracking = draw_all_trajectories(vts, edgeline, save_dir_event, CamerType, draw5p=True) illus[1] = img_tracking illus = [im for im in illus if im is not None] if len(illus): img_cat = np.concatenate(illus, axis = 1) if len(illus)==2: H, W = img_cat.shape[:2] cv2.line(img_cat, (int(W/2), 0), (int(W/2), int(H)), (128, 128, 255), 3) trajpath = os.path.join(save_dir_event, "traj.png") cv2.imwrite(trajpath, img_cat) '''前后摄轨迹选择''' if stdfeat_path is not None: with open(stdfeat_path, 'rb') as f: featDict = pickle.load(f) def main_loop(): bcdpath = r"\\192.168.1.28\share\测试_202406\contrast\std_barcodes_2192" eventpath = r"\\192.168.1.28\share\测试_202406\0918\images1" SourceType = "image" # video, image barcodes = [] input_enents = [] output_events = [] '''1. 获得barcode标准特征集列表''' for featname in os.listdir(bcdpath): barcode, ext = os.path.splitext(featname) if not barcode.isdigit() or len(barcode)<=8 or ext != ".pickle" : continue barcodes.append(barcode) '''2. 构造(放入事件,标准特征)对''' for filename in os.listdir(eventpath): '''barcode为时间文件夹的最后一个字段''' bcd = filename.split('_')[-1] event_path = os.path.join(eventpath, filename) stdfeat_path = None if bcd in barcodes: stdfeat_path = os.path.join(bcdpath, f"{bcd}.pickle") input_enents.append((event_path, stdfeat_path)) for eventpath, stdfeat_path in input_enents: pipeline(eventpath, stdfeat_path, SourceType) def main(): eventpath = r"D:\datasets\ym\exhibition\175836" SourceType = 'image' stdfeat_path = None pipeline(eventpath, stdfeat_path, SourceType) if __name__ == "__main__": main()