# -*- coding: utf-8 -*- """ Created on Sun Sep 29 08:59:21 2024 @author: ym """ import os # import sys import cv2 import pickle import numpy as np from pathlib import Path from scipy.spatial.distance import cdist from track_reid import yolo_resnet_tracker from tracking.dotrack.dotracks_back import doBackTracks from tracking.dotrack.dotracks_front import doFrontTracks from tracking.utils.drawtracks import plot_frameID_y2, draw_all_trajectories from utils.getsource import get_image_pairs, get_video_pairs from tracking.utils.read_data import read_similar def save_subimgs(imgdict, boxes, spath, ctype, featdict = None): ''' 当前 box 特征和该轨迹前一个 box 特征的相似度,可用于和跟踪序列中的相似度进行比较 ''' boxes = boxes[np.argsort(boxes[:, 7])] for i in range(len(boxes)): simi = None tid, fid, bid = int(boxes[i, 4]), int(boxes[i, 7]), int(boxes[i, 8]) if i>0: _, fid0, bid0 = int(boxes[i-1, 4]), int(boxes[i-1, 7]), int(boxes[i-1, 8]) if f"{fid0}_{bid0}" in featdict.keys() and f"{fid}_{bid}" in featdict.keys(): feat0 = featdict[f"{fid0}_{bid0}"] feat1 = featdict[f"{fid}_{bid}"] simi = 1 - np.maximum(0.0, cdist(feat0[None, :], feat1[None, :], "cosine"))[0][0] img = imgdict[f"{fid}_{bid}"] imgpath = spath / f"{ctype}_tid{tid}-{fid}-{bid}.png" if simi is not None: imgpath = spath / f"{ctype}_tid{tid}-{fid}-{bid}_sim{simi:.2f}.png" cv2.imwrite(imgpath, img) def save_subimgs_1(imgdict, boxes, spath, ctype, simidict = None): ''' 当前 box 特征和该轨迹 smooth_feat 特征的相似度, yolo_resnet_tracker 函数中, 采用该方式记录特征相似度 ''' for i in range(len(boxes)): tid, fid, bid = int(boxes[i, 4]), int(boxes[i, 7]), int(boxes[i, 8]) key = f"{fid}_{bid}" img = imgdict[key] imgpath = spath / f"{ctype}_tid{tid}-{fid}-{bid}.png" if simidict is not None and key in simidict.keys(): imgpath = spath / f"{ctype}_tid{tid}-{fid}-{bid}_sim{simidict[key]:.2f}.png" cv2.imwrite(imgpath, img) def pipeline( eventpath, savepath, SourceType, weights ): ''' eventpath: 单个事件的存储路径 ''' if SourceType == "video": vpaths = get_video_pairs(eventpath) elif SourceType == "image": vpaths = get_image_pairs(eventpath) optdict = {} optdict["weights"] = weights event_tracks = [] ## 构造购物事件字典 evtname = Path(eventpath).stem barcode = evtname.split('_')[-1] if len(evtname.split('_'))>=2 \ and len(evtname.split('_')[-1])>=8 \ and evtname.split('_')[-1].isdigit() else '' '''事件结果存储文件夹''' if not savepath: savepath = Path(__file__).resolve().parents[0] / "events_result" savepath_pipeline = Path(savepath) / Path("Yolos_Tracking") / evtname """ShoppingDict pickle 文件保存地址 """ savepath_spdict = Path(savepath) / "ShoppingDict_pkfile" if not savepath_spdict.exists(): savepath_spdict.mkdir(parents=True, exist_ok=True) pf_path = Path(savepath_spdict) / Path(str(evtname)+".pickle") # if pf_path.exists(): # return '''====================== 构造 ShoppingDict 模块 =======================''' ShoppingDict = {"eventPath": eventpath, "eventName": evtname, "barcode": barcode, "eventType": '', # "input", "output", "other" "frontCamera": {}, "backCamera": {}, "one2n": [] # } procpath = Path(eventpath).joinpath('process.data') if procpath.is_file(): SimiDict = read_similar(procpath) ShoppingDict["one2n"] = SimiDict['one2n'] for vpath in vpaths: '''================= 1. 构造相机事件字典 =================''' CameraEvent = {"cameraType": '', # "front", "back" "videoPath": '', "imagePaths": [], "yoloResnetTracker": [], "tracking": [], } if isinstance(vpath, list): CameraEvent["imagePaths"] = vpath bname = os.path.basename(vpath[0]) if not isinstance(vpath, list): CameraEvent["videoPath"] = vpath bname = os.path.basename(vpath).split('.')[0] if bname.split('_')[0] == "0" or bname.find('back')>=0: CameraEvent["cameraType"] = "back" if bname.split('_')[0] == "1" or bname.find('front')>=0: CameraEvent["cameraType"] = "front" '''================= 2. 事件结果存储文件夹 =================''' if isinstance(vpath, list): savepath_pipeline_imgs = savepath_pipeline / Path("images") else: savepath_pipeline_imgs = savepath_pipeline / Path(str(Path(vpath).stem)) if not savepath_pipeline_imgs.exists(): savepath_pipeline_imgs.mkdir(parents=True, exist_ok=True) savepath_pipeline_subimgs = savepath_pipeline / Path("subimgs") if not savepath_pipeline_subimgs.exists(): savepath_pipeline_subimgs.mkdir(parents=True, exist_ok=True) '''================= 3. Yolo + Resnet + Tracker =================''' optdict["source"] = vpath optdict["save_dir"] = savepath_pipeline_imgs yrtOut = yolo_resnet_tracker(**optdict) CameraEvent["yoloResnetTracker"] = yrtOut '''================= 4. tracking =================''' '''(1) 生成用于 tracking 模块的 boxes、feats''' bboxes = np.empty((0, 6), dtype=np.float64) trackerboxes = np.empty((0, 9), dtype=np.float64) trackefeats = {} for frameDict in yrtOut: tboxes = frameDict["tboxes"] ffeats = frameDict["feats"] boxes = frameDict["bboxes"] bboxes = np.concatenate((bboxes, np.array(boxes)), axis=0) trackerboxes = np.concatenate((trackerboxes, np.array(tboxes)), axis=0) for i in range(len(tboxes)): fid, bid = int(tboxes[i, 7]), int(tboxes[i, 8]) trackefeats.update({f"{fid}_{bid}": ffeats[f"{fid}_{bid}"]}) '''(2) tracking, 后摄''' if CameraEvent["cameraType"] == "back": vts = doBackTracks(trackerboxes, trackefeats) vts.classify() event_tracks.append(("back", vts)) CameraEvent["tracking"] = vts ShoppingDict["backCamera"] = CameraEvent '''(2) tracking, 前摄''' if CameraEvent["cameraType"] == "front": vts = doFrontTracks(trackerboxes, trackefeats) vts.classify() event_tracks.append(("front", vts)) CameraEvent["tracking"] = vts ShoppingDict["frontCamera"] = CameraEvent '''========================== 保存模块 =================================''' '''(1) 保存 ShoppingDict 事件''' with open(str(pf_path), 'wb') as f: pickle.dump(ShoppingDict, f) '''(2) 保存 Tracking 输出的运动轨迹子图,并记录相似度''' for CamerType, vts in event_tracks: if len(vts.tracks)==0: continue if CamerType == 'front': yolos = ShoppingDict["frontCamera"]["yoloResnetTracker"] ctype = 1 if CamerType == 'back': yolos = ShoppingDict["backCamera"]["yoloResnetTracker"] ctype = 0 imgdict, featdict, simidict = {}, {}, {} for y in yolos: imgdict.update(y["imgs"]) featdict.update(y["feats"]) simidict.update(y["featsimi"]) for track in vts.Residual: if isinstance(track, np.ndarray): save_subimgs(imgdict, track, savepath_pipeline_subimgs, ctype, featdict) else: save_subimgs(imgdict, track.slt_boxes, savepath_pipeline_subimgs, ctype, featdict) '''(3) 轨迹显示与保存''' illus = [None, None] for CamerType, vts in event_tracks: if len(vts.tracks)==0: continue if CamerType == 'front': edgeline = cv2.imread("./tracking/shopcart/cart_tempt/board_ftmp_line.png") h, w = edgeline.shape[:2] # nh, nw = h//2, w//2 # edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA) img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipeline, CamerType, draw5p=True) illus[0] = img_tracking plt = plot_frameID_y2(vts) plt.savefig(os.path.join(savepath_pipeline, "front_y2.png")) if CamerType == 'back': edgeline = cv2.imread("./tracking/shopcart/cart_tempt/edgeline.png") h, w = edgeline.shape[:2] # nh, nw = h//2, w//2 # edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA) img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipeline, CamerType, draw5p=True) illus[1] = img_tracking illus = [im for im in illus if im is not None] if len(illus): img_cat = np.concatenate(illus, axis = 1) if len(illus)==2: H, W = img_cat.shape[:2] cv2.line(img_cat, (int(W/2), 0), (int(W/2), int(H)), (128, 128, 255), 3) trajpath = os.path.join(savepath_pipeline, "trajectory.png") cv2.imwrite(trajpath, img_cat) def main(): ''' 函数:pipeline(),遍历事件文件夹,选择类型 image 或 video, ''' parmDict = {} evtdir = r"\\192.168.1.28\share\测试视频数据以及日志\全实时测试\V12\2025-3-3" parmDict["SourceType"] = "video" # video, image parmDict["savepath"] = r"D:\全实时\202502\result" parmDict["weights"] = r'D:\DetectTracking\ckpts\best_cls10_0906.pt' evtdir = Path(evtdir) k, errEvents = 0, [] for item in evtdir.iterdir(): if item.is_dir(): item = evtdir/Path("20250303-103058-074_6914973604223_6914973604223") parmDict["eventpath"] = item # pipeline(**parmDict) try: pipeline(**parmDict) except Exception as e: errEvents.append(str(item)) k+=1 if k==1: break errfile = os.path.join(parmDict["savepath"], f'error_events.txt') with open(errfile, 'w', encoding='utf-8') as f: for line in errEvents: f.write(line + '\n') if __name__ == "__main__": main()