# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license """ Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc. Usage - sources: $ python detect.py --weights yolov5s.pt --source 0 # webcam img.jpg # image vid.mp4 # video screen # screenshot path/ # directory list.txt # list of images list.streams # list of streams 'path/*.jpg' # glob 'https://youtu.be/Zgi9g1ksQHc' # YouTube 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream Usage - formats: $ python detect.py --weights yolov5s.pt # PyTorch yolov5s.torchscript # TorchScript yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn yolov5s_openvino_model # OpenVINO yolov5s.engine # TensorRT yolov5s.mlmodel # CoreML (macOS-only) yolov5s_saved_model # TensorFlow SavedModel yolov5s.pb # TensorFlow GraphDef yolov5s.tflite # TensorFlow Lite yolov5s_edgetpu.tflite # TensorFlow Edge TPU yolov5s_paddle_model # PaddlePaddle """ import argparse import csv import os import platform import sys from pathlib import Path import glob import numpy as np import pickle import torch FILE = Path(__file__).resolve() ROOT = FILE.parents[0] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative from models.common import DetectMultiBackend from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2, increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh) from utils.torch_utils import select_device, smart_inference_mode '''集成跟踪模块,输出跟踪结果文件 .npy''' # from ultralytics.engine.results import Boxes # Results # from ultralytics.utils import IterableSimpleNamespace, yaml_load from tracking.utils.plotting import Annotator, colors from tracking.utils import Boxes, IterableSimpleNamespace, yaml_load, boxes_add_fid from tracking.trackers import BOTSORT, BYTETracker from tracking.utils.showtrack import drawtracks def init_trackers(tracker_yaml = None, bs=1): """ Initialize trackers for object tracking during prediction. """ # 需要将配置文件中的cmc_method改为gmc_method # tracker_yaml = r"D:\DeepLearning\ultralytics\ultralytics\tracker\cfg\botsort.yaml" tracker_yaml = r"./tracking/trackers/cfg/botsort.yaml" TRACKER_MAP = {'bytetrack': BYTETracker, 'botsort': BOTSORT} cfg = IterableSimpleNamespace(**yaml_load(tracker_yaml)) trackers = [] for _ in range(bs): tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30) trackers.append(tracker) return trackers @smart_inference_mode() def run( weights=ROOT / 'yolov5s.pt', # model path or triton URL source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam) data=ROOT / 'data/coco128.yaml', # dataset.yaml path imgsz=(640, 640), # inference size (height, width) conf_thres=0.25, # confidence threshold iou_thres=0.45, # NMS IOU threshold max_det=1000, # maximum detections per image device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu view_img=False, # show results save_txt=False, # save results to *.txt save_csv=False, # save results in CSV format save_conf=False, # save confidences in --save-txt labels save_crop=False, # save cropped prediction boxes nosave=False, # do not save images/videos classes=None, # filter by class: --class 0, or --class 0 2 3 agnostic_nms=False, # class-agnostic NMS augment=False, # augmented inference visualize=False, # visualize features update=False, # update all models project=ROOT / 'runs/detect', # save results to project/name name='exp', # save results to project/name exist_ok=False, # existing project/name ok, do not increment line_thickness=3, # bounding box thickness (pixels) hide_labels=False, # hide labels hide_conf=False, # hide confidencesL half=False, # use FP16 half-precision inference dnn=False, # use OpenCV DNN for ONNX inference vid_stride=1, # video frame-rate stride ): source = str(source) save_img = not nosave and not source.endswith('.txt') # save inference images is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://')) webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file) screenshot = source.lower().startswith('screen') if is_url and is_file: source = check_file(source) # download save_dir = Path(project) / Path(source).stem if save_dir.exists(): print(Path(source).stem) # return save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir else: save_dir.mkdir(parents=True, exist_ok=True) # Load model device = select_device(device) model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) stride, names, pt = model.stride, model.names, model.pt imgsz = check_img_size(imgsz, s=stride) # check image size # Dataloader bs = 1 # batch_size dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) vid_path, vid_writer = [None] * bs, [None] * bs # Run inference model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup seen, windows, dt = 0, [], (Profile(), Profile(), Profile()) ## ================================================================================== writed by WQG tracker = init_trackers(bs)[0] vid_path_track, vid_writer_track = [None] * bs, [None] * bs tboxes = [] vboxes = [] f_i = 1 for path, im, im0s, vid_cap, s in dataset: if f_i == 1: f_i == 0 imgshow = im0s.copy() ## ============================= tracking 功能只处理视频,writed by WQG if dataset.mode == 'image': continue with dt[0]: im = torch.from_numpy(im).to(model.device) im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 im /= 255 # 0 - 255 to 0.0 - 1.0 if len(im.shape) == 3: im = im[None] # expand for batch dim # Inference with dt[1]: visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False pred = model(im, augment=augment, visualize=visualize) # NMS with dt[2]: pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) # Second-stage classifier (optional) # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s) # Define the path for the CSV file csv_path = save_dir / 'predictions.csv' # Create or append to the CSV file def write_to_csv(image_name, prediction, confidence): data = {'Image Name': image_name, 'Prediction': prediction, 'Confidence': confidence} with open(csv_path, mode='a', newline='') as f: writer = csv.DictWriter(f, fieldnames=data.keys()) if not csv_path.is_file(): writer.writeheader() writer.writerow(data) # Process predictions for i, det in enumerate(pred): # per image seen += 1 if webcam: # batch_size >= 1 p, im0, frame = path[i], im0s[i].copy(), dataset.count s += f'{i}: ' else: p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0) p = Path(p) # to Path save_path = str(save_dir / p.name) # im.jpg s += '%gx%g ' % im.shape[2:] # print string annotator = Annotator(im0, line_width=line_thickness, example=str(names)) if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() vboxes.append((det.cpu().numpy(), im0, frame)) ## ================================================================ writed by WQG det_tracking = Boxes(det, im0.shape).cpu().numpy() tracks = tracker.update(det_tracking, im0) if len(tracks) > 0: det = torch.as_tensor(tracks[:, :-2]) tboxes.append((det, frame)) else: idmark = -1 * np.ones([det.shape[0], 1]) det = np.concatenate([det[:,:4], idmark, det[:, 4:]], axis=1) for *xyxy, id, conf, cls in reversed(det): name = ('' if id==-1 else f'id:{int(id)} ') + names[int(cls)] label = None if hide_labels else (name if hide_conf else f'{name} {conf:.2f}') if id >=0 and cls==0: color = colors(int(cls), True) elif id >=0 and cls!=0: color = colors(int(id), True) else: color = colors(19, True) # 19为调色板的最后一个元素 annotator.box_label(xyxy, label, color=color) # Save results (image and video with tracking) im0 = annotator.result() if save_img: save_path_img, ext = os.path.splitext(save_path) imgpath = save_path_img + f"_{dataset.frame}.png" cv2.imwrite(Path(imgpath), im0) if vid_path[i] != save_path: # new video vid_path[i] = save_path if isinstance(vid_writer[i], cv2.VideoWriter): vid_writer[i].release() # release previous video writer if vid_cap: # video fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) else: # stream fps, w, h = 30, im0.shape[1], im0.shape[0] save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) vid_writer[i].write(im0) # Print time (inference-only) LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms") ## ======================================================================== written by WQG ## tboxes: list, [(det, frame_index)] ## bboxes: Array, [x, y, w, h, track_id, score, cls, frame_index] filename = os.path.split(save_path_img)[-1] file, ext = os.path.splitext(filename) bboxes = boxes_add_fid(tboxes) imgshow = drawtracks(bboxes, file=filename) showpath_1 = save_path_img + "_show.png" cv2.imwrite(Path(showpath_1), imgshow) ##================================================== save .npy with open(f'./tracking/vboxes/{file}.pkl', 'wb') as file: pickle.dump(vboxes, file) boxes_dir = Path('./runs/boxes/') if not boxes_dir.exists(): boxes_dir.mkdir(parents=True, exist_ok=True) bboxes_path = boxes_dir.joinpath(filename + ".npy") np.save(bboxes_path, bboxes) # Print results t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t) if save_txt or save_img: s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") if update: strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning) def parse_opt(): modelpath = ROOT / 'ckpts/best_158734_cls11_noaug10.pt' # 'ckpts/best_15000_0908.pt', 'ckpts/yolov5s.pt', 'ckpts/best_20000_cls30.pt' # datapath = r"D:/datasets/ym/videos/标记视频/" # ROOT/'data/videos', ROOT/'data/images' images datapath = r"D:\datasets\ym\highvalue\videos" # datapath = r"D:/dcheng/videos/" # modelpath = ROOT / 'ckpts/yolov5s.pt' parser = argparse.ArgumentParser() parser.add_argument('--weights', nargs='+', type=str, default=modelpath, help='model path or triton URL') # 'yolov5s.pt', best_15000_0908.pt parser.add_argument('--source', type=str, default=datapath, help='file/dir/URL/glob/screen/0(webcam)') # images, videos parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path') parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w') parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold') parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--view-img', action='store_true', help='show results') parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser.add_argument('--save-csv', action='store_true', help='save results in CSV format') parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes') parser.add_argument('--nosave', action='store_true', help='do not save images/videos') parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3') parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') parser.add_argument('--augment', action='store_true', help='augmented inference') parser.add_argument('--visualize', action='store_true', help='visualize features') parser.add_argument('--update', action='store_true', help='update all models') parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name') parser.add_argument('--name', default='exp', help='save results to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)') parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels') parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences') parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride') opt = parser.parse_args() opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand print_args(vars(opt)) return opt def main_loop_folders(opt): path1 = r"D:\datasets\ym\videos\标记视频" path2 = r"D:\datasets\ym\永辉双摄视频\退购_前摄\videos" path3 = r"D:\datasets\ym\永辉双摄视频\退购_后摄\videos" path4 = r"D:\datasets\ym\永辉双摄视频\加购_前摄\videos" path5 = r"D:\datasets\ym\永辉双摄视频\加购_后摄\videos" paths = [path1] # [path1, path2, path3, path4, path5] check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop')) optdict = vars(opt) k = 0 for p in paths: files = [] if os.path.isdir(p): files.extend(sorted(glob.glob(os.path.join(p, '*.*')))) for file in files: # file = r"D:\datasets\ym\videos\标记视频\加购_100.mp4" optdict["source"] = file run(**optdict) # k += 1 # if k == 100: # break elif os.path.isfile(p): run(**optdict) def main(opt): check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop')) # files.extend(sorted(glob.glob(os.path.join(p, '*.*')))) optdict = vars(opt) p = optdict["source"] files = [] k = 0 if os.path.isdir(p): files.extend(sorted(glob.glob(os.path.join(p, '*.*')))) for file in files: optdict["source"] = file run(**optdict) k += 1 if k == 100: break elif os.path.isfile(p): run(**vars(opt)) if __name__ == '__main__': opt = parse_opt() main_loop_folders(opt)