# -*- coding: utf-8 -*- """ Created on Fri May 31 14:50:21 2024 @author: ym """ import cv2 import numpy as np import torch from scipy.spatial.distance import cdist from tracking.trackers.reid.config import config as ReIDConfig from tracking.trackers.reid.reid_interface import ReIDInterface ReIDEncoder = ReIDInterface(ReIDConfig) def read_data_file(datapath): with open(datapath, 'r') as file: lines = file.readlines() Videos = [] FrameBoxes, FrameFeats = [], [] boxes, feats = [], [] bboxes, ffeats = [], [] timestamp = [] t1 = None for line in lines: if line.find('CameraId') >= 0: t = int(line.split(',')[1].split(':')[1]) timestamp.append(t) if len(boxes) and len(feats): FrameBoxes.append(np.array(boxes, dtype = np.float32)) FrameFeats.append(np.array(feats, dtype = np.float32)) boxes, feats = [], [] if t1 and t - t1 > 1e4: Videos.append((FrameBoxes, FrameFeats)) FrameBoxes, FrameFeats = [], [] t1 = int(line.split(',')[1].split(':')[1]) if line.find('box') >= 0: box = line.split(':', )[1].split(',')[:-1] boxes.append(box) bboxes.append(boxes) if line.find('feat') >= 0: feat = line.split(':', )[1].split(',')[:-1] feats.append(feat) ffeats.append(feat) FrameBoxes.append(np.array(boxes, dtype = np.float32)) FrameFeats.append(np.array(feats, dtype = np.float32)) Videos.append((FrameBoxes, FrameFeats)) TimeStamp = np.array(timestamp, dtype = np.float32) DimesDiff = np.diff((timestamp)) return Videos def inference_image(image, detections): H, W, _ = np.shape(image) imgs = [] batch_patches = [] patches = [] for d in range(np.size(detections, 0)): tlbr = detections[d, :4].astype(np.int_) tlbr[0] = max(0, tlbr[0]) tlbr[1] = max(0, tlbr[1]) tlbr[2] = min(W - 1, tlbr[2]) tlbr[3] = min(H - 1, tlbr[3]) img1 = image[tlbr[1]:tlbr[3], tlbr[0]:tlbr[2], :] img = img1[:, :, ::-1].copy() # the model expects RGB inputs patch = ReIDEncoder.transform(img) imgs.append(img1) # patch = patch.to(device=self.device).half() if str(ReIDEncoder.device) != "cpu": patch = patch.to(device=ReIDEncoder.device).half() else: patch = patch.to(device=ReIDEncoder.device) patches.append(patch) if (d + 1) % ReIDEncoder.batch_size == 0: patches = torch.stack(patches, dim=0) batch_patches.append(patches) patches = [] if len(patches): patches = torch.stack(patches, dim=0) batch_patches.append(patches) features = np.zeros((0, ReIDEncoder.embedding_size)) for patches in batch_patches: pred = ReIDEncoder.model(patches) pred[torch.isinf(pred)] = 1.0 feat = pred.cpu().data.numpy() features = np.vstack((features, feat)) return imgs, features def test_dog(): datapath = r"D:\datasets\ym\Img_ResnetData\dog_224x224\dog_224x224.txt" with open(datapath, 'r') as file: lines = file.readlines() dlist = lines[0].split(',') dfloat = [float(d) for d in dlist] afeat = np.array(dfloat).reshape(1, -1) imgpath = r"D:\datasets\ym\Img_ResnetData\dog_224x224\dog_224x224.jpg" image = cv2.imread(imgpath) patches = [] img = image[:, :, ::-1].copy() # the model expects RGB inputs patch = ReIDEncoder.transform(img) patch = patch.to(device=ReIDEncoder.device) patches.append(patch) patches = torch.stack(patches, dim=0) pred = ReIDEncoder.model(patches) pred[torch.isinf(pred)] = 1.0 bfeat = pred.cpu().data.numpy() aafeat = afeat / np.linalg.norm(afeat, ord=2, axis=1, keepdims=True) bbfeat = bfeat / np.linalg.norm(bfeat, ord=2, axis=1, keepdims=True) cost_matrix = 1 - np.maximum(0.0, cdist(aafeat, bbfeat, 'cosine')) print("Done!!!") def main(): imgpath = r"D:\datasets\ym\Img_ResnetData\20240531-103547_0354b1cb-53fa-48de-86cd-ac3c5b127ada_6921168593576\3568800050000_0.jpeg" datapath = r"D:\datasets\ym\Img_ResnetData\0_tracker_inout.data" savepath = r"D:\datasets\ym\Img_ResnetData\result" image = cv2.imread(imgpath) Videos = read_data_file(datapath) bboxes, afeats = Videos[0][0][0], Videos[0][1][0] imgs, bfeats = inference_image(image, bboxes) aafeats = afeats / np.linalg.norm(afeats, ord=2, axis=1, keepdims=True) bbfeats = bfeats / np.linalg.norm(bfeats, ord=2, axis=1, keepdims=True) cost_matrix = 1 - np.maximum(0.0, cdist(aafeats, bbfeats, 'cosine')) for i, img in enumerate(imgs): cv2.imwrite(savepath + f"\{i}.png", img) print("Done!!!!") if __name__ == '__main__': main() # test_dog()