update one2one contrast module
This commit is contained in:
Binary file not shown.
@ -51,23 +51,22 @@ IMG_FORMAT = ['.bmp', '.jpg', '.jpeg', '.png']
|
|||||||
|
|
||||||
model = load_contrast_model()
|
model = load_contrast_model()
|
||||||
|
|
||||||
def creat_shopping_event(basepath):
|
def creat_shopping_event(basePath, savePath, subimgPath=False):
|
||||||
eventList = []
|
eventList = []
|
||||||
|
|
||||||
'''一、构造放入商品事件列表'''
|
'''一、构造放入商品事件列表'''
|
||||||
k = 0
|
k = 0
|
||||||
for filename in os.listdir(basepath):
|
for filename in os.listdir(basePath):
|
||||||
# filename = "20240723-155413_6904406215720"
|
# filename = "20240723-155413_6904406215720"
|
||||||
|
|
||||||
'''filename下为一次购物事件'''
|
'''filename下为一次购物事件'''
|
||||||
filepath = os.path.join(basepath, filename)
|
filepath = os.path.join(basePath, filename)
|
||||||
|
|
||||||
'''================ 0. 检查 filename 及 filepath 正确性和有效性 ================'''
|
'''================ 0. 检查 filename 及 filepath 正确性和有效性 ================'''
|
||||||
nmlist = filename.split('_')
|
nmlist = filename.split('_')
|
||||||
if filename.find('2024')<0 or len(nmlist)!=2 or len(nmlist[0])!=15 or len(nmlist[1])<11:
|
if filename.find('2024')<0 or len(nmlist)!=2 or len(nmlist[0])!=15 or len(nmlist[1])<11:
|
||||||
continue
|
continue
|
||||||
if not os.path.isdir(filepath): continue
|
if not os.path.isdir(filepath): continue
|
||||||
print(f"Event name: {filename}")
|
|
||||||
|
|
||||||
'''================ 1. 构造事件描述字典,暂定 9 items ==============='''
|
'''================ 1. 构造事件描述字典,暂定 9 items ==============='''
|
||||||
event = {}
|
event = {}
|
||||||
@ -80,22 +79,22 @@ def creat_shopping_event(basepath):
|
|||||||
event['front_boxes'] = np.empty((0, 9), dtype=np.float64)
|
event['front_boxes'] = np.empty((0, 9), dtype=np.float64)
|
||||||
event['back_feats'] = np.empty((0, 256), dtype=np.float64)
|
event['back_feats'] = np.empty((0, 256), dtype=np.float64)
|
||||||
event['front_feats'] = np.empty((0, 256), dtype=np.float64)
|
event['front_feats'] = np.empty((0, 256), dtype=np.float64)
|
||||||
# event['feats_compose'] = np.empty((0, 256), dtype=np.float64)
|
event['feats_compose'] = np.empty((0, 256), dtype=np.float64)
|
||||||
# event['feats_select'] = np.empty((0, 256), dtype=np.float64)
|
# event['feats_select'] = np.empty((0, 256), dtype=np.float64)
|
||||||
|
|
||||||
|
|
||||||
'''================= 1. 读取 data 文件 ============================='''
|
'''================= 2. 读取 data 文件 ============================='''
|
||||||
for dataname in os.listdir(filepath):
|
for dataname in os.listdir(filepath):
|
||||||
# filename = '1_track.data'
|
# filename = '1_track.data'
|
||||||
datapath = os.path.join(filepath, dataname)
|
datapath = os.path.join(filepath, dataname)
|
||||||
if not os.path.isfile(datapath): continue
|
if not os.path.isfile(datapath): continue
|
||||||
|
|
||||||
CamerType = dataname.split('_')[0]
|
CamerType = dataname.split('_')[0]
|
||||||
''' 3.1 读取 0/1_track.data 中数据,暂不考虑'''
|
''' 2.1 读取 0/1_track.data 中数据,暂不考虑'''
|
||||||
# if dataname.find("_track.data")>0:
|
# if dataname.find("_track.data")>0:
|
||||||
# bboxes, ffeats, trackerboxes, tracker_feat_dict, trackingboxes, tracking_feat_dict = extract_data(datapath)
|
# bboxes, ffeats, trackerboxes, tracker_feat_dict, trackingboxes, tracking_feat_dict = extract_data(datapath)
|
||||||
|
|
||||||
''' 3.2 读取 0/1_tracking_output.data 中数据'''
|
''' 2.2 读取 0/1_tracking_output.data 中数据'''
|
||||||
if dataname.find("_tracking_output.data")>0:
|
if dataname.find("_tracking_output.data")>0:
|
||||||
tracking_output_boxes, tracking_output_feats = read_tracking_output(datapath)
|
tracking_output_boxes, tracking_output_feats = read_tracking_output(datapath)
|
||||||
if len(tracking_output_boxes) != len(tracking_output_feats): continue
|
if len(tracking_output_boxes) != len(tracking_output_feats): continue
|
||||||
@ -106,22 +105,30 @@ def creat_shopping_event(basepath):
|
|||||||
event['front_boxes'] = tracking_output_boxes
|
event['front_boxes'] = tracking_output_boxes
|
||||||
event['front_feats'] = tracking_output_feats
|
event['front_feats'] = tracking_output_feats
|
||||||
|
|
||||||
# '''1.1 事件的特征表征方式选择'''
|
'''2.3 事件的特征表征方式: 特征选择、特征集成'''
|
||||||
# bk_feats = event['back_feats']
|
bk_feats = event['back_feats']
|
||||||
# ft_feats = event['front_feats']
|
ft_feats = event['front_feats']
|
||||||
|
|
||||||
# feats_compose = np.empty((0, 256), dtype=np.float64)
|
|
||||||
# if len(ft_feats):
|
|
||||||
# feats_compose = np.concatenate((feats_compose, ft_feats), axis=0)
|
|
||||||
# if len(bk_feats):
|
|
||||||
# feats_compose = np.concatenate((feats_compose, bk_feats), axis=0)
|
|
||||||
# event['feats_compose'] = feats_compose
|
|
||||||
|
|
||||||
# '''3. 构造前摄特征'''
|
|
||||||
# if len(ft_feats):
|
|
||||||
# event['feats_select'] = ft_feats
|
|
||||||
|
|
||||||
|
'''2.3.1 特征集成'''
|
||||||
|
feats_compose = np.empty((0, 256), dtype=np.float64)
|
||||||
|
if len(ft_feats):
|
||||||
|
feats_compose = np.concatenate((feats_compose, ft_feats), axis=0)
|
||||||
|
if len(bk_feats):
|
||||||
|
feats_compose = np.concatenate((feats_compose, bk_feats), axis=0)
|
||||||
|
event['feats_compose'] = feats_compose
|
||||||
|
|
||||||
|
'''2.3.1 特征选择'''
|
||||||
|
if len(ft_feats):
|
||||||
|
event['feats_select'] = ft_feats
|
||||||
|
|
||||||
|
pickpath = os.path.join(savePath, f"{filename}.pickle")
|
||||||
|
with open(pickpath, 'wb') as f:
|
||||||
|
pickle.dump(event, f)
|
||||||
|
print(f"Event: {filename}")
|
||||||
|
|
||||||
|
if subimgPath==False:
|
||||||
|
eventList.append(event)
|
||||||
|
continue
|
||||||
|
|
||||||
'''================ 2. 读取图像文件地址,并按照帧ID排序 ============='''
|
'''================ 2. 读取图像文件地址,并按照帧ID排序 ============='''
|
||||||
frontImgs, frontFid = [], []
|
frontImgs, frontFid = [], []
|
||||||
@ -159,7 +166,6 @@ def creat_shopping_event(basepath):
|
|||||||
'''================ 3. 判断当前事件有效性,并添加至事件列表 =========='''
|
'''================ 3. 判断当前事件有效性,并添加至事件列表 =========='''
|
||||||
condt1 = len(event['back_imgpaths'])==0 or len(event['front_imgpaths'])==0
|
condt1 = len(event['back_imgpaths'])==0 or len(event['front_imgpaths'])==0
|
||||||
condt2 = len(event['front_feats'])==0 and len(event['back_feats'])==0
|
condt2 = len(event['front_feats'])==0 and len(event['back_feats'])==0
|
||||||
|
|
||||||
if condt1 or condt2:
|
if condt1 or condt2:
|
||||||
print(f" Error, condt1: {condt1}, condt2: {condt2}")
|
print(f" Error, condt1: {condt1}, condt2: {condt2}")
|
||||||
continue
|
continue
|
||||||
@ -171,11 +177,11 @@ def creat_shopping_event(basepath):
|
|||||||
# continue
|
# continue
|
||||||
|
|
||||||
'''一、构造放入商品事件列表,暂不处理'''
|
'''一、构造放入商品事件列表,暂不处理'''
|
||||||
# delepath = os.path.join(basepath, 'deletedBarcode.txt')
|
# delepath = os.path.join(basePath, 'deletedBarcode.txt')
|
||||||
# bcdList = read_deletedBarcode_file(delepath)
|
# bcdList = read_deletedBarcode_file(delepath)
|
||||||
# for slist in bcdList:
|
# for slist in bcdList:
|
||||||
# getoutFold = slist['SeqDir'].strip()
|
# getoutFold = slist['SeqDir'].strip()
|
||||||
# getoutPath = os.path.join(basepath, getoutFold)
|
# getoutPath = os.path.join(basePath, getoutFold)
|
||||||
|
|
||||||
# '''取出事件文件夹不存在,跳出循环'''
|
# '''取出事件文件夹不存在,跳出循环'''
|
||||||
# if not os.path.exists(getoutPath) and not os.path.isdir(getoutPath):
|
# if not os.path.exists(getoutPath) and not os.path.isdir(getoutPath):
|
||||||
@ -185,28 +191,39 @@ def creat_shopping_event(basepath):
|
|||||||
# event = {}
|
# event = {}
|
||||||
# event['barcode'] = slist['Deleted'].strip()
|
# event['barcode'] = slist['Deleted'].strip()
|
||||||
# event['type'] = 'getout'
|
# event['type'] = 'getout'
|
||||||
# event['basepath'] = getoutPath
|
# event['basePath'] = getoutPath
|
||||||
|
|
||||||
|
|
||||||
return eventList
|
return eventList
|
||||||
|
|
||||||
def get_std_barcodeDict(bcdpath):
|
def get_std_barcodeDict(bcdpath, bpath):
|
||||||
|
'''
|
||||||
|
inputs:
|
||||||
|
bcdpath: 已清洗的barcode样本图像,如果barcode下有'base'文件夹,只选用该文件夹下图像
|
||||||
|
(default = r'\\192.168.1.28\share\已标注数据备份\对比数据\barcode\barcode_1771')
|
||||||
|
功能:
|
||||||
|
生成并保存只有一个key值的字典 {barcode: [imgpath1, imgpath1, ...]},
|
||||||
|
bpath: 字典存储地址
|
||||||
|
'''
|
||||||
|
|
||||||
|
# bpath = r'\\192.168.1.28\share\测试_202406\contrast\barcodes'
|
||||||
|
|
||||||
|
'''读取数据集中 barcode 列表'''
|
||||||
stdBlist = []
|
stdBlist = []
|
||||||
for filename in os.listdir(bcdpath):
|
for filename in os.listdir(bcdpath):
|
||||||
filepath = os.path.join(bcdpath, filename)
|
filepath = os.path.join(bcdpath, filename)
|
||||||
if not os.path.isdir(filepath) or not filename.isdigit(): continue
|
if not os.path.isdir(filepath) or not filename.isdigit(): continue
|
||||||
|
|
||||||
stdBlist.append(filename)
|
stdBlist.append(filename)
|
||||||
|
|
||||||
|
|
||||||
bcdpaths = [(barcode, os.path.join(bcdpath, barcode)) for barcode in stdBlist]
|
bcdpaths = [(barcode, os.path.join(bcdpath, barcode)) for barcode in stdBlist]
|
||||||
|
|
||||||
|
'''遍历数据集,针对每一个barcode,生成并保存字典{barcode: [imgpath1, imgpath1, ...]}'''
|
||||||
k = 0
|
k = 0
|
||||||
for barcode, bpath in bcdpaths:
|
for barcode, bpath in bcdpaths:
|
||||||
stdBarcodeDict = {}
|
stdBarcodeDict = {}
|
||||||
stdBarcodeDict[barcode] = []
|
stdBarcodeDict[barcode] = []
|
||||||
for root, dirs, files in os.walk(bpath):
|
for root, dirs, files in os.walk(bpath):
|
||||||
|
|
||||||
imgpaths = []
|
imgpaths = []
|
||||||
if "base" in dirs:
|
if "base" in dirs:
|
||||||
broot = os.path.join(root, "base")
|
broot = os.path.join(root, "base")
|
||||||
@ -227,75 +244,45 @@ def get_std_barcodeDict(bcdpath):
|
|||||||
imgpaths.append(imgpath)
|
imgpaths.append(imgpath)
|
||||||
stdBarcodeDict[barcode].extend(imgpaths)
|
stdBarcodeDict[barcode].extend(imgpaths)
|
||||||
|
|
||||||
jsonpath = os.path.join(r'\\192.168.1.28\share\测试_202406\contrast\barcodes', f"{barcode}.pickle")
|
pickpath = os.path.join(bpath, f"{barcode}.pickle")
|
||||||
with open(jsonpath, 'wb') as f:
|
with open(pickpath, 'wb') as f:
|
||||||
pickle.dump(stdBarcodeDict, f)
|
pickle.dump(stdBarcodeDict, f)
|
||||||
|
|
||||||
print(f"Barcode: {barcode}")
|
print(f"Barcode: {barcode}")
|
||||||
|
|
||||||
k += 1
|
# k += 1
|
||||||
if k == 10:
|
# if k == 10:
|
||||||
break
|
# break
|
||||||
|
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
return stdBarcodeDict
|
|
||||||
|
|
||||||
|
|
||||||
def one2one_test(filepath):
|
def extract_save_trajture_subimgs(shoppingEventPath, shoppingFeatPath, subimgPath):
|
||||||
|
'''用于保存一次购物事件的轨迹图像子图'''
|
||||||
|
|
||||||
savepath = r'\\192.168.1.28\share\测试_202406\contrast'
|
shoppingFeatPath = r"\\192.168.1.28\share\测试_202406\contrast\events"
|
||||||
|
subimgPath = r'\\192.168.1.28\share\测试_202406\contrast\subimgs'
|
||||||
'''获得 Barcode 列表'''
|
|
||||||
bcdpath = r'\\192.168.1.28\share\已标注数据备份\对比数据\barcode\barcode_1771'
|
|
||||||
stdBarcodeDict = get_std_barcodeDict(bcdpath)
|
|
||||||
|
|
||||||
|
|
||||||
eventList = creat_shopping_event(filepath)
|
eventList = creat_shopping_event(shoppingEventPath, shoppingFeatPath, subimgPath=True)
|
||||||
print("=========== eventList have generated! ===========")
|
print("======= eventList have generated and features have saved! =======")
|
||||||
|
|
||||||
|
|
||||||
barcodeDict = {}
|
barcodeDict = {}
|
||||||
for event in eventList:
|
for event in eventList:
|
||||||
'''9 items: barcode, type, filepath, back_imgpaths, front_imgpaths,
|
'''9 items: barcode, type, filepath, back_imgpaths, front_imgpaths,
|
||||||
back_boxes, front_boxes, back_feats, front_feats
|
back_boxes, front_boxes, back_feats, front_feats
|
||||||
'''
|
'''
|
||||||
|
|
||||||
barcode = event['barcode']
|
|
||||||
if barcode not in stdBarcodeDict.keys():
|
|
||||||
continue
|
|
||||||
|
|
||||||
|
|
||||||
if len(event['feats_select']):
|
if len(event['feats_select']):
|
||||||
event_feats = event['feats_select']
|
event_feats = event['feats_select']
|
||||||
elif len(event['back_feats']):
|
elif len(event['back_feats']):
|
||||||
event_feats = event['back_feats']
|
event_feats = event['back_feats']
|
||||||
else:
|
else:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
std_bcdpath = os.path.join(bcdpath, barcode)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
for root, dirs, files in os.walk(std_bcdpath):
|
|
||||||
if "base" in files:
|
|
||||||
std_bcdpath = os.path.join(root, "base")
|
|
||||||
break
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
'''保存一次购物事件的轨迹子图'''
|
'''保存一次购物事件的轨迹子图'''
|
||||||
basename = os.path.basename(event['filepath'])
|
basename = os.path.basename(event['filepath'])
|
||||||
spath = os.path.join(savepath, basename)
|
spath = os.path.join(subimgPath, basename)
|
||||||
if not os.path.exists(spath):
|
if not os.path.exists(spath):
|
||||||
os.makedirs(spath)
|
os.makedirs(spath)
|
||||||
cameras = ('front', 'back')
|
cameras = ('front', 'back')
|
||||||
@ -319,6 +306,7 @@ def one2one_test(filepath):
|
|||||||
subimgPath = os.path.join(spath, subimgName)
|
subimgPath = os.path.join(spath, subimgName)
|
||||||
|
|
||||||
cv2.imwrite(subimgPath, subimg)
|
cv2.imwrite(subimgPath, subimg)
|
||||||
|
|
||||||
print(f"Image saved: {basename}")
|
print(f"Image saved: {basename}")
|
||||||
|
|
||||||
|
|
||||||
@ -334,28 +322,93 @@ def batch_inference(imgpaths, batch):
|
|||||||
for group in groups:
|
for group in groups:
|
||||||
feature = featurize(group, conf.test_transform, model, conf.device)
|
feature = featurize(group, conf.test_transform, model, conf.device)
|
||||||
features.append(feature)
|
features.append(feature)
|
||||||
|
features = np.concatenate(features, axis=0)
|
||||||
|
|
||||||
return features
|
return features
|
||||||
|
|
||||||
def main_infer():
|
def stdfeat_infer(imgPath, featPath):
|
||||||
|
'''
|
||||||
|
inputs:
|
||||||
|
imgPath: 该文件夹下的 pickle 文件格式 {barcode: [imgpath1, imgpath1, ...]}
|
||||||
|
featPath: imgPath图像对应特征的存储地址
|
||||||
|
功能:
|
||||||
|
对 imgPath中图像进行特征提取,生成只有一个key值的字典,
|
||||||
|
{barcode: features},features.shape=(nsample, 256),并保存至 featPath 中
|
||||||
|
|
||||||
|
'''
|
||||||
|
|
||||||
|
# imgPath = r"\\192.168.1.28\share\测试_202406\contrast\barcodes"
|
||||||
bpath = r"\\192.168.1.28\share\测试_202406\contrast\barcodes"
|
# featPath = r"\\192.168.1.28\share\测试_202406\contrast\features"
|
||||||
for filename in os.listdir(bpath):
|
stdBarcodeDict = {}
|
||||||
filepath = os.path.join(bpath, filename)
|
k = 0
|
||||||
|
for filename in os.listdir(imgPath):
|
||||||
|
filepath = os.path.join(imgPath, filename)
|
||||||
|
|
||||||
with open(filepath, 'rb') as f:
|
stdbDict = {}
|
||||||
bpDict = pickle.load(f)
|
t1 = time.time()
|
||||||
|
|
||||||
for barcode, imgpaths in bpDict.items():
|
try:
|
||||||
feature = batch_inference(imgpaths, 8)
|
with open(filepath, 'rb') as f:
|
||||||
|
bpDict = pickle.load(f)
|
||||||
print("Done!!!")
|
for barcode, imgpaths in bpDict.items():
|
||||||
|
feature = batch_inference(imgpaths, 8)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error accured at: {filename}, with Exception is: {e}")
|
||||||
|
|
||||||
|
'''================ 保存单个barcode特征 ================'''
|
||||||
|
stdbDict[barcode] = feature
|
||||||
|
pkpath = os.path.join(featPath, f"{barcode}.pickle")
|
||||||
|
with open(pkpath, 'wb') as f:
|
||||||
|
pickle.dump(stdbDict, f)
|
||||||
|
|
||||||
|
stdBarcodeDict[barcode] = feature
|
||||||
|
t2 = time.time()
|
||||||
|
print(f"Barcode: {barcode}, need time: {t2-t1:.1f} secs")
|
||||||
|
k += 1
|
||||||
|
if k == 10:
|
||||||
|
break
|
||||||
|
|
||||||
|
pickpath = os.path.join(featPath, f"barcode_features_{k}.pickle")
|
||||||
|
with open(pickpath, 'wb') as f:
|
||||||
|
pickle.dump(stdBarcodeDict, f)
|
||||||
|
|
||||||
|
def contrast_performance_evaluate():
|
||||||
|
eventFeatPath = r"\\192.168.1.28\share\测试_202406\contrast\events"
|
||||||
|
stdFeatPath = r"\\192.168.1.28\share\测试_202406\contrast\features"
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def generate_event_and_standard_features():
|
||||||
|
stdSamplePath = r"\\192.168.1.28\share\已标注数据备份\对比数据\barcode\barcode_1771"
|
||||||
|
stdBarcodePath = r"\\192.168.1.28\share\测试_202406\contrast\barcodes"
|
||||||
|
stdFeaturePath = r"\\192.168.1.28\share\测试_202406\contrast\features"
|
||||||
|
|
||||||
|
'''=========================== 1. 生成标准特征集 ========================'''
|
||||||
|
'''1.1 提取并保存标准特征库原始图像文件地址字典'''
|
||||||
|
# get_std_barcodeDict(stdSamplePath, stdBarcodePath)
|
||||||
|
# print("standard imgpath have extracted and saved")
|
||||||
|
|
||||||
|
|
||||||
|
'''1.2 特征提取,并保存至文件夹 stdFeaturePath 中'''
|
||||||
|
stdfeat_infer(stdBarcodePath, stdFeaturePath)
|
||||||
|
# print("standard features have generated!")
|
||||||
|
|
||||||
|
|
||||||
|
'''=========================== 2. 提取并存储事件特征 ========================'''
|
||||||
|
shoppingEventPath = [r'\\192.168.1.28\share\测试_202406\0723\0723_1',
|
||||||
|
r'\\192.168.1.28\share\测试_202406\0723\0723_2',
|
||||||
|
r'\\192.168.1.28\share\测试_202406\0723\0723_3',
|
||||||
|
r'\\192.168.1.28\share\测试_202406\0722\0722_01',
|
||||||
|
r'\\192.168.1.28\share\测试_202406\0722\0722_02']
|
||||||
|
shoppingFeatPath = r"\\192.168.1.28\share\测试_202406\contrast\events"
|
||||||
|
# for sPath in shoppingEventPath:
|
||||||
|
# eventList = creat_shopping_event(sPath, shoppingFeatPath)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
|
def shopping_event_test():
|
||||||
fplist = [#r'\\192.168.1.28\share\测试_202406\0723\0723_1',
|
fplist = [#r'\\192.168.1.28\share\测试_202406\0723\0723_1',
|
||||||
#r'\\192.168.1.28\share\测试_202406\0723\0723_2',
|
#r'\\192.168.1.28\share\测试_202406\0723\0723_2',
|
||||||
r'\\192.168.1.28\share\测试_202406\0723\0723_3',
|
r'\\192.168.1.28\share\测试_202406\0723\0723_3',
|
||||||
@ -363,18 +416,59 @@ def main():
|
|||||||
#r'\\192.168.1.28\share\测试_202406\0722\0722_02'
|
#r'\\192.168.1.28\share\测试_202406\0722\0722_02'
|
||||||
]
|
]
|
||||||
|
|
||||||
|
shoppingFeatPath = r"\\192.168.1.28\share\测试_202406\contrast\events"
|
||||||
|
subimgPath = r'\\192.168.1.28\share\测试_202406\contrast\subimgs'
|
||||||
|
|
||||||
for filepath in fplist:
|
for filepath in fplist:
|
||||||
one2one_test(filepath)
|
'''用于保存一次购物事件的轨迹轨迹特征、及对应的图像子图'''
|
||||||
|
extract_save_trajture_subimgs(filepath, shoppingFeatPath, subimgPath)
|
||||||
# for filepath in fplist:
|
|
||||||
# try:
|
|
||||||
# one2one_test(filepath)
|
|
||||||
|
|
||||||
# except Exception as e:
|
|
||||||
# print(f'{filepath}, Error: {e}')
|
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
generate_event_and_standard_features()
|
||||||
|
# shopping_event_test()
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
# main()
|
main()
|
||||||
main_infer()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Reference in New Issue
Block a user