modified for site test

This commit is contained in:
王庆刚
2024-07-18 17:52:12 +08:00
parent f90ef72cbf
commit e986ec060b
39 changed files with 2279 additions and 375 deletions

Binary file not shown.

Binary file not shown.

View File

@ -80,15 +80,32 @@ def plot_frameID_y2(vts):
return plt
def draw_all_trajectories(vts, edgeline, save_dir, filename):
def draw_all_trajectories(vts, edgeline, save_dir, file, draw5p=False):
'''显示四种类型结果'''
file, ext = os.path.splitext(filename)
# file, ext = os.path.splitext(filename)
# edgeline = cv2.imread("./shopcart/cart_tempt/edgeline.png")
# edgeline2 = edgeline1.copy()
# edgeline = np.concatenate((edgeline1, edgeline2), exis = 1)
'''1. tracks 5点轨迹'''
trackpth = save_dir.parent /Path("trajectory")/ Path(f"{file}")
if not isinstance(save_dir, Path): save_dir = Path(save_dir)
''' all tracks 中心轨迹'''
img1, img2 = edgeline.copy(), edgeline.copy()
img1 = drawTrack(vts.tracks, img1)
img2 = drawTrack(vts.Residual, img2)
img = np.concatenate((img1, img2), axis = 1)
H, W = img.shape[:2]
cv2.line(img, (int(W/2), 0), (int(W/2), H), (128, 255, 128), 2)
imgpth = save_dir.joinpath(f"{file}_show.png")
cv2.imwrite(str(imgpth), img)
if not draw5p:
return
''' tracks 5点轨迹'''
trackpth = save_dir / Path("trajectory") / Path(f"{file}")
if not trackpth.exists():
trackpth.mkdir(parents=True, exist_ok=True)
for track in vts.tracks:
@ -106,23 +123,9 @@ def draw_all_trajectories(vts, edgeline, save_dir, filename):
pth = trackpth.joinpath(f"{track.tid}_.png")
cv2.imwrite(str(pth), img)
'''2. all tracks 中心轨迹'''
img1, img2 = edgeline.copy(), edgeline.copy()
img1 = drawTrack(vts.tracks, img1)
img2 = drawTrack(vts.Residual, img2)
img = np.concatenate((img1, img2), axis = 1)
H, W = img.shape[:2]
cv2.line(img, (int(W/2), 0), (int(W/2), H), (128, 255, 128), 2)
pth = save_dir.joinpath(f"{file}_show.png")
cv2.imwrite(str(pth), img)
# =============================================================================
# '''3. moving tracks 中心轨迹'''
# filename2 = f"{file}_show_r.png"
@ -134,13 +137,11 @@ def draw_all_trajectories(vts, edgeline, save_dir, filename):
# =============================================================================
# '''5. tracks 时序trajmin、trajmax、arearate、incartrate'''
# plt = drawtracefeat(vts)
# pth = save_dir.joinpath(f"{file}_x.png")
# plt.savefig(pth)
# plt.close('all')
# =============================================================================
'''5. tracks 时序trajmin、trajmax、arearate、incartrate'''
# plt = drawtracefeat(vts)
# pth = save_dir.joinpath(f"{file}_x.png")
# plt.savefig(pth)
# plt.close('all')

View File

@ -15,17 +15,18 @@ def readDict(boxes, TracksDict):
for i in range(boxes.shape[0]):
tid, fid, bid = int(boxes[i, 4]), int(boxes[i, 7]), int(boxes[i, 8])
feat = TracksDict[f"frame_{fid}"]["feats"][bid]
img = TracksDict[f"frame_{fid}"]["imgs"][bid]
trackdict = TracksDict[f"frame_{fid}"]
if "feats" in trackdict:
feat = trackdict["feats"][bid]
feats.append(feat)
box = TracksDict[f"frame_{fid}"]["boxes"][bid]
if "boxes" in trackdict:
box = trackdict["boxes"][bid]
assert (box[:4].astype(int) == boxes[i, :4].astype(int)).all(), f"Please check: frame_{fid}"
assert (box[:4].astype(int) == boxes[i, :4].astype(int)).all(), f"Please check: frame_{fid}"
feats.append(feat)
# img = TracksDict[fid][f'{bid}_img']
# cv2.imwrite(f'./data/imgs/{tid}_{fid}_{bid}.png', img)
if "imgs" in trackdict:
img = trackdict["imgs"][bid]
cv2.imwrite(f'./data/imgs/{tid}_{fid}_{bid}.png', img)
return np.asarray(feats, dtype=np.float32)
@ -59,13 +60,12 @@ def track_equal_track(atrack, btrack):
''' 2. 轨迹特征相似度判断'''
feat = np.concatenate((afeat, bfeat), axis=0)
emb_simil = 1-np.maximum(0.0, cdist(feat, feat, 'cosine'))
emb_ = 1-cdist(np.mean(afeat, axis=0)[None, :], np.mean(bfeat, axis=0)[None, :], 'cosine')
emb_simil = 1 - np.maximum(0.0, cdist(feat, feat, 'cosine'))
emb_ = 1 - np.maximum(0.0, cdist(np.mean(afeat, axis=0)[None, :], np.mean(bfeat, axis=0)[None, :], 'cosine'))/2
if emb_[0, 0]<0.66:
return False
''' 3. 轨迹空间iou'''
alabel = np.array([0] * afids.size, dtype=np.int_)
blabel = np.array([1] * bfids.size, dtype=np.int_)
@ -93,7 +93,7 @@ def track_equal_track(atrack, btrack):
af, bf = afeat[a, :], bfeat[b, :]
emb_ab = 1-cdist(af[None, :], bf[None, :], 'cosine')
emb_ab = 1 - np.maximum(0.0, cdist(af[None, :], bf[None, :], 'cosine'))
xa1, ya1 = abox[0] - abox[2]/2, abox[1] - abox[3]/2
@ -113,7 +113,22 @@ def track_equal_track(atrack, btrack):
ious.append(inter/union)
embs.append(emb_ab[0, 0])
''' 4. 和同一手部关联,如何将该代码和 iou 部分相融合,需进一步完善'''
# ahands = np.array(atrack.Hands)
# bhands = np.array(btrack.Hands)
# ahids = ahands[:, 0]
# bhids = bhands[:, 0]
# interhid = set(ahids).intersection(set(bhids))
# for hid in interhid:
# aidx = ahands[:, 0] == hid
# bidx = bhands[:, 0] == hid
# ahfids = ahids[aidx, 1]
# bhfids = bhids[bidx, 1]
cont = False if len(interfid) else True # fid 无交集
cont1 = all(emb > 0.5 for emb in embs)

View File

@ -1,4 +1,4 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Ultralytics YOLO 🚀, AGPL-3.0 license
import contextlib
import math
@ -284,5 +284,59 @@ def boxing_img(det, img, line_width=3):
imgx = annotator.result()
return imgx
def draw_tracking_boxes(imgs, tracks, scale=2):
'''tracks: [x1, y1, x2, y2, track_id, score, cls, frame_index, box_index]
0 1 2 3 4 5 6 7 8
关键:
(1) imgs中的次序和 track 中的 fid 对应
(2) img 尺度小对于xyxy减半
'''
def array2list(bboxes):
track_fids = np.unique(bboxes[:, 7].astype(int))
track_fids.sort()
lboxes = []
for f_id in track_fids:
# print(f"The ID is: {t_id}")
idx = np.where(bboxes[:, 7] == f_id)[0]
box = bboxes[idx, :]
lboxes.append(box)
assert len(set(box[:, 4])) == len(box), "Please check!!!"
return lboxes
bboxes = array2list(tracks)
if len(bboxes)!=len(imgs):
return []
subimgs = []
for i, boxes in enumerate(bboxes):
annotator = Annotator(imgs[i].copy())
for *xyxy, tid, conf, cls, fid, bid in boxes:
label = f'id:{int(tid)}_{int(cls)}_{conf:.2f}'
if cls==0:
color = colors(int(cls), True)
elif tid>0 and cls!=0:
color = colors(int(tid), True)
else:
color = colors(19, True) # 19为调色板的最后一个元素
pt2 = [p/scale for p in xyxy]
annotator.box_label(pt2, label, color=color)
img = annotator.result()
subimgs.append(img)
return subimgs

View File

@ -12,10 +12,12 @@ class Boxes:
"""Initialize the Boxes class."""
if boxes.ndim == 1:
boxes = boxes[None, :]
n = boxes.shape[-1]
assert n in (6, 7, 8), f'expected `n` in [6, 7], but got {n}' # xyxyb, track_id, conf, cls
m, n = boxes.shape
assert n in (6, 7), f'expected `n` in [6, 7], but got {n}' # xyxy, track_id, conf, cls
'''对每一个box进行编号利用该编号可以索引对应 feature'''
self.data = np.concatenate([boxes[:, :4], np.arange(m).reshape(-1, 1), boxes[:, 4:]], axis=-1)
self.data = boxes
self.orig_shape = orig_shape
def cpu(self):
@ -30,10 +32,9 @@ class Boxes:
"""Return the boxes in xyxy format."""
return self.data[:, :4]
@property
def xyxyb(self):
"""Return the boxes in xyxyb format."""
"""Return the boxes in xyxyb format."""
return self.data[:, :5]
@property

236
tracking/utils/read_data.py Normal file
View File

@ -0,0 +1,236 @@
# -*- coding: utf-8 -*-
"""
Created on Fri Jul 5 13:59:21 2024
func: extract_data()
读取 Pipeline 各模块的数据,在 read_pipeline_data.py马晓慧的基础上完成接口改造
@author: ym
"""
import numpy as np
import re
import os
def str_to_float_arr(s):
# 移除字符串末尾的逗号(如果存在)
if s.endswith(','):
s = s[:-1]
# 使用split()方法分割字符串然后将每个元素转化为float
float_array = [float(x) for x in s.split(",")]
return float_array
def find_samebox_in_array(arr, target):
for i, st in enumerate(arr):
if st[:4] == target[:4]:
return i
return -1
def extract_data(datapath):
bboxes, ffeats = [], []
trackerboxes = np.empty((0, 9), dtype=np.float64)
trackerfeats = np.empty((0, 256), dtype=np.float64)
boxes, feats, tboxes, tfeats = [], [], [], []
with open(datapath, 'r', encoding='utf-8') as lines:
for line in lines:
line = line.strip() # 去除行尾的换行符和可能的空白字符
if not line: # 跳过空行
continue
if line.find("CameraId")>=0:
if len(boxes): bboxes.append(np.array(boxes))
if len(feats): ffeats.append(np.array(feats))
if len(tboxes):
trackerboxes = np.concatenate((trackerboxes, np.array(tboxes)))
if len(tfeats):
trackerfeats = np.concatenate((trackerfeats, np.array(tfeats)))
boxes, feats, tboxes, tfeats = [], [], [], []
if line.find("box:") >= 0 and line.find("output_box:") < 0:
box = line[line.find("box:") + 4:].strip()
boxes.append(str_to_float_arr(box))
if line.find("feat:") >= 0:
feat = line[line.find("feat:") + 5:].strip()
feats.append(str_to_float_arr(feat))
if line.find("output_box:") >= 0:
box = str_to_float_arr(line[line.find("output_box:") + 11:].strip())
tboxes.append(box) # 去掉'output_box:'并去除可能的空白字符
index = find_samebox_in_array(boxes, box)
if index >= 0:
# feat_f = str_to_float_arr(input_feats[index])
feat_f = feats[index]
norm_f = np.linalg.norm(feat_f)
feat_f = feat_f / norm_f
tfeats.append(feat_f)
if len(boxes): bboxes.append(np.array(boxes))
if len(feats): ffeats.append(np.array(feats))
if len(tboxes): trackerboxes = np.concatenate((trackerboxes, np.array(tboxes)))
if len(tfeats): trackerfeats = np.concatenate((trackerfeats, np.array(tfeats)))
assert(len(bboxes)==len(ffeats)), "Error at Yolo output!"
assert(len(trackerboxes)==len(trackerfeats)), "Error at tracker output!"
tracker_feat_dict = {}
for i in range(len(trackerboxes)):
tid, fid, bid = int(trackerboxes[i, 4]), int(trackerboxes[i, 7]), int(trackerboxes[i, 8])
if f"frame_{fid}" not in tracker_feat_dict:
tracker_feat_dict[f"frame_{fid}"]= {"feats": {}}
tracker_feat_dict[f"frame_{fid}"]["feats"].update({bid: trackerfeats[i, :]})
boxes, trackingboxes= [], []
tracking_flag = False
with open(datapath, 'r', encoding='utf-8') as lines:
for line in lines:
line = line.strip() # 去除行尾的换行符和可能的空白字符
if not line: # 跳过空行
continue
if tracking_flag:
if line.find("tracking_") >= 0:
tracking_flag = False
else:
box = str_to_float_arr(line)
boxes.append(box)
if line.find("tracking_") >= 0:
tracking_flag = True
if len(boxes):
trackingboxes.append(np.array(boxes))
boxes = []
if len(boxes):
trackingboxes.append(np.array(boxes))
tracking_feat_dict = {}
for i, boxes in enumerate(trackingboxes):
for box in boxes:
tid, fid, bid = int(box[4]), int(box[7]), int(box[8])
if f"track_{tid}" not in tracking_feat_dict:
tracking_feat_dict[f"track_{tid}"]= {"feats": {}}
tracking_feat_dict[f"track_{tid}"]["feats"].update({f"{fid}_{bid}": tracker_feat_dict[f"frame_{fid}"]["feats"][bid]})
return bboxes, ffeats, trackerboxes, tracker_feat_dict, trackingboxes, tracking_feat_dict
def read_tracking_output(filepath):
boxes = []
feats = []
with open(filepath, 'r', encoding='utf-8') as file:
for line in file:
line = line.strip() # 去除行尾的换行符和可能的空白字符
if not line:
continue
if line.endswith(','):
line = line[:-1]
data = np.array([float(x) for x in line.split(",")])
if data.size == 9:
boxes.append(data)
if data.size == 256:
feats.append(data)
return np.array(boxes), np.array(feats)
def read_deletedBarcode_file(filePth):
with open(filePth, 'r', encoding='utf-8') as f:
lines = f.readlines()
split_flag, all_list = False, []
dict, barcode_list, similarity_list = {}, [], []
clean_lines = [line.strip().replace("'", '').replace('"', '') for line in lines]
for line in clean_lines:
stripped_line = line.strip()
if not stripped_line:
if len(barcode_list): dict['barcode'] = barcode_list
if len(similarity_list): dict['similarity'] = similarity_list
if len(dict): all_list.append(dict)
split_flag = False
dict, barcode_list, similarity_list = {}, [], []
continue
# print(line)
label = line.split(':')[0]
value = line.split(':')[1]
if label == 'SeqDir':
dict['SeqDir'] = value
if label == 'Deleted':
dict['Deleted'] = value
if label == 'List':
split_flag = True
continue
if split_flag:
barcode_list.append(label)
similarity_list.append(value)
if len(barcode_list): dict['barcode'] = barcode_list
if len(similarity_list): dict['similarity'] = similarity_list
if len(dict): all_list.append(dict)
return all_list
if __name__ == "__main__":
files_path = 'D:/contrast/dataset/1_to_n/709/20240709-112658_6903148351833/'
# 遍历目录下的所有文件和目录
for filename in os.listdir(files_path):
filename = '1_track.data'
file_path = os.path.join(files_path, filename)
if os.path.isfile(file_path) and filename.find("track.data")>0:
extract_data(file_path)
print("Done")

View File

@ -0,0 +1,250 @@
# -*- coding: utf-8 -*-
"""
Created on Tue May 21 15:25:23 2024
读取 Pipeline 各模块的数据,主代码由 马晓慧 完成
@author: ieemoo-zl003
"""
import os
import numpy as np
# 替换为你的目录路径
files_path = 'D:/contrast/dataset/1_to_n/709/20240709-112658_6903148351833/'
def str_to_float_arr(s):
# 移除字符串末尾的逗号(如果存在)
if s.endswith(','):
s = s[:-1]
# 使用split()方法分割字符串然后将每个元素转化为float
float_array = np.array([float(x) for x in s.split(",")])
return float_array
def extract_tracker_input_boxes_feats(file_name):
boxes = []
feats = []
with open(file_name, 'r', encoding='utf-8') as file:
for line in file:
line = line.strip() # 去除行尾的换行符和可能的空白字符
# 跳过空行
if not line:
continue
# 检查是否以'box:'或'feat:'开始
if line.find("box:") >= 0 and line.find("output_box:") < 0:
box = line[line.find("box:") + 4:].strip()
boxes.append(str_to_float_arr(box)) # 去掉'box:'并去除可能的空白字符
if line.find("feat:") >= 0:
feat = line[line.find("feat:") + 5:].strip()
feats.append(str_to_float_arr(feat)) # 去掉'box:'并去除可能的空白字符
return np.array(boxes), np.array(feats)
def find_string_in_array(arr, target):
"""
在字符串数组中找到目标字符串对应的行(索引)。
参数:
arr -- 字符串数组
target -- 要查找的目标字符串
返回:
目标字符串在数组中的索引。如果未找到,则返回-1。
"""
tg = [float(t) for k, t in enumerate(target.split(',')) if k<4][:4]
for i, st in enumerate(arr):
st = [float(s) for k, s in enumerate(target.split(',')) if k<4][:4]
if st == tg:
return i
# if st[:20] == target[:20]:
# return i
return -1
def find_samebox_in_array(arr, target):
for i, st in enumerate(arr):
if all(st[:4] == target[:4]):
return i
return -1
def extract_tracker_output_boxes_feats(read_file_name):
input_boxes, input_feats = extract_tracker_input_boxes_feats(read_file_name)
boxes = []
feats = []
with open(read_file_name, 'r', encoding='utf-8') as file:
for line in file:
line = line.strip() # 去除行尾的换行符和可能的空白字符
# 跳过空行
if not line:
continue
# 检查是否以'output_box:'开始
if line.find("output_box:") >= 0:
box = str_to_float_arr(line[line.find("output_box:") + 11:].strip())
boxes.append(box) # 去掉'output_box:'并去除可能的空白字符
index = find_samebox_in_array(input_boxes, box)
if index >= 0:
# feat_f = str_to_float_arr(input_feats[index])
feat_f = input_feats[index]
norm_f = np.linalg.norm(feat_f)
feat_f = feat_f / norm_f
feats.append(feat_f)
return input_boxes, input_feats, np.array(boxes), np.array(feats)
def extract_tracking_output_boxes_feats(read_file_name):
tracker_boxes, tracker_feats, input_boxes, input_feats = extract_tracker_output_boxes_feats(read_file_name)
boxes = []
feats = []
tracking_flag = False
with open(read_file_name, 'r', encoding='utf-8') as file:
for line in file:
line = line.strip() # 去除行尾的换行符和可能的空白字符
# 跳过空行
if not line:
continue
if tracking_flag:
if line.find("tracking_") >= 0:
tracking_flag = False
else:
box = str_to_float_arr(line)
boxes.append(box)
index = find_samebox_in_array(input_boxes, box)
if index >= 0:
feats.append(input_feats[index])
# 检查是否以tracking_'开始
if line.find("tracking_") >= 0:
tracking_flag = True
assert(len(tracker_boxes)==len(tracker_feats)), "Error at Yolo output"
assert(len(input_boxes)==len(input_feats)), "Error at tracker output"
assert(len(boxes)==len(feats)), "Error at tracking output"
return tracker_boxes, tracker_feats, input_boxes, input_feats, np.array(boxes), np.array(feats)
def read_tracking_input(datapath):
with open(datapath, 'r') as file:
lines = file.readlines()
data = []
for line in lines:
data.append([s for s in line.split(',') if len(s)>=3])
# data.append([float(s) for s in line.split(',') if len(s)>=3])
# data = np.array(data, dtype = np.float32)
try:
data = np.array(data, dtype = np.float32)
except Exception as e:
data = np.array([], dtype = np.float32)
print('DataError for func: read_tracking_input()')
return data
def read_tracker_input(datapath):
with open(datapath, 'r') as file:
lines = file.readlines()
Videos = []
FrameBoxes, FrameFeats = [], []
boxes, feats = [], []
timestamp = []
t1 = None
for line in lines:
if line.find('CameraId') >= 0:
t = int(line.split(',')[1].split(':')[1])
timestamp.append(t)
if len(boxes) and len(feats):
FrameBoxes.append(np.array(boxes, dtype = np.float32))
FrameFeats.append(np.array(feats, dtype = np.float32))
boxes, feats = [], []
if t1 and t - t1 > 1e3:
Videos.append((FrameBoxes, FrameFeats))
FrameBoxes, FrameFeats = [], []
t1 = int(line.split(',')[1].split(':')[1])
if line.find('box') >= 0:
box = line.split(':', )[1].split(',')[:-1]
boxes.append(box)
if line.find('feat') >= 0:
feat = line.split(':', )[1].split(',')[:-1]
feats.append(feat)
FrameBoxes.append(np.array(boxes, dtype = np.float32))
FrameFeats.append(np.array(feats, dtype = np.float32))
Videos.append((FrameBoxes, FrameFeats))
# TimeStamp = np.array(timestamp, dtype = np.int64)
# DimesDiff = np.diff((TimeStamp))
# sorted_indices = np.argsort(TimeStamp)
# TimeStamp_sorted = TimeStamp[sorted_indices]
# DimesDiff_sorted = np.diff((TimeStamp_sorted))
return Videos
def main():
files_path = 'D:/contrast/dataset/1_to_n/709/20240709-112658_6903148351833/'
# 遍历目录下的所有文件和目录
for filename in os.listdir(files_path):
# 构造完整的文件路径
file_path = os.path.join(files_path, filename)
if os.path.isfile(file_path) and filename.find("track.data")>0:
tracker_boxes, tracker_feats, tracking_boxes, tracking_feats, output_boxes, output_feats = extract_tracking_output_boxes_feats(file_path)
print("Done")
if __name__ == "__main__":
main()