增加了单帧入侵判断及yoloV10
This commit is contained in:
@ -123,25 +123,28 @@ def devide_motion_state(tboxes, width):
|
||||
|
||||
'''
|
||||
|
||||
periods = []
|
||||
if len(tboxes) < width:
|
||||
return periods
|
||||
|
||||
fboxes, frameTstamp = array2frame(tboxes)
|
||||
|
||||
fnum = len(frameTstamp)
|
||||
if fnum < width: return periods
|
||||
|
||||
state = np.zeros((fnum, 2), dtype=np.int64)
|
||||
frameState = np.concatenate((frameTstamp, state), axis = 1).astype(np.int64)
|
||||
handState = np.concatenate((frameTstamp, state), axis = 1).astype(np.int64)
|
||||
|
||||
|
||||
|
||||
if fnum < width:
|
||||
return frameState, handState
|
||||
|
||||
mtrackFid = {}
|
||||
handFid = {}
|
||||
'''frameState 标记由图像判断的购物车状态:0: 静止,1: 运动'''
|
||||
for idx in range(width, fnum+1):
|
||||
idx0 = idx-width
|
||||
|
||||
# if idx == 40:
|
||||
# print("123")
|
||||
|
||||
lboxes = np.concatenate(fboxes[idx0:idx], axis = 0)
|
||||
md = MoveDetect(lboxes)
|
||||
md.classify()
|
||||
|
Reference in New Issue
Block a user