增加了单帧入侵判断及yoloV10
This commit is contained in:
313
pipeline.py
313
pipeline.py
@ -60,48 +60,158 @@ def save_subimgs_1(imgdict, boxes, spath, ctype, simidict = None):
|
||||
|
||||
cv2.imwrite(imgpath, img)
|
||||
|
||||
def show_result(event_tracks, yrtDict, savepath_pipe):
|
||||
'''保存 Tracking 输出的运动轨迹子图,并记录相似度'''
|
||||
|
||||
savepath_pipe_subimgs = savepath_pipe / Path("subimgs")
|
||||
if not savepath_pipe_subimgs.exists():
|
||||
savepath_pipe_subimgs.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
|
||||
|
||||
|
||||
for CamerType, vts in event_tracks:
|
||||
if len(vts.tracks)==0: continue
|
||||
if CamerType == 'front':
|
||||
# yolos = ShoppingDict["frontCamera"]["yoloResnetTracker"]
|
||||
|
||||
yolos = yrtDict["frontyrt"]
|
||||
ctype = 1
|
||||
if CamerType == 'back':
|
||||
# yolos = ShoppingDict["backCamera"]["yoloResnetTracker"]
|
||||
|
||||
yolos = yrtDict["backyrt"]
|
||||
ctype = 0
|
||||
|
||||
imgdict, featdict, simidict = {}, {}, {}
|
||||
for y in yolos:
|
||||
imgdict.update(y["imgs"])
|
||||
featdict.update(y["feats"])
|
||||
simidict.update(y["featsimi"])
|
||||
|
||||
def pipeline(
|
||||
eventpath,
|
||||
savepath,
|
||||
SourceType,
|
||||
weights,
|
||||
YoloVersion="V5"
|
||||
):
|
||||
'''
|
||||
eventpath: 单个事件的存储路径
|
||||
for track in vts.Residual:
|
||||
if isinstance(track, np.ndarray):
|
||||
save_subimgs(imgdict, track, savepath_pipe_subimgs, ctype, featdict)
|
||||
else:
|
||||
save_subimgs(imgdict, track.slt_boxes, savepath_pipe_subimgs, ctype, featdict)
|
||||
|
||||
'''(3) 轨迹显示与保存'''
|
||||
illus = [None, None]
|
||||
for CamerType, vts in event_tracks:
|
||||
if len(vts.tracks)==0: continue
|
||||
|
||||
if CamerType == 'front':
|
||||
edgeline = cv2.imread("./tracking/shopcart/cart_tempt/board_ftmp_line.png")
|
||||
|
||||
h, w = edgeline.shape[:2]
|
||||
# nh, nw = h//2, w//2
|
||||
# edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA)
|
||||
|
||||
img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipe, CamerType, draw5p=True)
|
||||
illus[0] = img_tracking
|
||||
|
||||
plt = plot_frameID_y2(vts)
|
||||
plt.savefig(os.path.join(savepath_pipe, "front_y2.png"))
|
||||
|
||||
if CamerType == 'back':
|
||||
edgeline = cv2.imread("./tracking/shopcart/cart_tempt/edgeline.png")
|
||||
|
||||
h, w = edgeline.shape[:2]
|
||||
# nh, nw = h//2, w//2
|
||||
# edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA)
|
||||
|
||||
img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipe, CamerType, draw5p=True)
|
||||
illus[1] = img_tracking
|
||||
|
||||
'''
|
||||
optdict = {}
|
||||
optdict["weights"] = weights
|
||||
|
||||
if SourceType == "video":
|
||||
vpaths = get_video_pairs(eventpath)
|
||||
elif SourceType == "image":
|
||||
vpaths = get_image_pairs(eventpath)
|
||||
event_tracks = []
|
||||
illus = [im for im in illus if im is not None]
|
||||
if len(illus):
|
||||
img_cat = np.concatenate(illus, axis = 1)
|
||||
if len(illus)==2:
|
||||
H, W = img_cat.shape[:2]
|
||||
cv2.line(img_cat, (int(W/2), 0), (int(W/2), int(H)), (128, 128, 255), 3)
|
||||
|
||||
trajpath = os.path.join(savepath_pipe, "trajectory.png")
|
||||
cv2.imwrite(trajpath, img_cat)
|
||||
|
||||
|
||||
|
||||
|
||||
def pipeline(eventpath,
|
||||
SourceType,
|
||||
weights,
|
||||
DataType = "raw", #raw, pkl: images or videos, pkl, pickle file
|
||||
YoloVersion="V5",
|
||||
savepath = None,
|
||||
saveimages = True
|
||||
):
|
||||
|
||||
## 构造购物事件字典
|
||||
evtname = Path(eventpath).stem
|
||||
barcode = evtname.split('_')[-1] if len(evtname.split('_'))>=2 \
|
||||
and len(evtname.split('_')[-1])>=8 \
|
||||
and evtname.split('_')[-1].isdigit() else ''
|
||||
'''事件结果存储文件夹'''
|
||||
|
||||
'''事件结果存储文件夹: savepath_pipe, savepath_pkl'''
|
||||
if not savepath:
|
||||
savepath = Path(__file__).resolve().parents[0] / "events_result"
|
||||
savepath_pipe = Path(savepath) / Path("yolos_tracking") / evtname
|
||||
|
||||
savepath_pipeline = Path(savepath) / Path("Yolos_Tracking") / evtname
|
||||
|
||||
savepath_pkl = Path(savepath) / "shopping_pkl"
|
||||
if not savepath_pkl.exists():
|
||||
savepath_pkl.mkdir(parents=True, exist_ok=True)
|
||||
pklpath = Path(savepath_pkl) / Path(str(evtname)+".pickle")
|
||||
|
||||
"""ShoppingDict pickle 文件保存地址 """
|
||||
savepath_spdict = Path(savepath) / "ShoppingDict_pkfile"
|
||||
if not savepath_spdict.exists():
|
||||
savepath_spdict.mkdir(parents=True, exist_ok=True)
|
||||
pf_path = Path(savepath_spdict) / Path(str(evtname)+".pickle")
|
||||
|
||||
|
||||
yrt_out = []
|
||||
if DataType == "raw":
|
||||
### 不重复执行已经过yolo-resnet-tracker
|
||||
if pklpath.exists():
|
||||
print(f"Pickle file have saved: {evtname}.pickle")
|
||||
return
|
||||
|
||||
# if pf_path.exists():
|
||||
# print(f"Pickle file have saved: {evtname}.pickle")
|
||||
# return
|
||||
if SourceType == "video":
|
||||
vpaths = get_video_pairs(eventpath)
|
||||
elif SourceType == "image":
|
||||
vpaths = get_image_pairs(eventpath)
|
||||
|
||||
|
||||
|
||||
for vpath in vpaths:
|
||||
'''================= 2. 事件结果存储文件夹 ================='''
|
||||
|
||||
|
||||
if isinstance(vpath, list):
|
||||
savepath_pipe_imgs = savepath_pipe / Path("images")
|
||||
else:
|
||||
savepath_pipe_imgs = savepath_pipe / Path(str(Path(vpath).stem))
|
||||
|
||||
if not savepath_pipe_imgs.exists():
|
||||
savepath_pipe_imgs.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
optdict = {}
|
||||
optdict["weights"] = weights
|
||||
optdict["source"] = vpath
|
||||
optdict["save_dir"] = savepath_pipe_imgs
|
||||
optdict["is_save_img"] = saveimages
|
||||
optdict["is_save_video"] = True
|
||||
|
||||
|
||||
if YoloVersion == "V5":
|
||||
yrtOut = yolo_resnet_tracker(**optdict)
|
||||
elif YoloVersion == "V10":
|
||||
yrtOut = yolov10_resnet_tracker(**optdict)
|
||||
|
||||
yrt_out.append((vpath, yrtOut))
|
||||
|
||||
elif DataType == "pkl":
|
||||
pass
|
||||
|
||||
else:
|
||||
return
|
||||
|
||||
|
||||
|
||||
'''====================== 构造 ShoppingDict 模块 ======================='''
|
||||
ShoppingDict = {"eventPath": eventpath,
|
||||
@ -112,16 +222,14 @@ def pipeline(
|
||||
"backCamera": {},
|
||||
"one2n": [] #
|
||||
}
|
||||
yrtDict = {}
|
||||
|
||||
|
||||
procpath = Path(eventpath).joinpath('process.data')
|
||||
if procpath.is_file():
|
||||
SimiDict = read_similar(procpath)
|
||||
ShoppingDict["one2n"] = SimiDict['one2n']
|
||||
|
||||
|
||||
for vpath in vpaths:
|
||||
yrtDict = {}
|
||||
event_tracks = []
|
||||
for vpath, yrtOut in yrt_out:
|
||||
'''================= 1. 构造相机事件字典 ================='''
|
||||
CameraEvent = {"cameraType": '', # "front", "back"
|
||||
"videoPath": '',
|
||||
@ -140,34 +248,10 @@ def pipeline(
|
||||
CameraEvent["cameraType"] = "back"
|
||||
if bname.split('_')[0] == "1" or bname.find('front')>=0:
|
||||
CameraEvent["cameraType"] = "front"
|
||||
|
||||
'''================= 2. 事件结果存储文件夹 ================='''
|
||||
if isinstance(vpath, list):
|
||||
savepath_pipeline_imgs = savepath_pipeline / Path("images")
|
||||
else:
|
||||
savepath_pipeline_imgs = savepath_pipeline / Path(str(Path(vpath).stem))
|
||||
|
||||
if not savepath_pipeline_imgs.exists():
|
||||
savepath_pipeline_imgs.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
savepath_pipeline_subimgs = savepath_pipeline / Path("subimgs")
|
||||
if not savepath_pipeline_subimgs.exists():
|
||||
savepath_pipeline_subimgs.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
|
||||
'''================= 3. Yolo + Resnet + Tracker ================='''
|
||||
optdict["source"] = vpath
|
||||
optdict["save_dir"] = savepath_pipeline_imgs
|
||||
optdict["is_save_img"] = True
|
||||
optdict["is_save_video"] = True
|
||||
|
||||
|
||||
if YoloVersion == "V5":
|
||||
yrtOut = yolo_resnet_tracker(**optdict)
|
||||
elif YoloVersion == "V10":
|
||||
yrtOut = yolov10_resnet_tracker(**optdict)
|
||||
|
||||
|
||||
'''2种保存方式: (1) no save subimg, (2) save img'''
|
||||
###(1) save images
|
||||
yrtOut_save = []
|
||||
for frdict in yrtOut:
|
||||
fr_dict = {}
|
||||
@ -177,6 +261,7 @@ def pipeline(
|
||||
yrtOut_save.append(fr_dict)
|
||||
CameraEvent["yoloResnetTracker"] = yrtOut_save
|
||||
|
||||
###(2) no save images
|
||||
# CameraEvent["yoloResnetTracker"] = yrtOut
|
||||
|
||||
'''================= 4. tracking ================='''
|
||||
@ -219,108 +304,58 @@ def pipeline(
|
||||
yrtDict["frontyrt"] = yrtOut
|
||||
|
||||
'''========================== 保存模块 ================================='''
|
||||
'''(1) 保存 ShoppingDict 事件'''
|
||||
with open(str(pf_path), 'wb') as f:
|
||||
# 保存 ShoppingDict
|
||||
with open(str(pklpath), 'wb') as f:
|
||||
pickle.dump(ShoppingDict, f)
|
||||
|
||||
'''(2) 保存 Tracking 输出的运动轨迹子图,并记录相似度'''
|
||||
for CamerType, vts in event_tracks:
|
||||
if len(vts.tracks)==0: continue
|
||||
if CamerType == 'front':
|
||||
# yolos = ShoppingDict["frontCamera"]["yoloResnetTracker"]
|
||||
|
||||
yolos = yrtDict["frontyrt"]
|
||||
ctype = 1
|
||||
if CamerType == 'back':
|
||||
# yolos = ShoppingDict["backCamera"]["yoloResnetTracker"]
|
||||
|
||||
yolos = yrtDict["backyrt"]
|
||||
ctype = 0
|
||||
|
||||
imgdict, featdict, simidict = {}, {}, {}
|
||||
for y in yolos:
|
||||
imgdict.update(y["imgs"])
|
||||
featdict.update(y["feats"])
|
||||
simidict.update(y["featsimi"])
|
||||
|
||||
for track in vts.Residual:
|
||||
if isinstance(track, np.ndarray):
|
||||
save_subimgs(imgdict, track, savepath_pipeline_subimgs, ctype, featdict)
|
||||
else:
|
||||
save_subimgs(imgdict, track.slt_boxes, savepath_pipeline_subimgs, ctype, featdict)
|
||||
|
||||
'''(3) 轨迹显示与保存'''
|
||||
illus = [None, None]
|
||||
for CamerType, vts in event_tracks:
|
||||
if len(vts.tracks)==0: continue
|
||||
|
||||
if CamerType == 'front':
|
||||
edgeline = cv2.imread("./tracking/shopcart/cart_tempt/board_ftmp_line.png")
|
||||
|
||||
h, w = edgeline.shape[:2]
|
||||
# nh, nw = h//2, w//2
|
||||
# edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA)
|
||||
|
||||
img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipeline, CamerType, draw5p=True)
|
||||
illus[0] = img_tracking
|
||||
|
||||
plt = plot_frameID_y2(vts)
|
||||
plt.savefig(os.path.join(savepath_pipeline, "front_y2.png"))
|
||||
|
||||
if CamerType == 'back':
|
||||
edgeline = cv2.imread("./tracking/shopcart/cart_tempt/edgeline.png")
|
||||
|
||||
h, w = edgeline.shape[:2]
|
||||
# nh, nw = h//2, w//2
|
||||
# edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA)
|
||||
|
||||
img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipeline, CamerType, draw5p=True)
|
||||
illus[1] = img_tracking
|
||||
|
||||
illus = [im for im in illus if im is not None]
|
||||
if len(illus):
|
||||
img_cat = np.concatenate(illus, axis = 1)
|
||||
if len(illus)==2:
|
||||
H, W = img_cat.shape[:2]
|
||||
cv2.line(img_cat, (int(W/2), 0), (int(W/2), int(H)), (128, 128, 255), 3)
|
||||
|
||||
trajpath = os.path.join(savepath_pipeline, "trajectory.png")
|
||||
cv2.imwrite(trajpath, img_cat)
|
||||
# 绘制并保存轨迹图
|
||||
show_result(event_tracks, yrtDict, savepath_pipe)
|
||||
|
||||
|
||||
|
||||
def execute_pipeline(evtdir = r"D:\datasets\ym\后台数据\unzip",
|
||||
source_type = "video", # video, image,
|
||||
DataType = "raw", # raw, pkl
|
||||
save_path = r"D:\work\result_pipeline",
|
||||
kk=1,
|
||||
source_type = "video", # video, image,
|
||||
yolo_ver = "V10", # V10, V5
|
||||
|
||||
weight_yolo_v5 = r'./ckpts/best_cls10_0906.pt' ,
|
||||
weight_yolo_v10 = r'./ckpts/best_v10s_width0375_1205.pt',
|
||||
k=0
|
||||
saveimages = True
|
||||
):
|
||||
'''
|
||||
运行函数 pipeline(),遍历事件文件夹,每个文件夹是一个事件
|
||||
'''
|
||||
parmDict = {}
|
||||
parmDict["SourceType"] = source_type
|
||||
parmDict["DataType"] = DataType
|
||||
parmDict["savepath"] = save_path
|
||||
parmDict["SourceType"] = source_type
|
||||
|
||||
parmDict["YoloVersion"] = yolo_ver
|
||||
if parmDict["YoloVersion"] == "V5":
|
||||
parmDict["weights"] = weight_yolo_v5
|
||||
elif parmDict["YoloVersion"] == "V10":
|
||||
parmDict["weights"] = weight_yolo_v10
|
||||
|
||||
parmDict["saveimages"] = saveimages
|
||||
|
||||
|
||||
evtdir = Path(evtdir)
|
||||
errEvents = []
|
||||
k = 0
|
||||
for item in evtdir.iterdir():
|
||||
if item.is_dir():
|
||||
item = evtdir/Path("20250310-175352-741")
|
||||
# item = evtdir/Path("20241212-171505-f0afe929-fdfe-4efa-94d0-2fa748d65fbb_6907992518930")
|
||||
parmDict["eventpath"] = item
|
||||
pipeline(**parmDict)
|
||||
|
||||
# try:
|
||||
# pipeline(**parmDict)
|
||||
# except Exception as e:
|
||||
# errEvents.append(str(item))
|
||||
|
||||
k+=1
|
||||
if k==1:
|
||||
if kk is not None and k==kk:
|
||||
break
|
||||
|
||||
errfile = os.path.join(parmDict["savepath"], 'error_events.txt')
|
||||
@ -329,12 +364,20 @@ def execute_pipeline(evtdir = r"D:\datasets\ym\后台数据\unzip",
|
||||
f.write(line + '\n')
|
||||
|
||||
if __name__ == "__main__":
|
||||
execute_pipeline()
|
||||
datapath = r'/home/wqg/dataset/test_dataset/base_dataset/single_event/source/'
|
||||
savepath = r'/home/wqg/dataset/pipeline/test_result/single_event_V10'
|
||||
|
||||
execute_pipeline(evtdir = datapath,
|
||||
DataType = "raw", # raw, pkl
|
||||
kk=1,
|
||||
source_type = "video", # video, image,
|
||||
save_path = savepath,
|
||||
yolo_ver = "V10", # V10, V5
|
||||
weight_yolo_v5 = r'./ckpts/best_cls10_0906.pt' ,
|
||||
weight_yolo_v10 = r'./ckpts/best_v10s_width0375_1205.pt',
|
||||
saveimages = False
|
||||
)
|
||||
|
||||
# spath_v10 = r"D:\work\result_pipeline_v10"
|
||||
# spath_v5 = r"D:\work\result_pipeline_v5"
|
||||
# execute_pipeline(save_path=spath_v10, yolo_ver="V10")
|
||||
# execute_pipeline(save_path=spath_v5, yolo_ver="V5")
|
||||
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user