增加了单帧入侵判断及yoloV10

This commit is contained in:
18262620154
2025-04-11 17:02:39 +08:00
parent 798c596acc
commit e044c85a04
197 changed files with 1863 additions and 997 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

216
contrast/utils/calsimi.py Normal file
View File

@ -0,0 +1,216 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 31 16:25:43 2025
@author: wqg
"""
import numpy as np
from scipy.spatial.distance import cdist
def get_topk_percent(data, k):
"""
获取数据中最大的 k% 的元素
"""
# 将数据转换为 NumPy 数组
if isinstance(data, list):
data = np.array(data)
percentile = np.percentile(data, 100-k)
top_k_percent = data[data >= percentile]
return top_k_percent
def cluster(data, thresh=0.15):
# data = np.array([0.1, 0.13, 0.7, 0.2, 0.8, 0.52, 0.3, 0.7, 0.85, 0.58])
# data = np.array([0.1, 0.13, 0.2, 0.3])
# data = np.array([0.1])
if isinstance(data, list):
data = np.array(data)
data1 = np.sort(data)
cluter, Cluters, = [data1[0]], []
for i in range(1, len(data1)):
if data1[i] - data1[i-1]< thresh:
cluter.append(data1[i])
else:
Cluters.append(cluter)
cluter = [data1[i]]
Cluters.append(cluter)
clt_center = []
for clt in Cluters:
## 是否应该在此处限制一个聚类中的最小轨迹样本数,应该将该因素放在轨迹分析中
# if len(clt)>=3:
# clt_center.append(np.mean(clt))
clt_center.append(np.mean(clt))
# print(clt_center)
return clt_center
def calsiml(feat1, feat2, topkp=75, cluth=0.15):
'''轨迹样本和标准特征集样本相似度的选择策略'''
matrix = 1 - cdist(feat1, feat2, 'cosine')
simi_max = []
for i in range(len(matrix)):
sim = np.mean(get_topk_percent(matrix[i, :], topkp))
simi_max.append(sim)
cltc_max = cluster(simi_max, cluth)
Simi = max(cltc_max)
## cltc_max为空属于编程考虑不周应予以排查解决
# if len(cltc_max):
# Simi = max(cltc_max)
# else:
# Simi = 0 #不应该走到该处
return Simi
def calsimi_vs_stdfeat_new(event, stdfeat):
'''事件与标准库的对比策略
该比对策略是否可以拓展到事件与事件的比对?
'''
front_boxes = np.empty((0, 9), dtype=np.float64) ##和类doTracks兼容
front_feats = np.empty((0, 256), dtype=np.float64) ##和类doTracks兼容
for i in range(len(event.front_boxes)):
front_boxes = np.concatenate((front_boxes, event.front_boxes[i]), axis=0)
front_feats = np.concatenate((front_feats, event.front_feats[i]), axis=0)
back_boxes = np.empty((0, 9), dtype=np.float64) ##和类doTracks兼容
back_feats = np.empty((0, 256), dtype=np.float64) ##和类doTracks兼容
for i in range(len(event.back_boxes)):
back_boxes = np.concatenate((back_boxes, event.back_boxes[i]), axis=0)
back_feats = np.concatenate((back_feats, event.back_feats[i]), axis=0)
front_simi, back_simi = None, None
if len(front_feats):
front_simi = calsiml(front_feats, stdfeat)
if len(back_feats):
back_simi = calsiml(back_feats, stdfeat)
'''前后摄相似度融合策略'''
if len(front_feats) and len(back_feats):
diff_simi = abs(front_simi - back_simi)
if diff_simi>0.15:
Similar = max([front_simi, back_simi])
else:
Similar = (front_simi+back_simi)/2
elif len(front_feats) and len(back_feats)==0:
Similar = front_simi
elif len(front_feats)==0 and len(back_feats):
Similar = back_simi
else:
Similar = None # 在event.front_feats和event.back_feats同时为空时
return Similar, front_simi, back_simi
def calsimi_vs_stdfeat(event, stdfeat):
evtfeat = event.feats_compose
if isinstance(event.feats_select, list):
if len(event.feats_select) and len(event.feats_select[0]):
evtfeat = event.feats_select[0]
else:
return None, None, None
else:
evtfeat = event.feats_select
if len(evtfeat)==0 or len(stdfeat)==0:
return None, None, None
evtfeat /= np.linalg.norm(evtfeat, axis=1)[:, None]
stdfeat /= np.linalg.norm(stdfeat, axis=1)[:, None]
matrix = 1 - cdist(evtfeat, stdfeat, 'cosine')
matrix[matrix < 0] = 0
simi_mean = np.mean(matrix)
simi_max = np.max(matrix)
stdfeatm = np.mean(stdfeat, axis=0, keepdims=True)
evtfeatm = np.mean(evtfeat, axis=0, keepdims=True)
simi_mfeat = 1- np.maximum(0.0, cdist(stdfeatm, evtfeatm, 'cosine'))
return simi_mean, simi_max, simi_mfeat[0,0]
def calsimi_vs_evts(evta, evtb, simType=1):
if simType==1:
if len(evta.feats_compose) and len(evtb.feats_compose):
feata = evta.feats_compose
featb = evtb.feats_compose
matrix = 1 - cdist(feata, featb, 'cosine')
similar = np.mean(matrix)
else:
similar = None
return similar
if simType==2:
if len(evta.feats_compose) and len(evtb.feats_compose):
feata = evta.feats_compose
featb = evtb.feats_compose
matrix = 1 - cdist(feata, featb, 'cosine')
similar = np.max(matrix)
else:
similar = None
return similar
if simType==3:
if len(evta.feats_compose) and len(evtb.feats_compose):
feata = evta.feats_compose
featb = evtb.feats_compose
similar = calsiml(feata, featb)
else:
similar = None
return similar
##1. the front feats of evta, evtb
fr_feata = np.empty((0, 256), dtype=np.float64) ##和类doTracks兼容
for i in range(len(evta.front_feats)):
fr_feata = np.concatenate((fr_feata, evta.front_feats[i]), axis=0)
fr_featb = np.empty((0, 256), dtype=np.float64) ##和类doTracks兼容
for i in range(len(evtb.front_feats)):
fr_featb = np.concatenate((fr_featb, evtb.front_feats[i]), axis=0)
##2. the back feats of evta, evtb
bk_feata = np.empty((0, 256), dtype=np.float64) ##和类doTracks兼容
for i in range(len(evta.back_feats)):
bk_feata = np.concatenate((bk_feata, evta.back_feats[i]), axis=0)
bk_featb = np.empty((0, 256), dtype=np.float64) ##和类doTracks兼容
for i in range(len(evtb.back_feats)):
bk_featb = np.concatenate((bk_featb, evtb.back_feats[i]), axis=0)
front_simi, back_simi = None, None
if len(fr_feata) and len(fr_featb):
front_simi = calsiml(fr_feata, fr_featb)
if len(bk_feata) and len(bk_featb):
back_simi = calsiml(bk_feata, bk_featb)
'''前后摄相似度融合策略'''
if front_simi is not None and back_simi is not None:
diff_simi = abs(front_simi - back_simi)
if diff_simi>0.15:
similar = max([front_simi, back_simi])
else:
similar = (front_simi+back_simi)/2
elif front_simi is not None and back_simi is None:
similar = front_simi
elif front_simi is None and back_simi is not None:
similar = back_simi
else:
similar = None # 在event.front_feats和event.back_feats同时为空时
return similar

127
contrast/utils/databits.py Normal file
View File

@ -0,0 +1,127 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Apr 1 16:43:04 2025
@author: wqg
"""
import os
import pickle
import numpy as np
from scipy.spatial.distance import cdist
def int8_to_ft16(arr_uint8, amin, amax):
arr_ft16 = (arr_uint8 / 255 * (amax-amin) + amin).astype(np.float16)
return arr_ft16
def ft16_to_uint8(arr_ft16):
# pickpath = r"\\192.168.1.28\share\测试_202406\contrast\std_features_ft32vsft16\6902265587712_ft16.pickle"
# with open(pickpath, 'rb') as f:
# edict = pickle.load(f)
# arr_ft16 = edict['feats']
amin = np.min(arr_ft16)
amax = np.max(arr_ft16)
arr_ft255 = (arr_ft16 - amin) * 255 / (amax-amin)
arr_uint8 = arr_ft255.astype(np.uint8)
arr_ft16_ = int8_to_ft16(arr_uint8, amin, amax)
arrDistNorm = np.linalg.norm(arr_ft16_ - arr_ft16) / arr_ft16_.size
return arr_uint8, arr_ft16_
def data_precision_compare(stdfeat, evtfeat, evtMessage, similPath='', save=True):
evt, stdbcd, label = evtMessage
rltdata, rltdata_ft16, rltdata_ft16_ = [], [], []
matrix = 1 - cdist(stdfeat, evtfeat, 'cosine')
simi_mean = np.mean(matrix)
simi_max = np.max(matrix)
stdfeatm = np.mean(stdfeat, axis=0, keepdims=True)
evtfeatm = np.mean(evtfeat, axis=0, keepdims=True)
simi_mfeat = 1- np.maximum(0.0, cdist(stdfeatm, evtfeatm, 'cosine'))
rltdata = [label, stdbcd, evt, simi_mean, simi_max, simi_mfeat[0,0]]
##================================================================= float16
stdfeat_ft16 = stdfeat.astype(np.float16)
evtfeat_ft16 = evtfeat.astype(np.float16)
stdfeat_ft16 /= np.linalg.norm(stdfeat_ft16, axis=1)[:, None]
evtfeat_ft16 /= np.linalg.norm(evtfeat_ft16, axis=1)[:, None]
matrix_ft16 = 1 - cdist(stdfeat_ft16, evtfeat_ft16, 'cosine')
simi_mean_ft16 = np.mean(matrix_ft16)
simi_max_ft16 = np.max(matrix_ft16)
stdfeatm_ft16 = np.mean(stdfeat_ft16, axis=0, keepdims=True)
evtfeatm_ft16 = np.mean(evtfeat_ft16, axis=0, keepdims=True)
simi_mfeat_ft16 = 1- np.maximum(0.0, cdist(stdfeatm_ft16, evtfeatm_ft16, 'cosine'))
rltdata_ft16 = [label, stdbcd, evt, simi_mean_ft16, simi_max_ft16, simi_mfeat_ft16[0,0]]
'''****************** uint8 is ok!!!!!! ******************'''
##=================================================================== uint8
# stdfeat_uint8, stdfeat_ft16_ = ft16_to_uint8(stdfeat_ft16)
# evtfeat_uint8, evtfeat_ft16_ = ft16_to_uint8(evtfeat_ft16)
stdfeat_uint8 = (stdfeat_ft16*128).astype(np.int8)
evtfeat_uint8 = (evtfeat_ft16*128).astype(np.int8)
stdfeat_ft16_ = stdfeat_uint8.astype(np.float16)/128
evtfeat_ft16_ = evtfeat_uint8.astype(np.float16)/128
absdiff = np.linalg.norm(stdfeat_ft16_ - stdfeat) / stdfeat.size
matrix_ft16_ = 1 - cdist(stdfeat_ft16_, evtfeat_ft16_, 'cosine')
simi_mean_ft16_ = np.mean(matrix_ft16_)
simi_max_ft16_ = np.max(matrix_ft16_)
stdfeatm_ft16_ = np.mean(stdfeat_ft16_, axis=0, keepdims=True)
evtfeatm_ft16_ = np.mean(evtfeat_ft16_, axis=0, keepdims=True)
simi_mfeat_ft16_ = 1- np.maximum(0.0, cdist(stdfeatm_ft16_, evtfeatm_ft16_, 'cosine'))
rltdata_ft16_ = [label, stdbcd, evt, simi_mean_ft16_, simi_max_ft16_, simi_mfeat_ft16_[0,0]]
if not save:
return
##========================================================= save as float32
rppath = os.path.join(similPath, f'{evt}_ft32.pickle')
with open(rppath, 'wb') as f:
pickle.dump(rltdata, f)
rtpath = os.path.join(similPath, f'{evt}_ft32.txt')
with open(rtpath, 'w', encoding='utf-8') as f:
for result in rltdata:
part = [f"{x:.3f}" if isinstance(x, float) else str(x) for x in result]
line = ', '.join(part)
f.write(line + '\n')
##========================================================= save as float16
rppath_ft16 = os.path.join(similPath, f'{evt}_ft16.pickle')
with open(rppath_ft16, 'wb') as f:
pickle.dump(rltdata_ft16, f)
rtpath_ft16 = os.path.join(similPath, f'{evt}_ft16.txt')
with open(rtpath_ft16, 'w', encoding='utf-8') as f:
for result in rltdata_ft16:
part = [f"{x:.3f}" if isinstance(x, float) else str(x) for x in result]
line = ', '.join(part)
f.write(line + '\n')
##=========================================================== save as uint8
rppath_uint8 = os.path.join(similPath, f'{evt}_uint8.pickle')
with open(rppath_uint8, 'wb') as f:
pickle.dump(rltdata_ft16_, f)
rtpath_uint8 = os.path.join(similPath, f'{evt}_uint8.txt')
with open(rtpath_uint8, 'w', encoding='utf-8') as f:
for result in rltdata_ft16_:
part = [f"{x:.3f}" if isinstance(x, float) else str(x) for x in result]
line = ', '.join(part)
f.write(line + '\n')

View File

@ -5,19 +5,25 @@ Created on Tue Nov 26 17:35:05 2024
@author: ym
"""
import os
import sys
import cv2
import pickle
import numpy as np
from pathlib import Path
import sys
sys.path.append(r"D:\DetectTracking")
FILE = Path(__file__).resolve()
ROOT = FILE.parents[2] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT))
from tracking.utils.plotting import Annotator, colors
from tracking.utils.drawtracks import drawTrack
from tracking.utils.read_data import extract_data, read_tracking_output, read_similar
from tracking.utils.read_data import extract_data_realtime, read_tracking_output_realtime
# import platform
# import pathlib
# plt = platform.system()

View File

@ -4,8 +4,81 @@ Created on Thu Oct 31 15:17:01 2024
@author: ym
"""
import os
import numpy as np
import pickle
from pathlib import Path
import matplotlib.pyplot as plt
from .event import ShoppingEvent
def init_eventDict(sourcePath, eventDataPath, stype="data"):
'''
stype: str,
'source': 由 videos 或 images 生成的 pickle 文件
'data': 从 data 文件中读取的现场运行数据
"realtime": 全实时数据,从 data 文件中读取的现场运行数据
sourcePath:事件文件夹事件类型包含2种
(1) pipeline生成的 pickle 文件
(2) 直接采集的事件文件夹
'''
k, errEvents = 0, []
for evtname in os.listdir(sourcePath):
bname, ext = os.path.splitext(evtname)
source_path = os.path.join(sourcePath, evtname)
if stype=="source" and ext not in ['.pkl', '.pickle']: continue
if stype=="data" and os.path.isfile(source_path): continue
if stype=="realtime" and os.path.isfile(source_path): continue
evt = bname.split('_')
condt = len(evt)>=2 and evt[-1].isdigit() and len(evt[-1])>=10
if not condt: continue
pickpath = os.path.join(eventDataPath, f"{bname}.pickle")
if os.path.isfile(pickpath): continue
# event = ShoppingEvent(source_path, stype)
try:
event = ShoppingEvent(source_path, stype)
with open(pickpath, 'wb') as f:
pickle.dump(event, f)
print(evtname)
except Exception as e:
errEvents.append(source_path)
print(f"Error: {evtname}, {e}")
# k += 1
# if k==1:
# break
errfile = Path(eventDataPath).parent / 'error_events.txt'
with open(str(errfile), 'a', encoding='utf-8') as f:
for line in errEvents:
f.write(line + '\n')
def get_evtList(evtpath):
'''==== 0. 生成事件列表和对应的 Barcodes 集合 ==========='''
bcdList, evtpaths = [], []
for evtname in os.listdir(evtpath):
bname, ext = os.path.splitext(evtname)
## 处理事件的两种情况:文件夹 和 Yolo-Resnet-Tracker 的输出
fpath = os.path.join(evtpath, evtname)
if os.path.isfile(fpath) and (ext==".pkl" or ext==".pickle"):
evt = bname.split('_')
elif os.path.isdir(fpath):
evt = evtname.split('_')
else:
continue
if len(evt)>=2 and evt[-1].isdigit() and len(evt[-1])>=10:
bcdList.append(evt[-1])
evtpaths.append(fpath)
bcdSet = set(bcdList)
return evtpaths, bcdSet