增加了单帧入侵判断及yoloV10
This commit is contained in:
BIN
contrast/utils/__pycache__/__init__.cpython-312.pyc
Normal file
BIN
contrast/utils/__pycache__/__init__.cpython-312.pyc
Normal file
Binary file not shown.
BIN
contrast/utils/__pycache__/calsimi.cpython-312.pyc
Normal file
BIN
contrast/utils/__pycache__/calsimi.cpython-312.pyc
Normal file
Binary file not shown.
BIN
contrast/utils/__pycache__/databits.cpython-312.pyc
Normal file
BIN
contrast/utils/__pycache__/databits.cpython-312.pyc
Normal file
Binary file not shown.
BIN
contrast/utils/__pycache__/event.cpython-312.pyc
Normal file
BIN
contrast/utils/__pycache__/event.cpython-312.pyc
Normal file
Binary file not shown.
BIN
contrast/utils/__pycache__/tools.cpython-312.pyc
Normal file
BIN
contrast/utils/__pycache__/tools.cpython-312.pyc
Normal file
Binary file not shown.
216
contrast/utils/calsimi.py
Normal file
216
contrast/utils/calsimi.py
Normal file
@ -0,0 +1,216 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Mon Mar 31 16:25:43 2025
|
||||
|
||||
@author: wqg
|
||||
"""
|
||||
import numpy as np
|
||||
from scipy.spatial.distance import cdist
|
||||
|
||||
|
||||
def get_topk_percent(data, k):
|
||||
"""
|
||||
获取数据中最大的 k% 的元素
|
||||
"""
|
||||
# 将数据转换为 NumPy 数组
|
||||
if isinstance(data, list):
|
||||
data = np.array(data)
|
||||
|
||||
percentile = np.percentile(data, 100-k)
|
||||
top_k_percent = data[data >= percentile]
|
||||
|
||||
return top_k_percent
|
||||
def cluster(data, thresh=0.15):
|
||||
# data = np.array([0.1, 0.13, 0.7, 0.2, 0.8, 0.52, 0.3, 0.7, 0.85, 0.58])
|
||||
# data = np.array([0.1, 0.13, 0.2, 0.3])
|
||||
# data = np.array([0.1])
|
||||
|
||||
if isinstance(data, list):
|
||||
data = np.array(data)
|
||||
|
||||
data1 = np.sort(data)
|
||||
cluter, Cluters, = [data1[0]], []
|
||||
for i in range(1, len(data1)):
|
||||
if data1[i] - data1[i-1]< thresh:
|
||||
cluter.append(data1[i])
|
||||
else:
|
||||
Cluters.append(cluter)
|
||||
cluter = [data1[i]]
|
||||
Cluters.append(cluter)
|
||||
|
||||
clt_center = []
|
||||
for clt in Cluters:
|
||||
## 是否应该在此处限制一个聚类中的最小轨迹样本数,应该将该因素放在轨迹分析中
|
||||
# if len(clt)>=3:
|
||||
# clt_center.append(np.mean(clt))
|
||||
clt_center.append(np.mean(clt))
|
||||
|
||||
# print(clt_center)
|
||||
|
||||
return clt_center
|
||||
|
||||
def calsiml(feat1, feat2, topkp=75, cluth=0.15):
|
||||
'''轨迹样本和标准特征集样本相似度的选择策略'''
|
||||
matrix = 1 - cdist(feat1, feat2, 'cosine')
|
||||
simi_max = []
|
||||
for i in range(len(matrix)):
|
||||
sim = np.mean(get_topk_percent(matrix[i, :], topkp))
|
||||
simi_max.append(sim)
|
||||
cltc_max = cluster(simi_max, cluth)
|
||||
Simi = max(cltc_max)
|
||||
|
||||
## cltc_max为空属于编程考虑不周,应予以排查解决
|
||||
# if len(cltc_max):
|
||||
# Simi = max(cltc_max)
|
||||
# else:
|
||||
# Simi = 0 #不应该走到该处
|
||||
|
||||
return Simi
|
||||
|
||||
|
||||
def calsimi_vs_stdfeat_new(event, stdfeat):
|
||||
'''事件与标准库的对比策略
|
||||
该比对策略是否可以拓展到事件与事件的比对?
|
||||
'''
|
||||
front_boxes = np.empty((0, 9), dtype=np.float64) ##和类doTracks兼容
|
||||
front_feats = np.empty((0, 256), dtype=np.float64) ##和类doTracks兼容
|
||||
for i in range(len(event.front_boxes)):
|
||||
front_boxes = np.concatenate((front_boxes, event.front_boxes[i]), axis=0)
|
||||
front_feats = np.concatenate((front_feats, event.front_feats[i]), axis=0)
|
||||
|
||||
back_boxes = np.empty((0, 9), dtype=np.float64) ##和类doTracks兼容
|
||||
back_feats = np.empty((0, 256), dtype=np.float64) ##和类doTracks兼容
|
||||
for i in range(len(event.back_boxes)):
|
||||
back_boxes = np.concatenate((back_boxes, event.back_boxes[i]), axis=0)
|
||||
back_feats = np.concatenate((back_feats, event.back_feats[i]), axis=0)
|
||||
|
||||
front_simi, back_simi = None, None
|
||||
if len(front_feats):
|
||||
front_simi = calsiml(front_feats, stdfeat)
|
||||
if len(back_feats):
|
||||
back_simi = calsiml(back_feats, stdfeat)
|
||||
|
||||
'''前后摄相似度融合策略'''
|
||||
if len(front_feats) and len(back_feats):
|
||||
diff_simi = abs(front_simi - back_simi)
|
||||
if diff_simi>0.15:
|
||||
Similar = max([front_simi, back_simi])
|
||||
else:
|
||||
Similar = (front_simi+back_simi)/2
|
||||
elif len(front_feats) and len(back_feats)==0:
|
||||
Similar = front_simi
|
||||
elif len(front_feats)==0 and len(back_feats):
|
||||
Similar = back_simi
|
||||
else:
|
||||
Similar = None # 在event.front_feats和event.back_feats同时为空时
|
||||
|
||||
return Similar, front_simi, back_simi
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def calsimi_vs_stdfeat(event, stdfeat):
|
||||
evtfeat = event.feats_compose
|
||||
if isinstance(event.feats_select, list):
|
||||
if len(event.feats_select) and len(event.feats_select[0]):
|
||||
evtfeat = event.feats_select[0]
|
||||
else:
|
||||
return None, None, None
|
||||
else:
|
||||
evtfeat = event.feats_select
|
||||
|
||||
if len(evtfeat)==0 or len(stdfeat)==0:
|
||||
return None, None, None
|
||||
|
||||
|
||||
evtfeat /= np.linalg.norm(evtfeat, axis=1)[:, None]
|
||||
stdfeat /= np.linalg.norm(stdfeat, axis=1)[:, None]
|
||||
|
||||
matrix = 1 - cdist(evtfeat, stdfeat, 'cosine')
|
||||
matrix[matrix < 0] = 0
|
||||
|
||||
simi_mean = np.mean(matrix)
|
||||
simi_max = np.max(matrix)
|
||||
stdfeatm = np.mean(stdfeat, axis=0, keepdims=True)
|
||||
evtfeatm = np.mean(evtfeat, axis=0, keepdims=True)
|
||||
simi_mfeat = 1- np.maximum(0.0, cdist(stdfeatm, evtfeatm, 'cosine'))
|
||||
|
||||
return simi_mean, simi_max, simi_mfeat[0,0]
|
||||
|
||||
|
||||
def calsimi_vs_evts(evta, evtb, simType=1):
|
||||
if simType==1:
|
||||
if len(evta.feats_compose) and len(evtb.feats_compose):
|
||||
feata = evta.feats_compose
|
||||
featb = evtb.feats_compose
|
||||
matrix = 1 - cdist(feata, featb, 'cosine')
|
||||
similar = np.mean(matrix)
|
||||
else:
|
||||
similar = None
|
||||
return similar
|
||||
|
||||
if simType==2:
|
||||
if len(evta.feats_compose) and len(evtb.feats_compose):
|
||||
feata = evta.feats_compose
|
||||
featb = evtb.feats_compose
|
||||
matrix = 1 - cdist(feata, featb, 'cosine')
|
||||
similar = np.max(matrix)
|
||||
else:
|
||||
similar = None
|
||||
return similar
|
||||
|
||||
if simType==3:
|
||||
if len(evta.feats_compose) and len(evtb.feats_compose):
|
||||
feata = evta.feats_compose
|
||||
featb = evtb.feats_compose
|
||||
similar = calsiml(feata, featb)
|
||||
else:
|
||||
similar = None
|
||||
return similar
|
||||
|
||||
|
||||
##1. the front feats of evta, evtb
|
||||
fr_feata = np.empty((0, 256), dtype=np.float64) ##和类doTracks兼容
|
||||
for i in range(len(evta.front_feats)):
|
||||
fr_feata = np.concatenate((fr_feata, evta.front_feats[i]), axis=0)
|
||||
|
||||
fr_featb = np.empty((0, 256), dtype=np.float64) ##和类doTracks兼容
|
||||
for i in range(len(evtb.front_feats)):
|
||||
fr_featb = np.concatenate((fr_featb, evtb.front_feats[i]), axis=0)
|
||||
|
||||
##2. the back feats of evta, evtb
|
||||
bk_feata = np.empty((0, 256), dtype=np.float64) ##和类doTracks兼容
|
||||
for i in range(len(evta.back_feats)):
|
||||
bk_feata = np.concatenate((bk_feata, evta.back_feats[i]), axis=0)
|
||||
|
||||
bk_featb = np.empty((0, 256), dtype=np.float64) ##和类doTracks兼容
|
||||
for i in range(len(evtb.back_feats)):
|
||||
bk_featb = np.concatenate((bk_featb, evtb.back_feats[i]), axis=0)
|
||||
|
||||
|
||||
front_simi, back_simi = None, None
|
||||
if len(fr_feata) and len(fr_featb):
|
||||
front_simi = calsiml(fr_feata, fr_featb)
|
||||
|
||||
if len(bk_feata) and len(bk_featb):
|
||||
back_simi = calsiml(bk_feata, bk_featb)
|
||||
|
||||
'''前后摄相似度融合策略'''
|
||||
if front_simi is not None and back_simi is not None:
|
||||
diff_simi = abs(front_simi - back_simi)
|
||||
if diff_simi>0.15:
|
||||
similar = max([front_simi, back_simi])
|
||||
else:
|
||||
similar = (front_simi+back_simi)/2
|
||||
elif front_simi is not None and back_simi is None:
|
||||
similar = front_simi
|
||||
elif front_simi is None and back_simi is not None:
|
||||
similar = back_simi
|
||||
else:
|
||||
similar = None # 在event.front_feats和event.back_feats同时为空时
|
||||
|
||||
return similar
|
||||
|
||||
|
127
contrast/utils/databits.py
Normal file
127
contrast/utils/databits.py
Normal file
@ -0,0 +1,127 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Tue Apr 1 16:43:04 2025
|
||||
|
||||
@author: wqg
|
||||
"""
|
||||
import os
|
||||
import pickle
|
||||
import numpy as np
|
||||
from scipy.spatial.distance import cdist
|
||||
|
||||
|
||||
def int8_to_ft16(arr_uint8, amin, amax):
|
||||
arr_ft16 = (arr_uint8 / 255 * (amax-amin) + amin).astype(np.float16)
|
||||
|
||||
return arr_ft16
|
||||
|
||||
def ft16_to_uint8(arr_ft16):
|
||||
# pickpath = r"\\192.168.1.28\share\测试_202406\contrast\std_features_ft32vsft16\6902265587712_ft16.pickle"
|
||||
|
||||
# with open(pickpath, 'rb') as f:
|
||||
# edict = pickle.load(f)
|
||||
|
||||
# arr_ft16 = edict['feats']
|
||||
|
||||
amin = np.min(arr_ft16)
|
||||
amax = np.max(arr_ft16)
|
||||
arr_ft255 = (arr_ft16 - amin) * 255 / (amax-amin)
|
||||
arr_uint8 = arr_ft255.astype(np.uint8)
|
||||
|
||||
arr_ft16_ = int8_to_ft16(arr_uint8, amin, amax)
|
||||
|
||||
arrDistNorm = np.linalg.norm(arr_ft16_ - arr_ft16) / arr_ft16_.size
|
||||
|
||||
return arr_uint8, arr_ft16_
|
||||
|
||||
|
||||
def data_precision_compare(stdfeat, evtfeat, evtMessage, similPath='', save=True):
|
||||
evt, stdbcd, label = evtMessage
|
||||
rltdata, rltdata_ft16, rltdata_ft16_ = [], [], []
|
||||
|
||||
matrix = 1 - cdist(stdfeat, evtfeat, 'cosine')
|
||||
simi_mean = np.mean(matrix)
|
||||
simi_max = np.max(matrix)
|
||||
stdfeatm = np.mean(stdfeat, axis=0, keepdims=True)
|
||||
evtfeatm = np.mean(evtfeat, axis=0, keepdims=True)
|
||||
simi_mfeat = 1- np.maximum(0.0, cdist(stdfeatm, evtfeatm, 'cosine'))
|
||||
rltdata = [label, stdbcd, evt, simi_mean, simi_max, simi_mfeat[0,0]]
|
||||
|
||||
|
||||
##================================================================= float16
|
||||
stdfeat_ft16 = stdfeat.astype(np.float16)
|
||||
evtfeat_ft16 = evtfeat.astype(np.float16)
|
||||
stdfeat_ft16 /= np.linalg.norm(stdfeat_ft16, axis=1)[:, None]
|
||||
evtfeat_ft16 /= np.linalg.norm(evtfeat_ft16, axis=1)[:, None]
|
||||
|
||||
|
||||
matrix_ft16 = 1 - cdist(stdfeat_ft16, evtfeat_ft16, 'cosine')
|
||||
simi_mean_ft16 = np.mean(matrix_ft16)
|
||||
simi_max_ft16 = np.max(matrix_ft16)
|
||||
stdfeatm_ft16 = np.mean(stdfeat_ft16, axis=0, keepdims=True)
|
||||
evtfeatm_ft16 = np.mean(evtfeat_ft16, axis=0, keepdims=True)
|
||||
simi_mfeat_ft16 = 1- np.maximum(0.0, cdist(stdfeatm_ft16, evtfeatm_ft16, 'cosine'))
|
||||
rltdata_ft16 = [label, stdbcd, evt, simi_mean_ft16, simi_max_ft16, simi_mfeat_ft16[0,0]]
|
||||
|
||||
'''****************** uint8 is ok!!!!!! ******************'''
|
||||
##=================================================================== uint8
|
||||
# stdfeat_uint8, stdfeat_ft16_ = ft16_to_uint8(stdfeat_ft16)
|
||||
# evtfeat_uint8, evtfeat_ft16_ = ft16_to_uint8(evtfeat_ft16)
|
||||
|
||||
stdfeat_uint8 = (stdfeat_ft16*128).astype(np.int8)
|
||||
evtfeat_uint8 = (evtfeat_ft16*128).astype(np.int8)
|
||||
stdfeat_ft16_ = stdfeat_uint8.astype(np.float16)/128
|
||||
evtfeat_ft16_ = evtfeat_uint8.astype(np.float16)/128
|
||||
|
||||
absdiff = np.linalg.norm(stdfeat_ft16_ - stdfeat) / stdfeat.size
|
||||
|
||||
matrix_ft16_ = 1 - cdist(stdfeat_ft16_, evtfeat_ft16_, 'cosine')
|
||||
simi_mean_ft16_ = np.mean(matrix_ft16_)
|
||||
simi_max_ft16_ = np.max(matrix_ft16_)
|
||||
stdfeatm_ft16_ = np.mean(stdfeat_ft16_, axis=0, keepdims=True)
|
||||
evtfeatm_ft16_ = np.mean(evtfeat_ft16_, axis=0, keepdims=True)
|
||||
simi_mfeat_ft16_ = 1- np.maximum(0.0, cdist(stdfeatm_ft16_, evtfeatm_ft16_, 'cosine'))
|
||||
rltdata_ft16_ = [label, stdbcd, evt, simi_mean_ft16_, simi_max_ft16_, simi_mfeat_ft16_[0,0]]
|
||||
|
||||
if not save:
|
||||
return
|
||||
|
||||
|
||||
##========================================================= save as float32
|
||||
rppath = os.path.join(similPath, f'{evt}_ft32.pickle')
|
||||
with open(rppath, 'wb') as f:
|
||||
pickle.dump(rltdata, f)
|
||||
|
||||
rtpath = os.path.join(similPath, f'{evt}_ft32.txt')
|
||||
with open(rtpath, 'w', encoding='utf-8') as f:
|
||||
for result in rltdata:
|
||||
part = [f"{x:.3f}" if isinstance(x, float) else str(x) for x in result]
|
||||
line = ', '.join(part)
|
||||
f.write(line + '\n')
|
||||
|
||||
|
||||
##========================================================= save as float16
|
||||
rppath_ft16 = os.path.join(similPath, f'{evt}_ft16.pickle')
|
||||
with open(rppath_ft16, 'wb') as f:
|
||||
pickle.dump(rltdata_ft16, f)
|
||||
|
||||
rtpath_ft16 = os.path.join(similPath, f'{evt}_ft16.txt')
|
||||
with open(rtpath_ft16, 'w', encoding='utf-8') as f:
|
||||
for result in rltdata_ft16:
|
||||
part = [f"{x:.3f}" if isinstance(x, float) else str(x) for x in result]
|
||||
line = ', '.join(part)
|
||||
f.write(line + '\n')
|
||||
|
||||
|
||||
##=========================================================== save as uint8
|
||||
rppath_uint8 = os.path.join(similPath, f'{evt}_uint8.pickle')
|
||||
with open(rppath_uint8, 'wb') as f:
|
||||
pickle.dump(rltdata_ft16_, f)
|
||||
|
||||
rtpath_uint8 = os.path.join(similPath, f'{evt}_uint8.txt')
|
||||
with open(rtpath_uint8, 'w', encoding='utf-8') as f:
|
||||
for result in rltdata_ft16_:
|
||||
part = [f"{x:.3f}" if isinstance(x, float) else str(x) for x in result]
|
||||
line = ', '.join(part)
|
||||
f.write(line + '\n')
|
@ -5,19 +5,25 @@ Created on Tue Nov 26 17:35:05 2024
|
||||
@author: ym
|
||||
"""
|
||||
import os
|
||||
import sys
|
||||
import cv2
|
||||
import pickle
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
|
||||
import sys
|
||||
sys.path.append(r"D:\DetectTracking")
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[2] # YOLOv5 root directory
|
||||
if str(ROOT) not in sys.path:
|
||||
sys.path.append(str(ROOT))
|
||||
|
||||
from tracking.utils.plotting import Annotator, colors
|
||||
from tracking.utils.drawtracks import drawTrack
|
||||
from tracking.utils.read_data import extract_data, read_tracking_output, read_similar
|
||||
from tracking.utils.read_data import extract_data_realtime, read_tracking_output_realtime
|
||||
|
||||
|
||||
|
||||
|
||||
# import platform
|
||||
# import pathlib
|
||||
# plt = platform.system()
|
||||
|
@ -4,8 +4,81 @@ Created on Thu Oct 31 15:17:01 2024
|
||||
|
||||
@author: ym
|
||||
"""
|
||||
import os
|
||||
import numpy as np
|
||||
import pickle
|
||||
from pathlib import Path
|
||||
import matplotlib.pyplot as plt
|
||||
from .event import ShoppingEvent
|
||||
|
||||
def init_eventDict(sourcePath, eventDataPath, stype="data"):
|
||||
'''
|
||||
stype: str,
|
||||
'source': 由 videos 或 images 生成的 pickle 文件
|
||||
'data': 从 data 文件中读取的现场运行数据
|
||||
"realtime": 全实时数据,从 data 文件中读取的现场运行数据
|
||||
|
||||
sourcePath:事件文件夹,事件类型包含2种:
|
||||
(1) pipeline生成的 pickle 文件
|
||||
(2) 直接采集的事件文件夹
|
||||
'''
|
||||
k, errEvents = 0, []
|
||||
for evtname in os.listdir(sourcePath):
|
||||
bname, ext = os.path.splitext(evtname)
|
||||
source_path = os.path.join(sourcePath, evtname)
|
||||
|
||||
if stype=="source" and ext not in ['.pkl', '.pickle']: continue
|
||||
if stype=="data" and os.path.isfile(source_path): continue
|
||||
if stype=="realtime" and os.path.isfile(source_path): continue
|
||||
|
||||
evt = bname.split('_')
|
||||
condt = len(evt)>=2 and evt[-1].isdigit() and len(evt[-1])>=10
|
||||
if not condt: continue
|
||||
|
||||
pickpath = os.path.join(eventDataPath, f"{bname}.pickle")
|
||||
if os.path.isfile(pickpath): continue
|
||||
|
||||
# event = ShoppingEvent(source_path, stype)
|
||||
try:
|
||||
event = ShoppingEvent(source_path, stype)
|
||||
with open(pickpath, 'wb') as f:
|
||||
pickle.dump(event, f)
|
||||
print(evtname)
|
||||
except Exception as e:
|
||||
errEvents.append(source_path)
|
||||
print(f"Error: {evtname}, {e}")
|
||||
# k += 1
|
||||
# if k==1:
|
||||
# break
|
||||
|
||||
errfile = Path(eventDataPath).parent / 'error_events.txt'
|
||||
with open(str(errfile), 'a', encoding='utf-8') as f:
|
||||
for line in errEvents:
|
||||
f.write(line + '\n')
|
||||
|
||||
|
||||
def get_evtList(evtpath):
|
||||
'''==== 0. 生成事件列表和对应的 Barcodes 集合 ==========='''
|
||||
bcdList, evtpaths = [], []
|
||||
for evtname in os.listdir(evtpath):
|
||||
bname, ext = os.path.splitext(evtname)
|
||||
|
||||
## 处理事件的两种情况:文件夹 和 Yolo-Resnet-Tracker 的输出
|
||||
fpath = os.path.join(evtpath, evtname)
|
||||
if os.path.isfile(fpath) and (ext==".pkl" or ext==".pickle"):
|
||||
evt = bname.split('_')
|
||||
elif os.path.isdir(fpath):
|
||||
evt = evtname.split('_')
|
||||
else:
|
||||
continue
|
||||
|
||||
if len(evt)>=2 and evt[-1].isdigit() and len(evt[-1])>=10:
|
||||
bcdList.append(evt[-1])
|
||||
evtpaths.append(fpath)
|
||||
|
||||
bcdSet = set(bcdList)
|
||||
|
||||
return evtpaths, bcdSet
|
||||
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user