initial project version!
This commit is contained in:
9
ultralytics/nn/__init__.py
Normal file
9
ultralytics/nn/__init__.py
Normal file
@ -0,0 +1,9 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from .tasks import (BaseModel, ClassificationModel, DetectionModel, SegmentationModel, attempt_load_one_weight,
|
||||
attempt_load_weights, guess_model_scale, guess_model_task, parse_model, torch_safe_load,
|
||||
yaml_model_load)
|
||||
|
||||
__all__ = ('attempt_load_one_weight', 'attempt_load_weights', 'parse_model', 'yaml_model_load', 'guess_model_task',
|
||||
'guess_model_scale', 'torch_safe_load', 'DetectionModel', 'SegmentationModel', 'ClassificationModel',
|
||||
'BaseModel')
|
BIN
ultralytics/nn/__pycache__/__init__.cpython-39.pyc
Normal file
BIN
ultralytics/nn/__pycache__/__init__.cpython-39.pyc
Normal file
Binary file not shown.
BIN
ultralytics/nn/__pycache__/autobackend.cpython-39.pyc
Normal file
BIN
ultralytics/nn/__pycache__/autobackend.cpython-39.pyc
Normal file
Binary file not shown.
BIN
ultralytics/nn/__pycache__/tasks.cpython-39.pyc
Normal file
BIN
ultralytics/nn/__pycache__/tasks.cpython-39.pyc
Normal file
Binary file not shown.
497
ultralytics/nn/autobackend.py
Normal file
497
ultralytics/nn/autobackend.py
Normal file
@ -0,0 +1,497 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import ast
|
||||
import contextlib
|
||||
import json
|
||||
import platform
|
||||
import zipfile
|
||||
from collections import OrderedDict, namedtuple
|
||||
from pathlib import Path
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from PIL import Image
|
||||
|
||||
from ultralytics.utils import ARM64, LINUX, LOGGER, ROOT, yaml_load
|
||||
from ultralytics.utils.checks import check_requirements, check_suffix, check_version, check_yaml
|
||||
from ultralytics.utils.downloads import attempt_download_asset, is_url
|
||||
|
||||
|
||||
def check_class_names(names):
|
||||
"""Check class names. Map imagenet class codes to human-readable names if required. Convert lists to dicts."""
|
||||
if isinstance(names, list): # names is a list
|
||||
names = dict(enumerate(names)) # convert to dict
|
||||
if isinstance(names, dict):
|
||||
# Convert 1) string keys to int, i.e. '0' to 0, and non-string values to strings, i.e. True to 'True'
|
||||
names = {int(k): str(v) for k, v in names.items()}
|
||||
n = len(names)
|
||||
if max(names.keys()) >= n:
|
||||
raise KeyError(f'{n}-class dataset requires class indices 0-{n - 1}, but you have invalid class indices '
|
||||
f'{min(names.keys())}-{max(names.keys())} defined in your dataset YAML.')
|
||||
if isinstance(names[0], str) and names[0].startswith('n0'): # imagenet class codes, i.e. 'n01440764'
|
||||
map = yaml_load(ROOT / 'cfg/datasets/ImageNet.yaml')['map'] # human-readable names
|
||||
names = {k: map[v] for k, v in names.items()}
|
||||
return names
|
||||
|
||||
|
||||
class AutoBackend(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
weights='yolov8n.pt',
|
||||
device=torch.device('cpu'),
|
||||
dnn=False,
|
||||
data=None,
|
||||
fp16=False,
|
||||
fuse=True,
|
||||
verbose=True):
|
||||
"""
|
||||
MultiBackend class for python inference on various platforms using Ultralytics YOLO.
|
||||
|
||||
Args:
|
||||
weights (str): The path to the weights file. Default: 'yolov8n.pt'
|
||||
device (torch.device): The device to run the model on.
|
||||
dnn (bool): Use OpenCV DNN module for inference if True, defaults to False.
|
||||
data (str | Path | optional): Additional data.yaml file for class names.
|
||||
fp16 (bool): If True, use half precision. Default: False
|
||||
fuse (bool): Whether to fuse the model or not. Default: True
|
||||
verbose (bool): Whether to run in verbose mode or not. Default: True
|
||||
|
||||
Supported formats and their naming conventions:
|
||||
| Format | Suffix |
|
||||
|-----------------------|------------------|
|
||||
| PyTorch | *.pt |
|
||||
| TorchScript | *.torchscript |
|
||||
| ONNX Runtime | *.onnx |
|
||||
| ONNX OpenCV DNN | *.onnx dnn=True |
|
||||
| OpenVINO | *.xml |
|
||||
| CoreML | *.mlpackage |
|
||||
| TensorRT | *.engine |
|
||||
| TensorFlow SavedModel | *_saved_model |
|
||||
| TensorFlow GraphDef | *.pb |
|
||||
| TensorFlow Lite | *.tflite |
|
||||
| TensorFlow Edge TPU | *_edgetpu.tflite |
|
||||
| PaddlePaddle | *_paddle_model |
|
||||
| ncnn | *_ncnn_model |
|
||||
"""
|
||||
super().__init__()
|
||||
w = str(weights[0] if isinstance(weights, list) else weights)
|
||||
nn_module = isinstance(weights, torch.nn.Module)
|
||||
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, ncnn, triton = \
|
||||
self._model_type(w)
|
||||
fp16 &= pt or jit or onnx or xml or engine or nn_module or triton # FP16
|
||||
nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)
|
||||
stride = 32 # default stride
|
||||
model, metadata = None, None
|
||||
|
||||
# Set device
|
||||
cuda = torch.cuda.is_available() and device.type != 'cpu' # use CUDA
|
||||
if cuda and not any([nn_module, pt, jit, engine]): # GPU dataloader formats
|
||||
device = torch.device('cpu')
|
||||
cuda = False
|
||||
|
||||
# Download if not local
|
||||
if not (pt or triton or nn_module):
|
||||
w = attempt_download_asset(w)
|
||||
|
||||
# Load model
|
||||
if nn_module: # in-memory PyTorch model
|
||||
model = weights.to(device)
|
||||
model = model.fuse(verbose=verbose) if fuse else model
|
||||
if hasattr(model, 'kpt_shape'):
|
||||
kpt_shape = model.kpt_shape # pose-only
|
||||
stride = max(int(model.stride.max()), 32) # model stride
|
||||
names = model.module.names if hasattr(model, 'module') else model.names # get class names
|
||||
model.half() if fp16 else model.float()
|
||||
self.model = model # explicitly assign for to(), cpu(), cuda(), half()
|
||||
pt = True
|
||||
elif pt: # PyTorch
|
||||
from ultralytics.nn.tasks import attempt_load_weights
|
||||
model = attempt_load_weights(weights if isinstance(weights, list) else w,
|
||||
device=device,
|
||||
inplace=True,
|
||||
fuse=fuse)
|
||||
if hasattr(model, 'kpt_shape'):
|
||||
kpt_shape = model.kpt_shape # pose-only
|
||||
stride = max(int(model.stride.max()), 32) # model stride
|
||||
names = model.module.names if hasattr(model, 'module') else model.names # get class names
|
||||
model.half() if fp16 else model.float()
|
||||
self.model = model # explicitly assign for to(), cpu(), cuda(), half()
|
||||
elif jit: # TorchScript
|
||||
LOGGER.info(f'Loading {w} for TorchScript inference...')
|
||||
extra_files = {'config.txt': ''} # model metadata
|
||||
model = torch.jit.load(w, _extra_files=extra_files, map_location=device)
|
||||
model.half() if fp16 else model.float()
|
||||
if extra_files['config.txt']: # load metadata dict
|
||||
metadata = json.loads(extra_files['config.txt'], object_hook=lambda x: dict(x.items()))
|
||||
elif dnn: # ONNX OpenCV DNN
|
||||
LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
|
||||
check_requirements('opencv-python>=4.5.4')
|
||||
net = cv2.dnn.readNetFromONNX(w)
|
||||
elif onnx: # ONNX Runtime
|
||||
LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
|
||||
check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
|
||||
import onnxruntime
|
||||
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
|
||||
session = onnxruntime.InferenceSession(w, providers=providers)
|
||||
output_names = [x.name for x in session.get_outputs()]
|
||||
metadata = session.get_modelmeta().custom_metadata_map # metadata
|
||||
elif xml: # OpenVINO
|
||||
LOGGER.info(f'Loading {w} for OpenVINO inference...')
|
||||
check_requirements('openvino>=2023.0') # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
||||
from openvino.runtime import Core, Layout, get_batch # noqa
|
||||
core = Core()
|
||||
w = Path(w)
|
||||
if not w.is_file(): # if not *.xml
|
||||
w = next(w.glob('*.xml')) # get *.xml file from *_openvino_model dir
|
||||
ov_model = core.read_model(model=str(w), weights=w.with_suffix('.bin'))
|
||||
if ov_model.get_parameters()[0].get_layout().empty:
|
||||
ov_model.get_parameters()[0].set_layout(Layout('NCHW'))
|
||||
batch_dim = get_batch(ov_model)
|
||||
if batch_dim.is_static:
|
||||
batch_size = batch_dim.get_length()
|
||||
ov_compiled_model = core.compile_model(ov_model, device_name='AUTO') # AUTO selects best available device
|
||||
metadata = w.parent / 'metadata.yaml'
|
||||
elif engine: # TensorRT
|
||||
LOGGER.info(f'Loading {w} for TensorRT inference...')
|
||||
try:
|
||||
import tensorrt as trt # noqa https://developer.nvidia.com/nvidia-tensorrt-download
|
||||
except ImportError:
|
||||
if LINUX:
|
||||
check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com')
|
||||
import tensorrt as trt # noqa
|
||||
check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
|
||||
if device.type == 'cpu':
|
||||
device = torch.device('cuda:0')
|
||||
Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
|
||||
logger = trt.Logger(trt.Logger.INFO)
|
||||
# Read file
|
||||
with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
|
||||
meta_len = int.from_bytes(f.read(4), byteorder='little') # read metadata length
|
||||
metadata = json.loads(f.read(meta_len).decode('utf-8')) # read metadata
|
||||
model = runtime.deserialize_cuda_engine(f.read()) # read engine
|
||||
context = model.create_execution_context()
|
||||
bindings = OrderedDict()
|
||||
output_names = []
|
||||
fp16 = False # default updated below
|
||||
dynamic = False
|
||||
for i in range(model.num_bindings):
|
||||
name = model.get_binding_name(i)
|
||||
dtype = trt.nptype(model.get_binding_dtype(i))
|
||||
if model.binding_is_input(i):
|
||||
if -1 in tuple(model.get_binding_shape(i)): # dynamic
|
||||
dynamic = True
|
||||
context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2]))
|
||||
if dtype == np.float16:
|
||||
fp16 = True
|
||||
else: # output
|
||||
output_names.append(name)
|
||||
shape = tuple(context.get_binding_shape(i))
|
||||
im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
|
||||
bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
|
||||
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
|
||||
batch_size = bindings['images'].shape[0] # if dynamic, this is instead max batch size
|
||||
elif coreml: # CoreML
|
||||
LOGGER.info(f'Loading {w} for CoreML inference...')
|
||||
import coremltools as ct
|
||||
model = ct.models.MLModel(w)
|
||||
metadata = dict(model.user_defined_metadata)
|
||||
elif saved_model: # TF SavedModel
|
||||
LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
|
||||
import tensorflow as tf
|
||||
keras = False # assume TF1 saved_model
|
||||
model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
|
||||
metadata = Path(w) / 'metadata.yaml'
|
||||
elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
|
||||
LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
|
||||
import tensorflow as tf
|
||||
|
||||
from ultralytics.engine.exporter import gd_outputs
|
||||
|
||||
def wrap_frozen_graph(gd, inputs, outputs):
|
||||
"""Wrap frozen graphs for deployment."""
|
||||
x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=''), []) # wrapped
|
||||
ge = x.graph.as_graph_element
|
||||
return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
|
||||
|
||||
gd = tf.Graph().as_graph_def() # TF GraphDef
|
||||
with open(w, 'rb') as f:
|
||||
gd.ParseFromString(f.read())
|
||||
frozen_func = wrap_frozen_graph(gd, inputs='x:0', outputs=gd_outputs(gd))
|
||||
elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
|
||||
try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
|
||||
from tflite_runtime.interpreter import Interpreter, load_delegate
|
||||
except ImportError:
|
||||
import tensorflow as tf
|
||||
Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate
|
||||
if edgetpu: # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
|
||||
LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
|
||||
delegate = {
|
||||
'Linux': 'libedgetpu.so.1',
|
||||
'Darwin': 'libedgetpu.1.dylib',
|
||||
'Windows': 'edgetpu.dll'}[platform.system()]
|
||||
interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
|
||||
else: # TFLite
|
||||
LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
|
||||
interpreter = Interpreter(model_path=w) # load TFLite model
|
||||
interpreter.allocate_tensors() # allocate
|
||||
input_details = interpreter.get_input_details() # inputs
|
||||
output_details = interpreter.get_output_details() # outputs
|
||||
# Load metadata
|
||||
with contextlib.suppress(zipfile.BadZipFile):
|
||||
with zipfile.ZipFile(w, 'r') as model:
|
||||
meta_file = model.namelist()[0]
|
||||
metadata = ast.literal_eval(model.read(meta_file).decode('utf-8'))
|
||||
elif tfjs: # TF.js
|
||||
raise NotImplementedError('YOLOv8 TF.js inference is not currently supported.')
|
||||
elif paddle: # PaddlePaddle
|
||||
LOGGER.info(f'Loading {w} for PaddlePaddle inference...')
|
||||
check_requirements('paddlepaddle-gpu' if cuda else 'paddlepaddle')
|
||||
import paddle.inference as pdi # noqa
|
||||
w = Path(w)
|
||||
if not w.is_file(): # if not *.pdmodel
|
||||
w = next(w.rglob('*.pdmodel')) # get *.pdmodel file from *_paddle_model dir
|
||||
config = pdi.Config(str(w), str(w.with_suffix('.pdiparams')))
|
||||
if cuda:
|
||||
config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)
|
||||
predictor = pdi.create_predictor(config)
|
||||
input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
|
||||
output_names = predictor.get_output_names()
|
||||
metadata = w.parents[1] / 'metadata.yaml'
|
||||
elif ncnn: # ncnn
|
||||
LOGGER.info(f'Loading {w} for ncnn inference...')
|
||||
check_requirements('git+https://github.com/Tencent/ncnn.git' if ARM64 else 'ncnn') # requires ncnn
|
||||
import ncnn as pyncnn
|
||||
net = pyncnn.Net()
|
||||
net.opt.use_vulkan_compute = cuda
|
||||
w = Path(w)
|
||||
if not w.is_file(): # if not *.param
|
||||
w = next(w.glob('*.param')) # get *.param file from *_ncnn_model dir
|
||||
net.load_param(str(w))
|
||||
net.load_model(str(w.with_suffix('.bin')))
|
||||
metadata = w.parent / 'metadata.yaml'
|
||||
elif triton: # NVIDIA Triton Inference Server
|
||||
"""TODO
|
||||
check_requirements('tritonclient[all]')
|
||||
from utils.triton import TritonRemoteModel
|
||||
model = TritonRemoteModel(url=w)
|
||||
nhwc = model.runtime.startswith("tensorflow")
|
||||
"""
|
||||
raise NotImplementedError('Triton Inference Server is not currently supported.')
|
||||
else:
|
||||
from ultralytics.engine.exporter import export_formats
|
||||
raise TypeError(f"model='{w}' is not a supported model format. "
|
||||
'See https://docs.ultralytics.com/modes/predict for help.'
|
||||
f'\n\n{export_formats()}')
|
||||
|
||||
# Load external metadata YAML
|
||||
if isinstance(metadata, (str, Path)) and Path(metadata).exists():
|
||||
metadata = yaml_load(metadata)
|
||||
if metadata:
|
||||
for k, v in metadata.items():
|
||||
if k in ('stride', 'batch'):
|
||||
metadata[k] = int(v)
|
||||
elif k in ('imgsz', 'names', 'kpt_shape') and isinstance(v, str):
|
||||
metadata[k] = eval(v)
|
||||
stride = metadata['stride']
|
||||
task = metadata['task']
|
||||
batch = metadata['batch']
|
||||
imgsz = metadata['imgsz']
|
||||
names = metadata['names']
|
||||
kpt_shape = metadata.get('kpt_shape')
|
||||
elif not (pt or triton or nn_module):
|
||||
LOGGER.warning(f"WARNING ⚠️ Metadata not found for 'model={weights}'")
|
||||
|
||||
# Check names
|
||||
if 'names' not in locals(): # names missing
|
||||
names = self._apply_default_class_names(data)
|
||||
names = check_class_names(names)
|
||||
|
||||
self.__dict__.update(locals()) # assign all variables to self
|
||||
|
||||
def forward(self, im, augment=False, visualize=False):
|
||||
"""
|
||||
Runs inference on the YOLOv8 MultiBackend model.
|
||||
|
||||
Args:
|
||||
im (torch.Tensor): The image tensor to perform inference on.
|
||||
augment (bool): whether to perform data augmentation during inference, defaults to False
|
||||
visualize (bool): whether to visualize the output predictions, defaults to False
|
||||
|
||||
Returns:
|
||||
(tuple): Tuple containing the raw output tensor, and processed output for visualization (if visualize=True)
|
||||
"""
|
||||
b, ch, h, w = im.shape # batch, channel, height, width
|
||||
if self.fp16 and im.dtype != torch.float16:
|
||||
im = im.half() # to FP16
|
||||
if self.nhwc:
|
||||
im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3)
|
||||
|
||||
if self.pt or self.nn_module: # PyTorch
|
||||
y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
|
||||
elif self.jit: # TorchScript
|
||||
y = self.model(im)
|
||||
elif self.dnn: # ONNX OpenCV DNN
|
||||
im = im.cpu().numpy() # torch to numpy
|
||||
self.net.setInput(im)
|
||||
y = self.net.forward()
|
||||
elif self.onnx: # ONNX Runtime
|
||||
im = im.cpu().numpy() # torch to numpy
|
||||
y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
|
||||
elif self.xml: # OpenVINO
|
||||
im = im.cpu().numpy() # FP32
|
||||
y = list(self.ov_compiled_model(im).values())
|
||||
elif self.engine: # TensorRT
|
||||
if self.dynamic and im.shape != self.bindings['images'].shape:
|
||||
i = self.model.get_binding_index('images')
|
||||
self.context.set_binding_shape(i, im.shape) # reshape if dynamic
|
||||
self.bindings['images'] = self.bindings['images']._replace(shape=im.shape)
|
||||
for name in self.output_names:
|
||||
i = self.model.get_binding_index(name)
|
||||
self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
|
||||
s = self.bindings['images'].shape
|
||||
assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
|
||||
self.binding_addrs['images'] = int(im.data_ptr())
|
||||
self.context.execute_v2(list(self.binding_addrs.values()))
|
||||
y = [self.bindings[x].data for x in sorted(self.output_names)]
|
||||
elif self.coreml: # CoreML
|
||||
im = im[0].cpu().numpy()
|
||||
im_pil = Image.fromarray((im * 255).astype('uint8'))
|
||||
# im = im.resize((192, 320), Image.BILINEAR)
|
||||
y = self.model.predict({'image': im_pil}) # coordinates are xywh normalized
|
||||
if 'confidence' in y:
|
||||
raise TypeError('Ultralytics only supports inference of non-pipelined CoreML models exported with '
|
||||
f"'nms=False', but 'model={w}' has an NMS pipeline created by an 'nms=True' export.")
|
||||
# TODO: CoreML NMS inference handling
|
||||
# from ultralytics.utils.ops import xywh2xyxy
|
||||
# box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
|
||||
# conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float32)
|
||||
# y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
|
||||
elif len(y) == 1: # classification model
|
||||
y = list(y.values())
|
||||
elif len(y) == 2: # segmentation model
|
||||
y = list(reversed(y.values())) # reversed for segmentation models (pred, proto)
|
||||
elif self.paddle: # PaddlePaddle
|
||||
im = im.cpu().numpy().astype(np.float32)
|
||||
self.input_handle.copy_from_cpu(im)
|
||||
self.predictor.run()
|
||||
y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
|
||||
elif self.ncnn: # ncnn
|
||||
mat_in = self.pyncnn.Mat(im[0].cpu().numpy())
|
||||
ex = self.net.create_extractor()
|
||||
input_names, output_names = self.net.input_names(), self.net.output_names()
|
||||
ex.input(input_names[0], mat_in)
|
||||
y = []
|
||||
for output_name in output_names:
|
||||
mat_out = self.pyncnn.Mat()
|
||||
ex.extract(output_name, mat_out)
|
||||
y.append(np.array(mat_out)[None])
|
||||
elif self.triton: # NVIDIA Triton Inference Server
|
||||
y = self.model(im)
|
||||
else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
|
||||
im = im.cpu().numpy()
|
||||
if self.saved_model: # SavedModel
|
||||
y = self.model(im, training=False) if self.keras else self.model(im)
|
||||
if not isinstance(y, list):
|
||||
y = [y]
|
||||
elif self.pb: # GraphDef
|
||||
y = self.frozen_func(x=self.tf.constant(im))
|
||||
if len(y) == 2 and len(self.names) == 999: # segments and names not defined
|
||||
ip, ib = (0, 1) if len(y[0].shape) == 4 else (1, 0) # index of protos, boxes
|
||||
nc = y[ib].shape[1] - y[ip].shape[3] - 4 # y = (1, 160, 160, 32), (1, 116, 8400)
|
||||
self.names = {i: f'class{i}' for i in range(nc)}
|
||||
else: # Lite or Edge TPU
|
||||
details = self.input_details[0]
|
||||
integer = details['dtype'] in (np.int8, np.int16) # is TFLite quantized int8 or int16 model
|
||||
if integer:
|
||||
scale, zero_point = details['quantization']
|
||||
im = (im / scale + zero_point).astype(details['dtype']) # de-scale
|
||||
self.interpreter.set_tensor(details['index'], im)
|
||||
self.interpreter.invoke()
|
||||
y = []
|
||||
for output in self.output_details:
|
||||
x = self.interpreter.get_tensor(output['index'])
|
||||
if integer:
|
||||
scale, zero_point = output['quantization']
|
||||
x = (x.astype(np.float32) - zero_point) * scale # re-scale
|
||||
if x.ndim > 2: # if task is not classification
|
||||
# Denormalize xywh by image size. See https://github.com/ultralytics/ultralytics/pull/1695
|
||||
# xywh are normalized in TFLite/EdgeTPU to mitigate quantization error of integer models
|
||||
x[:, [0, 2]] *= w
|
||||
x[:, [1, 3]] *= h
|
||||
y.append(x)
|
||||
# TF segment fixes: export is reversed vs ONNX export and protos are transposed
|
||||
if len(y) == 2: # segment with (det, proto) output order reversed
|
||||
if len(y[1].shape) != 4:
|
||||
y = list(reversed(y)) # should be y = (1, 116, 8400), (1, 160, 160, 32)
|
||||
y[1] = np.transpose(y[1], (0, 3, 1, 2)) # should be y = (1, 116, 8400), (1, 32, 160, 160)
|
||||
y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
|
||||
|
||||
# for x in y:
|
||||
# print(type(x), len(x)) if isinstance(x, (list, tuple)) else print(type(x), x.shape) # debug shapes
|
||||
if isinstance(y, (list, tuple)):
|
||||
return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
|
||||
else:
|
||||
return self.from_numpy(y)
|
||||
|
||||
def from_numpy(self, x):
|
||||
"""
|
||||
Convert a numpy array to a tensor.
|
||||
|
||||
Args:
|
||||
x (np.ndarray): The array to be converted.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): The converted tensor
|
||||
"""
|
||||
return torch.tensor(x).to(self.device) if isinstance(x, np.ndarray) else x
|
||||
|
||||
def warmup(self, imgsz=(1, 3, 640, 640)):
|
||||
"""
|
||||
Warm up the model by running one forward pass with a dummy input.
|
||||
|
||||
Args:
|
||||
imgsz (tuple): The shape of the dummy input tensor in the format (batch_size, channels, height, width)
|
||||
|
||||
Returns:
|
||||
(None): This method runs the forward pass and don't return any value
|
||||
"""
|
||||
warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton, self.nn_module
|
||||
if any(warmup_types) and (self.device.type != 'cpu' or self.triton):
|
||||
im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
|
||||
for _ in range(2 if self.jit else 1): #
|
||||
self.forward(im) # warmup
|
||||
|
||||
@staticmethod
|
||||
def _apply_default_class_names(data):
|
||||
"""Applies default class names to an input YAML file or returns numerical class names."""
|
||||
with contextlib.suppress(Exception):
|
||||
return yaml_load(check_yaml(data))['names']
|
||||
return {i: f'class{i}' for i in range(999)} # return default if above errors
|
||||
|
||||
@staticmethod
|
||||
def _model_type(p='path/to/model.pt'):
|
||||
"""
|
||||
This function takes a path to a model file and returns the model type
|
||||
|
||||
Args:
|
||||
p: path to the model file. Defaults to path/to/model.pt
|
||||
"""
|
||||
# Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
|
||||
# types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle]
|
||||
from ultralytics.engine.exporter import export_formats
|
||||
sf = list(export_formats().Suffix) # export suffixes
|
||||
if not is_url(p, check=False) and not isinstance(p, str):
|
||||
check_suffix(p, sf) # checks
|
||||
name = Path(p).name
|
||||
types = [s in name for s in sf]
|
||||
types[5] |= name.endswith('.mlmodel') # retain support for older Apple CoreML *.mlmodel formats
|
||||
types[8] &= not types[9] # tflite &= not edgetpu
|
||||
if any(types):
|
||||
triton = False
|
||||
else:
|
||||
url = urlparse(p) # if url may be Triton inference server
|
||||
triton = all([any(s in url.scheme for s in ['http', 'grpc']), url.netloc])
|
||||
return types + [triton]
|
29
ultralytics/nn/modules/__init__.py
Normal file
29
ultralytics/nn/modules/__init__.py
Normal file
@ -0,0 +1,29 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Ultralytics modules. Visualize with:
|
||||
|
||||
from ultralytics.nn.modules import *
|
||||
import torch
|
||||
import os
|
||||
|
||||
x = torch.ones(1, 128, 40, 40)
|
||||
m = Conv(128, 128)
|
||||
f = f'{m._get_name()}.onnx'
|
||||
torch.onnx.export(m, x, f)
|
||||
os.system(f'onnxsim {f} {f} && open {f}')
|
||||
"""
|
||||
|
||||
from .block import (C1, C2, C3, C3TR, DFL, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x, GhostBottleneck,
|
||||
HGBlock, HGStem, Proto, RepC3)
|
||||
from .conv import (CBAM, ChannelAttention, Concat, Conv, Conv2, ConvTranspose, DWConv, DWConvTranspose2d, Focus,
|
||||
GhostConv, LightConv, RepConv, SpatialAttention)
|
||||
from .head import Classify, Detect, Pose, RTDETRDecoder, Segment
|
||||
from .transformer import (AIFI, MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer, LayerNorm2d,
|
||||
MLPBlock, MSDeformAttn, TransformerBlock, TransformerEncoderLayer, TransformerLayer)
|
||||
|
||||
__all__ = ('Conv', 'Conv2', 'LightConv', 'RepConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus',
|
||||
'GhostConv', 'ChannelAttention', 'SpatialAttention', 'CBAM', 'Concat', 'TransformerLayer',
|
||||
'TransformerBlock', 'MLPBlock', 'LayerNorm2d', 'DFL', 'HGBlock', 'HGStem', 'SPP', 'SPPF', 'C1', 'C2', 'C3',
|
||||
'C2f', 'C3x', 'C3TR', 'C3Ghost', 'GhostBottleneck', 'Bottleneck', 'BottleneckCSP', 'Proto', 'Detect',
|
||||
'Segment', 'Pose', 'Classify', 'TransformerEncoderLayer', 'RepC3', 'RTDETRDecoder', 'AIFI',
|
||||
'DeformableTransformerDecoder', 'DeformableTransformerDecoderLayer', 'MSDeformAttn', 'MLP')
|
BIN
ultralytics/nn/modules/__pycache__/__init__.cpython-39.pyc
Normal file
BIN
ultralytics/nn/modules/__pycache__/__init__.cpython-39.pyc
Normal file
Binary file not shown.
BIN
ultralytics/nn/modules/__pycache__/block.cpython-39.pyc
Normal file
BIN
ultralytics/nn/modules/__pycache__/block.cpython-39.pyc
Normal file
Binary file not shown.
BIN
ultralytics/nn/modules/__pycache__/conv.cpython-39.pyc
Normal file
BIN
ultralytics/nn/modules/__pycache__/conv.cpython-39.pyc
Normal file
Binary file not shown.
BIN
ultralytics/nn/modules/__pycache__/head.cpython-39.pyc
Normal file
BIN
ultralytics/nn/modules/__pycache__/head.cpython-39.pyc
Normal file
Binary file not shown.
BIN
ultralytics/nn/modules/__pycache__/transformer.cpython-39.pyc
Normal file
BIN
ultralytics/nn/modules/__pycache__/transformer.cpython-39.pyc
Normal file
Binary file not shown.
BIN
ultralytics/nn/modules/__pycache__/utils.cpython-39.pyc
Normal file
BIN
ultralytics/nn/modules/__pycache__/utils.cpython-39.pyc
Normal file
Binary file not shown.
304
ultralytics/nn/modules/block.py
Normal file
304
ultralytics/nn/modules/block.py
Normal file
@ -0,0 +1,304 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Block modules
|
||||
"""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from .conv import Conv, DWConv, GhostConv, LightConv, RepConv
|
||||
from .transformer import TransformerBlock
|
||||
|
||||
__all__ = ('DFL', 'HGBlock', 'HGStem', 'SPP', 'SPPF', 'C1', 'C2', 'C3', 'C2f', 'C3x', 'C3TR', 'C3Ghost',
|
||||
'GhostBottleneck', 'Bottleneck', 'BottleneckCSP', 'Proto', 'RepC3')
|
||||
|
||||
|
||||
class DFL(nn.Module):
|
||||
"""
|
||||
Integral module of Distribution Focal Loss (DFL).
|
||||
Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
|
||||
"""
|
||||
|
||||
def __init__(self, c1=16):
|
||||
"""Initialize a convolutional layer with a given number of input channels."""
|
||||
super().__init__()
|
||||
self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
|
||||
x = torch.arange(c1, dtype=torch.float)
|
||||
self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))
|
||||
self.c1 = c1
|
||||
|
||||
def forward(self, x):
|
||||
"""Applies a transformer layer on input tensor 'x' and returns a tensor."""
|
||||
b, c, a = x.shape # batch, channels, anchors
|
||||
return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)
|
||||
# return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a)
|
||||
|
||||
|
||||
class Proto(nn.Module):
|
||||
"""YOLOv8 mask Proto module for segmentation models."""
|
||||
|
||||
def __init__(self, c1, c_=256, c2=32): # ch_in, number of protos, number of masks
|
||||
super().__init__()
|
||||
self.cv1 = Conv(c1, c_, k=3)
|
||||
self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True) # nn.Upsample(scale_factor=2, mode='nearest')
|
||||
self.cv2 = Conv(c_, c_, k=3)
|
||||
self.cv3 = Conv(c_, c2)
|
||||
|
||||
def forward(self, x):
|
||||
"""Performs a forward pass through layers using an upsampled input image."""
|
||||
return self.cv3(self.cv2(self.upsample(self.cv1(x))))
|
||||
|
||||
|
||||
class HGStem(nn.Module):
|
||||
"""StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d.
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
|
||||
"""
|
||||
|
||||
def __init__(self, c1, cm, c2):
|
||||
super().__init__()
|
||||
self.stem1 = Conv(c1, cm, 3, 2, act=nn.ReLU())
|
||||
self.stem2a = Conv(cm, cm // 2, 2, 1, 0, act=nn.ReLU())
|
||||
self.stem2b = Conv(cm // 2, cm, 2, 1, 0, act=nn.ReLU())
|
||||
self.stem3 = Conv(cm * 2, cm, 3, 2, act=nn.ReLU())
|
||||
self.stem4 = Conv(cm, c2, 1, 1, act=nn.ReLU())
|
||||
self.pool = nn.MaxPool2d(kernel_size=2, stride=1, padding=0, ceil_mode=True)
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass of a PPHGNetV2 backbone layer."""
|
||||
x = self.stem1(x)
|
||||
x = F.pad(x, [0, 1, 0, 1])
|
||||
x2 = self.stem2a(x)
|
||||
x2 = F.pad(x2, [0, 1, 0, 1])
|
||||
x2 = self.stem2b(x2)
|
||||
x1 = self.pool(x)
|
||||
x = torch.cat([x1, x2], dim=1)
|
||||
x = self.stem3(x)
|
||||
x = self.stem4(x)
|
||||
return x
|
||||
|
||||
|
||||
class HGBlock(nn.Module):
|
||||
"""HG_Block of PPHGNetV2 with 2 convolutions and LightConv.
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
|
||||
"""
|
||||
|
||||
def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
|
||||
super().__init__()
|
||||
block = LightConv if lightconv else Conv
|
||||
self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
|
||||
self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act) # squeeze conv
|
||||
self.ec = Conv(c2 // 2, c2, 1, 1, act=act) # excitation conv
|
||||
self.add = shortcut and c1 == c2
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass of a PPHGNetV2 backbone layer."""
|
||||
y = [x]
|
||||
y.extend(m(y[-1]) for m in self.m)
|
||||
y = self.ec(self.sc(torch.cat(y, 1)))
|
||||
return y + x if self.add else y
|
||||
|
||||
|
||||
class SPP(nn.Module):
|
||||
"""Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729."""
|
||||
|
||||
def __init__(self, c1, c2, k=(5, 9, 13)):
|
||||
"""Initialize the SPP layer with input/output channels and pooling kernel sizes."""
|
||||
super().__init__()
|
||||
c_ = c1 // 2 # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
|
||||
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass of the SPP layer, performing spatial pyramid pooling."""
|
||||
x = self.cv1(x)
|
||||
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
||||
|
||||
|
||||
class SPPF(nn.Module):
|
||||
"""Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher."""
|
||||
|
||||
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
|
||||
super().__init__()
|
||||
c_ = c1 // 2 # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
self.cv2 = Conv(c_ * 4, c2, 1, 1)
|
||||
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass through Ghost Convolution block."""
|
||||
x = self.cv1(x)
|
||||
y1 = self.m(x)
|
||||
y2 = self.m(y1)
|
||||
return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
|
||||
|
||||
|
||||
class C1(nn.Module):
|
||||
"""CSP Bottleneck with 1 convolution."""
|
||||
|
||||
def __init__(self, c1, c2, n=1): # ch_in, ch_out, number
|
||||
super().__init__()
|
||||
self.cv1 = Conv(c1, c2, 1, 1)
|
||||
self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n)))
|
||||
|
||||
def forward(self, x):
|
||||
"""Applies cross-convolutions to input in the C3 module."""
|
||||
y = self.cv1(x)
|
||||
return self.m(y) + y
|
||||
|
||||
|
||||
class C2(nn.Module):
|
||||
"""CSP Bottleneck with 2 convolutions."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||||
super().__init__()
|
||||
self.c = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
||||
self.cv2 = Conv(2 * self.c, c2, 1) # optional act=FReLU(c2)
|
||||
# self.attention = ChannelAttention(2 * self.c) # or SpatialAttention()
|
||||
self.m = nn.Sequential(*(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)))
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass through the CSP bottleneck with 2 convolutions."""
|
||||
a, b = self.cv1(x).chunk(2, 1)
|
||||
return self.cv2(torch.cat((self.m(a), b), 1))
|
||||
|
||||
|
||||
class C2f(nn.Module):
|
||||
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||||
super().__init__()
|
||||
self.c = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
||||
self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
|
||||
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass through C2f layer."""
|
||||
y = list(self.cv1(x).chunk(2, 1))
|
||||
y.extend(m(y[-1]) for m in self.m)
|
||||
return self.cv2(torch.cat(y, 1))
|
||||
|
||||
def forward_split(self, x):
|
||||
"""Forward pass using split() instead of chunk()."""
|
||||
y = list(self.cv1(x).split((self.c, self.c), 1))
|
||||
y.extend(m(y[-1]) for m in self.m)
|
||||
return self.cv2(torch.cat(y, 1))
|
||||
|
||||
|
||||
class C3(nn.Module):
|
||||
"""CSP Bottleneck with 3 convolutions."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
self.cv2 = Conv(c1, c_, 1, 1)
|
||||
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
|
||||
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass through the CSP bottleneck with 2 convolutions."""
|
||||
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
|
||||
|
||||
|
||||
class C3x(C3):
|
||||
"""C3 module with cross-convolutions."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
||||
"""Initialize C3TR instance and set default parameters."""
|
||||
super().__init__(c1, c2, n, shortcut, g, e)
|
||||
self.c_ = int(c2 * e)
|
||||
self.m = nn.Sequential(*(Bottleneck(self.c_, self.c_, shortcut, g, k=((1, 3), (3, 1)), e=1) for _ in range(n)))
|
||||
|
||||
|
||||
class RepC3(nn.Module):
|
||||
"""Rep C3."""
|
||||
|
||||
def __init__(self, c1, c2, n=3, e=1.0):
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c2, 1, 1)
|
||||
self.cv2 = Conv(c1, c2, 1, 1)
|
||||
self.m = nn.Sequential(*[RepConv(c_, c_) for _ in range(n)])
|
||||
self.cv3 = Conv(c_, c2, 1, 1) if c_ != c2 else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass of RT-DETR neck layer."""
|
||||
return self.cv3(self.m(self.cv1(x)) + self.cv2(x))
|
||||
|
||||
|
||||
class C3TR(C3):
|
||||
"""C3 module with TransformerBlock()."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
||||
"""Initialize C3Ghost module with GhostBottleneck()."""
|
||||
super().__init__(c1, c2, n, shortcut, g, e)
|
||||
c_ = int(c2 * e)
|
||||
self.m = TransformerBlock(c_, c_, 4, n)
|
||||
|
||||
|
||||
class C3Ghost(C3):
|
||||
"""C3 module with GhostBottleneck()."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
||||
"""Initialize 'SPP' module with various pooling sizes for spatial pyramid pooling."""
|
||||
super().__init__(c1, c2, n, shortcut, g, e)
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
|
||||
|
||||
|
||||
class GhostBottleneck(nn.Module):
|
||||
"""Ghost Bottleneck https://github.com/huawei-noah/ghostnet."""
|
||||
|
||||
def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
|
||||
super().__init__()
|
||||
c_ = c2 // 2
|
||||
self.conv = nn.Sequential(
|
||||
GhostConv(c1, c_, 1, 1), # pw
|
||||
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
|
||||
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
|
||||
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1,
|
||||
act=False)) if s == 2 else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
"""Applies skip connection and concatenation to input tensor."""
|
||||
return self.conv(x) + self.shortcut(x)
|
||||
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
"""Standard bottleneck."""
|
||||
|
||||
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): # ch_in, ch_out, shortcut, groups, kernels, expand
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c_, k[0], 1)
|
||||
self.cv2 = Conv(c_, c2, k[1], 1, g=g)
|
||||
self.add = shortcut and c1 == c2
|
||||
|
||||
def forward(self, x):
|
||||
"""'forward()' applies the YOLOv5 FPN to input data."""
|
||||
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
||||
|
||||
|
||||
class BottleneckCSP(nn.Module):
|
||||
"""CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
|
||||
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
|
||||
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
||||
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
|
||||
self.act = nn.SiLU()
|
||||
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
||||
|
||||
def forward(self, x):
|
||||
"""Applies a CSP bottleneck with 3 convolutions."""
|
||||
y1 = self.cv3(self.m(self.cv1(x)))
|
||||
y2 = self.cv2(x)
|
||||
return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
|
294
ultralytics/nn/modules/conv.py
Normal file
294
ultralytics/nn/modules/conv.py
Normal file
@ -0,0 +1,294 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Convolution modules
|
||||
"""
|
||||
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
__all__ = ('Conv', 'Conv2', 'LightConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus', 'GhostConv',
|
||||
'ChannelAttention', 'SpatialAttention', 'CBAM', 'Concat', 'RepConv')
|
||||
|
||||
|
||||
def autopad(k, p=None, d=1): # kernel, padding, dilation
|
||||
"""Pad to 'same' shape outputs."""
|
||||
if d > 1:
|
||||
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
|
||||
if p is None:
|
||||
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
||||
return p
|
||||
|
||||
|
||||
class Conv(nn.Module):
|
||||
"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
|
||||
default_act = nn.SiLU() # default activation
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
|
||||
"""Initialize Conv layer with given arguments including activation."""
|
||||
super().__init__()
|
||||
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
|
||||
self.bn = nn.BatchNorm2d(c2)
|
||||
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
"""Apply convolution, batch normalization and activation to input tensor."""
|
||||
return self.act(self.bn(self.conv(x)))
|
||||
|
||||
def forward_fuse(self, x):
|
||||
"""Perform transposed convolution of 2D data."""
|
||||
return self.act(self.conv(x))
|
||||
|
||||
|
||||
class Conv2(Conv):
|
||||
"""Simplified RepConv module with Conv fusing."""
|
||||
|
||||
def __init__(self, c1, c2, k=3, s=1, p=None, g=1, d=1, act=True):
|
||||
"""Initialize Conv layer with given arguments including activation."""
|
||||
super().__init__(c1, c2, k, s, p, g=g, d=d, act=act)
|
||||
self.cv2 = nn.Conv2d(c1, c2, 1, s, autopad(1, p, d), groups=g, dilation=d, bias=False) # add 1x1 conv
|
||||
|
||||
def forward(self, x):
|
||||
"""Apply convolution, batch normalization and activation to input tensor."""
|
||||
return self.act(self.bn(self.conv(x) + self.cv2(x)))
|
||||
|
||||
def forward_fuse(self, x):
|
||||
"""Apply fused convolution, batch normalization and activation to input tensor."""
|
||||
return self.act(self.bn(self.conv(x)))
|
||||
|
||||
def fuse_convs(self):
|
||||
"""Fuse parallel convolutions."""
|
||||
w = torch.zeros_like(self.conv.weight.data)
|
||||
i = [x // 2 for x in w.shape[2:]]
|
||||
w[:, :, i[0]:i[0] + 1, i[1]:i[1] + 1] = self.cv2.weight.data.clone()
|
||||
self.conv.weight.data += w
|
||||
self.__delattr__('cv2')
|
||||
self.forward = self.forward_fuse
|
||||
|
||||
|
||||
class LightConv(nn.Module):
|
||||
"""Light convolution with args(ch_in, ch_out, kernel).
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
|
||||
"""
|
||||
|
||||
def __init__(self, c1, c2, k=1, act=nn.ReLU()):
|
||||
"""Initialize Conv layer with given arguments including activation."""
|
||||
super().__init__()
|
||||
self.conv1 = Conv(c1, c2, 1, act=False)
|
||||
self.conv2 = DWConv(c2, c2, k, act=act)
|
||||
|
||||
def forward(self, x):
|
||||
"""Apply 2 convolutions to input tensor."""
|
||||
return self.conv2(self.conv1(x))
|
||||
|
||||
|
||||
class DWConv(Conv):
|
||||
"""Depth-wise convolution."""
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, d=1, act=True): # ch_in, ch_out, kernel, stride, dilation, activation
|
||||
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
|
||||
|
||||
|
||||
class DWConvTranspose2d(nn.ConvTranspose2d):
|
||||
"""Depth-wise transpose convolution."""
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out
|
||||
super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
|
||||
|
||||
|
||||
class ConvTranspose(nn.Module):
|
||||
"""Convolution transpose 2d layer."""
|
||||
default_act = nn.SiLU() # default activation
|
||||
|
||||
def __init__(self, c1, c2, k=2, s=2, p=0, bn=True, act=True):
|
||||
"""Initialize ConvTranspose2d layer with batch normalization and activation function."""
|
||||
super().__init__()
|
||||
self.conv_transpose = nn.ConvTranspose2d(c1, c2, k, s, p, bias=not bn)
|
||||
self.bn = nn.BatchNorm2d(c2) if bn else nn.Identity()
|
||||
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
"""Applies transposed convolutions, batch normalization and activation to input."""
|
||||
return self.act(self.bn(self.conv_transpose(x)))
|
||||
|
||||
def forward_fuse(self, x):
|
||||
"""Applies activation and convolution transpose operation to input."""
|
||||
return self.act(self.conv_transpose(x))
|
||||
|
||||
|
||||
class Focus(nn.Module):
|
||||
"""Focus wh information into c-space."""
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
||||
super().__init__()
|
||||
self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)
|
||||
# self.contract = Contract(gain=2)
|
||||
|
||||
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
|
||||
return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
|
||||
# return self.conv(self.contract(x))
|
||||
|
||||
|
||||
class GhostConv(nn.Module):
|
||||
"""Ghost Convolution https://github.com/huawei-noah/ghostnet."""
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
|
||||
super().__init__()
|
||||
c_ = c2 // 2 # hidden channels
|
||||
self.cv1 = Conv(c1, c_, k, s, None, g, act=act)
|
||||
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward propagation through a Ghost Bottleneck layer with skip connection."""
|
||||
y = self.cv1(x)
|
||||
return torch.cat((y, self.cv2(y)), 1)
|
||||
|
||||
|
||||
class RepConv(nn.Module):
|
||||
"""
|
||||
RepConv is a basic rep-style block, including training and deploy status. This module is used in RT-DETR.
|
||||
Based on https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py
|
||||
"""
|
||||
default_act = nn.SiLU() # default activation
|
||||
|
||||
def __init__(self, c1, c2, k=3, s=1, p=1, g=1, d=1, act=True, bn=False, deploy=False):
|
||||
super().__init__()
|
||||
assert k == 3 and p == 1
|
||||
self.g = g
|
||||
self.c1 = c1
|
||||
self.c2 = c2
|
||||
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
||||
|
||||
self.bn = nn.BatchNorm2d(num_features=c1) if bn and c2 == c1 and s == 1 else None
|
||||
self.conv1 = Conv(c1, c2, k, s, p=p, g=g, act=False)
|
||||
self.conv2 = Conv(c1, c2, 1, s, p=(p - k // 2), g=g, act=False)
|
||||
|
||||
def forward_fuse(self, x):
|
||||
"""Forward process"""
|
||||
return self.act(self.conv(x))
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward process"""
|
||||
id_out = 0 if self.bn is None else self.bn(x)
|
||||
return self.act(self.conv1(x) + self.conv2(x) + id_out)
|
||||
|
||||
def get_equivalent_kernel_bias(self):
|
||||
kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1)
|
||||
kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2)
|
||||
kernelid, biasid = self._fuse_bn_tensor(self.bn)
|
||||
return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
|
||||
|
||||
def _pad_1x1_to_3x3_tensor(self, kernel1x1):
|
||||
if kernel1x1 is None:
|
||||
return 0
|
||||
else:
|
||||
return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])
|
||||
|
||||
def _fuse_bn_tensor(self, branch):
|
||||
if branch is None:
|
||||
return 0, 0
|
||||
if isinstance(branch, Conv):
|
||||
kernel = branch.conv.weight
|
||||
running_mean = branch.bn.running_mean
|
||||
running_var = branch.bn.running_var
|
||||
gamma = branch.bn.weight
|
||||
beta = branch.bn.bias
|
||||
eps = branch.bn.eps
|
||||
elif isinstance(branch, nn.BatchNorm2d):
|
||||
if not hasattr(self, 'id_tensor'):
|
||||
input_dim = self.c1 // self.g
|
||||
kernel_value = np.zeros((self.c1, input_dim, 3, 3), dtype=np.float32)
|
||||
for i in range(self.c1):
|
||||
kernel_value[i, i % input_dim, 1, 1] = 1
|
||||
self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
|
||||
kernel = self.id_tensor
|
||||
running_mean = branch.running_mean
|
||||
running_var = branch.running_var
|
||||
gamma = branch.weight
|
||||
beta = branch.bias
|
||||
eps = branch.eps
|
||||
std = (running_var + eps).sqrt()
|
||||
t = (gamma / std).reshape(-1, 1, 1, 1)
|
||||
return kernel * t, beta - running_mean * gamma / std
|
||||
|
||||
def fuse_convs(self):
|
||||
if hasattr(self, 'conv'):
|
||||
return
|
||||
kernel, bias = self.get_equivalent_kernel_bias()
|
||||
self.conv = nn.Conv2d(in_channels=self.conv1.conv.in_channels,
|
||||
out_channels=self.conv1.conv.out_channels,
|
||||
kernel_size=self.conv1.conv.kernel_size,
|
||||
stride=self.conv1.conv.stride,
|
||||
padding=self.conv1.conv.padding,
|
||||
dilation=self.conv1.conv.dilation,
|
||||
groups=self.conv1.conv.groups,
|
||||
bias=True).requires_grad_(False)
|
||||
self.conv.weight.data = kernel
|
||||
self.conv.bias.data = bias
|
||||
for para in self.parameters():
|
||||
para.detach_()
|
||||
self.__delattr__('conv1')
|
||||
self.__delattr__('conv2')
|
||||
if hasattr(self, 'nm'):
|
||||
self.__delattr__('nm')
|
||||
if hasattr(self, 'bn'):
|
||||
self.__delattr__('bn')
|
||||
if hasattr(self, 'id_tensor'):
|
||||
self.__delattr__('id_tensor')
|
||||
|
||||
|
||||
class ChannelAttention(nn.Module):
|
||||
"""Channel-attention module https://github.com/open-mmlab/mmdetection/tree/v3.0.0rc1/configs/rtmdet."""
|
||||
|
||||
def __init__(self, channels: int) -> None:
|
||||
super().__init__()
|
||||
self.pool = nn.AdaptiveAvgPool2d(1)
|
||||
self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True)
|
||||
self.act = nn.Sigmoid()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return x * self.act(self.fc(self.pool(x)))
|
||||
|
||||
|
||||
class SpatialAttention(nn.Module):
|
||||
"""Spatial-attention module."""
|
||||
|
||||
def __init__(self, kernel_size=7):
|
||||
"""Initialize Spatial-attention module with kernel size argument."""
|
||||
super().__init__()
|
||||
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
|
||||
padding = 3 if kernel_size == 7 else 1
|
||||
self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
|
||||
self.act = nn.Sigmoid()
|
||||
|
||||
def forward(self, x):
|
||||
"""Apply channel and spatial attention on input for feature recalibration."""
|
||||
return x * self.act(self.cv1(torch.cat([torch.mean(x, 1, keepdim=True), torch.max(x, 1, keepdim=True)[0]], 1)))
|
||||
|
||||
|
||||
class CBAM(nn.Module):
|
||||
"""Convolutional Block Attention Module."""
|
||||
|
||||
def __init__(self, c1, kernel_size=7): # ch_in, kernels
|
||||
super().__init__()
|
||||
self.channel_attention = ChannelAttention(c1)
|
||||
self.spatial_attention = SpatialAttention(kernel_size)
|
||||
|
||||
def forward(self, x):
|
||||
"""Applies the forward pass through C1 module."""
|
||||
return self.spatial_attention(self.channel_attention(x))
|
||||
|
||||
|
||||
class Concat(nn.Module):
|
||||
"""Concatenate a list of tensors along dimension."""
|
||||
|
||||
def __init__(self, dimension=1):
|
||||
"""Concatenates a list of tensors along a specified dimension."""
|
||||
super().__init__()
|
||||
self.d = dimension
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass for the YOLOv8 mask Proto module."""
|
||||
return torch.cat(x, self.d)
|
362
ultralytics/nn/modules/head.py
Normal file
362
ultralytics/nn/modules/head.py
Normal file
@ -0,0 +1,362 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Model head modules
|
||||
"""
|
||||
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn.init import constant_, xavier_uniform_
|
||||
|
||||
from ultralytics.utils.tal import TORCH_1_10, dist2bbox, make_anchors
|
||||
|
||||
from .block import DFL, Proto
|
||||
from .conv import Conv
|
||||
from .transformer import MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer
|
||||
from .utils import bias_init_with_prob, linear_init_
|
||||
|
||||
__all__ = 'Detect', 'Segment', 'Pose', 'Classify', 'RTDETRDecoder'
|
||||
|
||||
|
||||
class Detect(nn.Module):
|
||||
"""YOLOv8 Detect head for detection models."""
|
||||
dynamic = False # force grid reconstruction
|
||||
export = False # export mode
|
||||
shape = None
|
||||
anchors = torch.empty(0) # init
|
||||
strides = torch.empty(0) # init
|
||||
|
||||
def __init__(self, nc=80, ch=()): # detection layer
|
||||
super().__init__()
|
||||
self.nc = nc # number of classes
|
||||
self.nl = len(ch) # number of detection layers
|
||||
self.reg_max = 16 # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)
|
||||
self.no = nc + self.reg_max * 4 # number of outputs per anchor
|
||||
self.stride = torch.zeros(self.nl) # strides computed during build
|
||||
c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100)) # channels
|
||||
self.cv2 = nn.ModuleList(
|
||||
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch)
|
||||
self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
|
||||
self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
"""Concatenates and returns predicted bounding boxes and class probabilities."""
|
||||
shape = x[0].shape # BCHW
|
||||
for i in range(self.nl):
|
||||
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
|
||||
if self.training:
|
||||
return x
|
||||
elif self.dynamic or self.shape != shape:
|
||||
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
|
||||
self.shape = shape
|
||||
|
||||
x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)
|
||||
if self.export and self.format in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs'): # avoid TF FlexSplitV ops
|
||||
box = x_cat[:, :self.reg_max * 4]
|
||||
cls = x_cat[:, self.reg_max * 4:]
|
||||
else:
|
||||
box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
|
||||
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
||||
|
||||
if self.export and self.format in ('tflite', 'edgetpu'):
|
||||
# Normalize xywh with image size to mitigate quantization error of TFLite integer models as done in YOLOv5:
|
||||
# https://github.com/ultralytics/yolov5/blob/0c8de3fca4a702f8ff5c435e67f378d1fce70243/models/tf.py#L307-L309
|
||||
# See this PR for details: https://github.com/ultralytics/ultralytics/pull/1695
|
||||
img_h = shape[2] * self.stride[0]
|
||||
img_w = shape[3] * self.stride[0]
|
||||
img_size = torch.tensor([img_w, img_h, img_w, img_h], device=dbox.device).reshape(1, 4, 1)
|
||||
dbox /= img_size
|
||||
|
||||
y = torch.cat((dbox, cls.sigmoid()), 1)
|
||||
return y if self.export else (y, x)
|
||||
|
||||
def bias_init(self):
|
||||
"""Initialize Detect() biases, WARNING: requires stride availability."""
|
||||
m = self # self.model[-1] # Detect() module
|
||||
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
||||
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
||||
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
|
||||
a[-1].bias.data[:] = 1.0 # box
|
||||
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)
|
||||
|
||||
|
||||
class Segment(Detect):
|
||||
"""YOLOv8 Segment head for segmentation models."""
|
||||
|
||||
def __init__(self, nc=80, nm=32, npr=256, ch=()):
|
||||
"""Initialize the YOLO model attributes such as the number of masks, prototypes, and the convolution layers."""
|
||||
super().__init__(nc, ch)
|
||||
self.nm = nm # number of masks
|
||||
self.npr = npr # number of protos
|
||||
self.proto = Proto(ch[0], self.npr, self.nm) # protos
|
||||
self.detect = Detect.forward
|
||||
|
||||
c4 = max(ch[0] // 4, self.nm)
|
||||
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)
|
||||
|
||||
def forward(self, x):
|
||||
"""Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients."""
|
||||
p = self.proto(x[0]) # mask protos
|
||||
bs = p.shape[0] # batch size
|
||||
|
||||
mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
|
||||
x = self.detect(self, x)
|
||||
if self.training:
|
||||
return x, mc, p
|
||||
return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
|
||||
|
||||
|
||||
class Pose(Detect):
|
||||
"""YOLOv8 Pose head for keypoints models."""
|
||||
|
||||
def __init__(self, nc=80, kpt_shape=(17, 3), ch=()):
|
||||
"""Initialize YOLO network with default parameters and Convolutional Layers."""
|
||||
super().__init__(nc, ch)
|
||||
self.kpt_shape = kpt_shape # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
self.nk = kpt_shape[0] * kpt_shape[1] # number of keypoints total
|
||||
self.detect = Detect.forward
|
||||
|
||||
c4 = max(ch[0] // 4, self.nk)
|
||||
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nk, 1)) for x in ch)
|
||||
|
||||
def forward(self, x):
|
||||
"""Perform forward pass through YOLO model and return predictions."""
|
||||
bs = x[0].shape[0] # batch size
|
||||
kpt = torch.cat([self.cv4[i](x[i]).view(bs, self.nk, -1) for i in range(self.nl)], -1) # (bs, 17*3, h*w)
|
||||
x = self.detect(self, x)
|
||||
if self.training:
|
||||
return x, kpt
|
||||
pred_kpt = self.kpts_decode(bs, kpt)
|
||||
return torch.cat([x, pred_kpt], 1) if self.export else (torch.cat([x[0], pred_kpt], 1), (x[1], kpt))
|
||||
|
||||
def kpts_decode(self, bs, kpts):
|
||||
"""Decodes keypoints."""
|
||||
ndim = self.kpt_shape[1]
|
||||
if self.export: # required for TFLite export to avoid 'PLACEHOLDER_FOR_GREATER_OP_CODES' bug
|
||||
y = kpts.view(bs, *self.kpt_shape, -1)
|
||||
a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * self.strides
|
||||
if ndim == 3:
|
||||
a = torch.cat((a, y[:, :, 2:3].sigmoid()), 2)
|
||||
return a.view(bs, self.nk, -1)
|
||||
else:
|
||||
y = kpts.clone()
|
||||
if ndim == 3:
|
||||
y[:, 2::3].sigmoid_() # inplace sigmoid
|
||||
y[:, 0::ndim] = (y[:, 0::ndim] * 2.0 + (self.anchors[0] - 0.5)) * self.strides
|
||||
y[:, 1::ndim] = (y[:, 1::ndim] * 2.0 + (self.anchors[1] - 0.5)) * self.strides
|
||||
return y
|
||||
|
||||
|
||||
class Classify(nn.Module):
|
||||
"""YOLOv8 classification head, i.e. x(b,c1,20,20) to x(b,c2)."""
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
|
||||
super().__init__()
|
||||
c_ = 1280 # efficientnet_b0 size
|
||||
self.conv = Conv(c1, c_, k, s, p, g)
|
||||
self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1)
|
||||
self.drop = nn.Dropout(p=0.0, inplace=True)
|
||||
self.linear = nn.Linear(c_, c2) # to x(b,c2)
|
||||
|
||||
def forward(self, x):
|
||||
"""Performs a forward pass of the YOLO model on input image data."""
|
||||
if isinstance(x, list):
|
||||
x = torch.cat(x, 1)
|
||||
x = self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
|
||||
return x if self.training else x.softmax(1)
|
||||
|
||||
|
||||
class RTDETRDecoder(nn.Module):
|
||||
export = False # export mode
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
nc=80,
|
||||
ch=(512, 1024, 2048),
|
||||
hd=256, # hidden dim
|
||||
nq=300, # num queries
|
||||
ndp=4, # num decoder points
|
||||
nh=8, # num head
|
||||
ndl=6, # num decoder layers
|
||||
d_ffn=1024, # dim of feedforward
|
||||
dropout=0.,
|
||||
act=nn.ReLU(),
|
||||
eval_idx=-1,
|
||||
# training args
|
||||
nd=100, # num denoising
|
||||
label_noise_ratio=0.5,
|
||||
box_noise_scale=1.0,
|
||||
learnt_init_query=False):
|
||||
super().__init__()
|
||||
self.hidden_dim = hd
|
||||
self.nhead = nh
|
||||
self.nl = len(ch) # num level
|
||||
self.nc = nc
|
||||
self.num_queries = nq
|
||||
self.num_decoder_layers = ndl
|
||||
|
||||
# backbone feature projection
|
||||
self.input_proj = nn.ModuleList(nn.Sequential(nn.Conv2d(x, hd, 1, bias=False), nn.BatchNorm2d(hd)) for x in ch)
|
||||
# NOTE: simplified version but it's not consistent with .pt weights.
|
||||
# self.input_proj = nn.ModuleList(Conv(x, hd, act=False) for x in ch)
|
||||
|
||||
# Transformer module
|
||||
decoder_layer = DeformableTransformerDecoderLayer(hd, nh, d_ffn, dropout, act, self.nl, ndp)
|
||||
self.decoder = DeformableTransformerDecoder(hd, decoder_layer, ndl, eval_idx)
|
||||
|
||||
# denoising part
|
||||
self.denoising_class_embed = nn.Embedding(nc, hd)
|
||||
self.num_denoising = nd
|
||||
self.label_noise_ratio = label_noise_ratio
|
||||
self.box_noise_scale = box_noise_scale
|
||||
|
||||
# decoder embedding
|
||||
self.learnt_init_query = learnt_init_query
|
||||
if learnt_init_query:
|
||||
self.tgt_embed = nn.Embedding(nq, hd)
|
||||
self.query_pos_head = MLP(4, 2 * hd, hd, num_layers=2)
|
||||
|
||||
# encoder head
|
||||
self.enc_output = nn.Sequential(nn.Linear(hd, hd), nn.LayerNorm(hd))
|
||||
self.enc_score_head = nn.Linear(hd, nc)
|
||||
self.enc_bbox_head = MLP(hd, hd, 4, num_layers=3)
|
||||
|
||||
# decoder head
|
||||
self.dec_score_head = nn.ModuleList([nn.Linear(hd, nc) for _ in range(ndl)])
|
||||
self.dec_bbox_head = nn.ModuleList([MLP(hd, hd, 4, num_layers=3) for _ in range(ndl)])
|
||||
|
||||
self._reset_parameters()
|
||||
|
||||
def forward(self, x, batch=None):
|
||||
from ultralytics.models.utils.ops import get_cdn_group
|
||||
|
||||
# input projection and embedding
|
||||
feats, shapes = self._get_encoder_input(x)
|
||||
|
||||
# prepare denoising training
|
||||
dn_embed, dn_bbox, attn_mask, dn_meta = \
|
||||
get_cdn_group(batch,
|
||||
self.nc,
|
||||
self.num_queries,
|
||||
self.denoising_class_embed.weight,
|
||||
self.num_denoising,
|
||||
self.label_noise_ratio,
|
||||
self.box_noise_scale,
|
||||
self.training)
|
||||
|
||||
embed, refer_bbox, enc_bboxes, enc_scores = \
|
||||
self._get_decoder_input(feats, shapes, dn_embed, dn_bbox)
|
||||
|
||||
# decoder
|
||||
dec_bboxes, dec_scores = self.decoder(embed,
|
||||
refer_bbox,
|
||||
feats,
|
||||
shapes,
|
||||
self.dec_bbox_head,
|
||||
self.dec_score_head,
|
||||
self.query_pos_head,
|
||||
attn_mask=attn_mask)
|
||||
x = dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta
|
||||
if self.training:
|
||||
return x
|
||||
# (bs, 300, 4+nc)
|
||||
y = torch.cat((dec_bboxes.squeeze(0), dec_scores.squeeze(0).sigmoid()), -1)
|
||||
return y if self.export else (y, x)
|
||||
|
||||
def _generate_anchors(self, shapes, grid_size=0.05, dtype=torch.float32, device='cpu', eps=1e-2):
|
||||
anchors = []
|
||||
for i, (h, w) in enumerate(shapes):
|
||||
sy = torch.arange(end=h, dtype=dtype, device=device)
|
||||
sx = torch.arange(end=w, dtype=dtype, device=device)
|
||||
grid_y, grid_x = torch.meshgrid(sy, sx, indexing='ij') if TORCH_1_10 else torch.meshgrid(sy, sx)
|
||||
grid_xy = torch.stack([grid_x, grid_y], -1) # (h, w, 2)
|
||||
|
||||
valid_WH = torch.tensor([h, w], dtype=dtype, device=device)
|
||||
grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH # (1, h, w, 2)
|
||||
wh = torch.ones_like(grid_xy, dtype=dtype, device=device) * grid_size * (2.0 ** i)
|
||||
anchors.append(torch.cat([grid_xy, wh], -1).view(-1, h * w, 4)) # (1, h*w, 4)
|
||||
|
||||
anchors = torch.cat(anchors, 1) # (1, h*w*nl, 4)
|
||||
valid_mask = ((anchors > eps) * (anchors < 1 - eps)).all(-1, keepdim=True) # 1, h*w*nl, 1
|
||||
anchors = torch.log(anchors / (1 - anchors))
|
||||
anchors = anchors.masked_fill(~valid_mask, float('inf'))
|
||||
return anchors, valid_mask
|
||||
|
||||
def _get_encoder_input(self, x):
|
||||
# get projection features
|
||||
x = [self.input_proj[i](feat) for i, feat in enumerate(x)]
|
||||
# get encoder inputs
|
||||
feats = []
|
||||
shapes = []
|
||||
for feat in x:
|
||||
h, w = feat.shape[2:]
|
||||
# [b, c, h, w] -> [b, h*w, c]
|
||||
feats.append(feat.flatten(2).permute(0, 2, 1))
|
||||
# [nl, 2]
|
||||
shapes.append([h, w])
|
||||
|
||||
# [b, h*w, c]
|
||||
feats = torch.cat(feats, 1)
|
||||
return feats, shapes
|
||||
|
||||
def _get_decoder_input(self, feats, shapes, dn_embed=None, dn_bbox=None):
|
||||
bs = len(feats)
|
||||
# prepare input for decoder
|
||||
anchors, valid_mask = self._generate_anchors(shapes, dtype=feats.dtype, device=feats.device)
|
||||
features = self.enc_output(valid_mask * feats) # bs, h*w, 256
|
||||
|
||||
enc_outputs_scores = self.enc_score_head(features) # (bs, h*w, nc)
|
||||
|
||||
# query selection
|
||||
# (bs, num_queries)
|
||||
topk_ind = torch.topk(enc_outputs_scores.max(-1).values, self.num_queries, dim=1).indices.view(-1)
|
||||
# (bs, num_queries)
|
||||
batch_ind = torch.arange(end=bs, dtype=topk_ind.dtype).unsqueeze(-1).repeat(1, self.num_queries).view(-1)
|
||||
|
||||
# (bs, num_queries, 256)
|
||||
top_k_features = features[batch_ind, topk_ind].view(bs, self.num_queries, -1)
|
||||
# (bs, num_queries, 4)
|
||||
top_k_anchors = anchors[:, topk_ind].view(bs, self.num_queries, -1)
|
||||
|
||||
# dynamic anchors + static content
|
||||
refer_bbox = self.enc_bbox_head(top_k_features) + top_k_anchors
|
||||
|
||||
enc_bboxes = refer_bbox.sigmoid()
|
||||
if dn_bbox is not None:
|
||||
refer_bbox = torch.cat([dn_bbox, refer_bbox], 1)
|
||||
enc_scores = enc_outputs_scores[batch_ind, topk_ind].view(bs, self.num_queries, -1)
|
||||
|
||||
embeddings = self.tgt_embed.weight.unsqueeze(0).repeat(bs, 1, 1) if self.learnt_init_query else top_k_features
|
||||
if self.training:
|
||||
refer_bbox = refer_bbox.detach()
|
||||
if not self.learnt_init_query:
|
||||
embeddings = embeddings.detach()
|
||||
if dn_embed is not None:
|
||||
embeddings = torch.cat([dn_embed, embeddings], 1)
|
||||
|
||||
return embeddings, refer_bbox, enc_bboxes, enc_scores
|
||||
|
||||
# TODO
|
||||
def _reset_parameters(self):
|
||||
# class and bbox head init
|
||||
bias_cls = bias_init_with_prob(0.01) / 80 * self.nc
|
||||
# NOTE: the weight initialization in `linear_init_` would cause NaN when training with custom datasets.
|
||||
# linear_init_(self.enc_score_head)
|
||||
constant_(self.enc_score_head.bias, bias_cls)
|
||||
constant_(self.enc_bbox_head.layers[-1].weight, 0.)
|
||||
constant_(self.enc_bbox_head.layers[-1].bias, 0.)
|
||||
for cls_, reg_ in zip(self.dec_score_head, self.dec_bbox_head):
|
||||
# linear_init_(cls_)
|
||||
constant_(cls_.bias, bias_cls)
|
||||
constant_(reg_.layers[-1].weight, 0.)
|
||||
constant_(reg_.layers[-1].bias, 0.)
|
||||
|
||||
linear_init_(self.enc_output[0])
|
||||
xavier_uniform_(self.enc_output[0].weight)
|
||||
if self.learnt_init_query:
|
||||
xavier_uniform_(self.tgt_embed.weight)
|
||||
xavier_uniform_(self.query_pos_head.layers[0].weight)
|
||||
xavier_uniform_(self.query_pos_head.layers[1].weight)
|
||||
for layer in self.input_proj:
|
||||
xavier_uniform_(layer[0].weight)
|
375
ultralytics/nn/modules/transformer.py
Normal file
375
ultralytics/nn/modules/transformer.py
Normal file
@ -0,0 +1,375 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Transformer modules
|
||||
"""
|
||||
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.init import constant_, xavier_uniform_
|
||||
|
||||
from .conv import Conv
|
||||
from .utils import _get_clones, inverse_sigmoid, multi_scale_deformable_attn_pytorch
|
||||
|
||||
__all__ = ('TransformerEncoderLayer', 'TransformerLayer', 'TransformerBlock', 'MLPBlock', 'LayerNorm2d', 'AIFI',
|
||||
'DeformableTransformerDecoder', 'DeformableTransformerDecoderLayer', 'MSDeformAttn', 'MLP')
|
||||
|
||||
|
||||
class TransformerEncoderLayer(nn.Module):
|
||||
"""Transformer Encoder."""
|
||||
|
||||
def __init__(self, c1, cm=2048, num_heads=8, dropout=0.0, act=nn.GELU(), normalize_before=False):
|
||||
super().__init__()
|
||||
from ...utils.torch_utils import TORCH_1_9
|
||||
if not TORCH_1_9:
|
||||
raise ModuleNotFoundError(
|
||||
'TransformerEncoderLayer() requires torch>=1.9 to use nn.MultiheadAttention(batch_first=True).')
|
||||
self.ma = nn.MultiheadAttention(c1, num_heads, dropout=dropout, batch_first=True)
|
||||
# Implementation of Feedforward model
|
||||
self.fc1 = nn.Linear(c1, cm)
|
||||
self.fc2 = nn.Linear(cm, c1)
|
||||
|
||||
self.norm1 = nn.LayerNorm(c1)
|
||||
self.norm2 = nn.LayerNorm(c1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
|
||||
self.act = act
|
||||
self.normalize_before = normalize_before
|
||||
|
||||
def with_pos_embed(self, tensor, pos=None):
|
||||
"""Add position embeddings if given."""
|
||||
return tensor if pos is None else tensor + pos
|
||||
|
||||
def forward_post(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
|
||||
q = k = self.with_pos_embed(src, pos)
|
||||
src2 = self.ma(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
||||
src = src + self.dropout1(src2)
|
||||
src = self.norm1(src)
|
||||
src2 = self.fc2(self.dropout(self.act(self.fc1(src))))
|
||||
src = src + self.dropout2(src2)
|
||||
return self.norm2(src)
|
||||
|
||||
def forward_pre(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
|
||||
src2 = self.norm1(src)
|
||||
q = k = self.with_pos_embed(src2, pos)
|
||||
src2 = self.ma(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
||||
src = src + self.dropout1(src2)
|
||||
src2 = self.norm2(src)
|
||||
src2 = self.fc2(self.dropout(self.act(self.fc1(src2))))
|
||||
return src + self.dropout2(src2)
|
||||
|
||||
def forward(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
|
||||
"""Forward propagates the input through the encoder module."""
|
||||
if self.normalize_before:
|
||||
return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
|
||||
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
|
||||
|
||||
|
||||
class AIFI(TransformerEncoderLayer):
|
||||
|
||||
def __init__(self, c1, cm=2048, num_heads=8, dropout=0, act=nn.GELU(), normalize_before=False):
|
||||
super().__init__(c1, cm, num_heads, dropout, act, normalize_before)
|
||||
|
||||
def forward(self, x):
|
||||
c, h, w = x.shape[1:]
|
||||
pos_embed = self.build_2d_sincos_position_embedding(w, h, c)
|
||||
# flatten [B, C, H, W] to [B, HxW, C]
|
||||
x = super().forward(x.flatten(2).permute(0, 2, 1), pos=pos_embed.to(device=x.device, dtype=x.dtype))
|
||||
return x.permute(0, 2, 1).view([-1, c, h, w]).contiguous()
|
||||
|
||||
@staticmethod
|
||||
def build_2d_sincos_position_embedding(w, h, embed_dim=256, temperature=10000.):
|
||||
grid_w = torch.arange(int(w), dtype=torch.float32)
|
||||
grid_h = torch.arange(int(h), dtype=torch.float32)
|
||||
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing='ij')
|
||||
assert embed_dim % 4 == 0, \
|
||||
'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'
|
||||
pos_dim = embed_dim // 4
|
||||
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
|
||||
omega = 1. / (temperature ** omega)
|
||||
|
||||
out_w = grid_w.flatten()[..., None] @ omega[None]
|
||||
out_h = grid_h.flatten()[..., None] @ omega[None]
|
||||
|
||||
return torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h), torch.cos(out_h)], 1)[None]
|
||||
|
||||
|
||||
class TransformerLayer(nn.Module):
|
||||
"""Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)."""
|
||||
|
||||
def __init__(self, c, num_heads):
|
||||
"""Initializes a self-attention mechanism using linear transformations and multi-head attention."""
|
||||
super().__init__()
|
||||
self.q = nn.Linear(c, c, bias=False)
|
||||
self.k = nn.Linear(c, c, bias=False)
|
||||
self.v = nn.Linear(c, c, bias=False)
|
||||
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
|
||||
self.fc1 = nn.Linear(c, c, bias=False)
|
||||
self.fc2 = nn.Linear(c, c, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
"""Apply a transformer block to the input x and return the output."""
|
||||
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
|
||||
return self.fc2(self.fc1(x)) + x
|
||||
|
||||
|
||||
class TransformerBlock(nn.Module):
|
||||
"""Vision Transformer https://arxiv.org/abs/2010.11929."""
|
||||
|
||||
def __init__(self, c1, c2, num_heads, num_layers):
|
||||
"""Initialize a Transformer module with position embedding and specified number of heads and layers."""
|
||||
super().__init__()
|
||||
self.conv = None
|
||||
if c1 != c2:
|
||||
self.conv = Conv(c1, c2)
|
||||
self.linear = nn.Linear(c2, c2) # learnable position embedding
|
||||
self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
|
||||
self.c2 = c2
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward propagates the input through the bottleneck module."""
|
||||
if self.conv is not None:
|
||||
x = self.conv(x)
|
||||
b, _, w, h = x.shape
|
||||
p = x.flatten(2).permute(2, 0, 1)
|
||||
return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
|
||||
|
||||
|
||||
class MLPBlock(nn.Module):
|
||||
|
||||
def __init__(self, embedding_dim, mlp_dim, act=nn.GELU):
|
||||
super().__init__()
|
||||
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
||||
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
||||
self.act = act()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return self.lin2(self.act(self.lin1(x)))
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
""" Very simple multi-layer perceptron (also called FFN)"""
|
||||
|
||||
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
|
||||
super().__init__()
|
||||
self.num_layers = num_layers
|
||||
h = [hidden_dim] * (num_layers - 1)
|
||||
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
||||
|
||||
def forward(self, x):
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
||||
return x
|
||||
|
||||
|
||||
class LayerNorm2d(nn.Module):
|
||||
"""
|
||||
LayerNorm2d module from https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py
|
||||
https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119
|
||||
"""
|
||||
|
||||
def __init__(self, num_channels, eps=1e-6):
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.ones(num_channels))
|
||||
self.bias = nn.Parameter(torch.zeros(num_channels))
|
||||
self.eps = eps
|
||||
|
||||
def forward(self, x):
|
||||
u = x.mean(1, keepdim=True)
|
||||
s = (x - u).pow(2).mean(1, keepdim=True)
|
||||
x = (x - u) / torch.sqrt(s + self.eps)
|
||||
return self.weight[:, None, None] * x + self.bias[:, None, None]
|
||||
|
||||
|
||||
class MSDeformAttn(nn.Module):
|
||||
"""
|
||||
Original Multi-Scale Deformable Attention Module.
|
||||
https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py
|
||||
"""
|
||||
|
||||
def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4):
|
||||
super().__init__()
|
||||
if d_model % n_heads != 0:
|
||||
raise ValueError(f'd_model must be divisible by n_heads, but got {d_model} and {n_heads}')
|
||||
_d_per_head = d_model // n_heads
|
||||
# you'd better set _d_per_head to a power of 2 which is more efficient in our CUDA implementation
|
||||
assert _d_per_head * n_heads == d_model, '`d_model` must be divisible by `n_heads`'
|
||||
|
||||
self.im2col_step = 64
|
||||
|
||||
self.d_model = d_model
|
||||
self.n_levels = n_levels
|
||||
self.n_heads = n_heads
|
||||
self.n_points = n_points
|
||||
|
||||
self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2)
|
||||
self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points)
|
||||
self.value_proj = nn.Linear(d_model, d_model)
|
||||
self.output_proj = nn.Linear(d_model, d_model)
|
||||
|
||||
self._reset_parameters()
|
||||
|
||||
def _reset_parameters(self):
|
||||
constant_(self.sampling_offsets.weight.data, 0.)
|
||||
thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads)
|
||||
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
|
||||
grid_init = (grid_init / grid_init.abs().max(-1, keepdim=True)[0]).view(self.n_heads, 1, 1, 2).repeat(
|
||||
1, self.n_levels, self.n_points, 1)
|
||||
for i in range(self.n_points):
|
||||
grid_init[:, :, i, :] *= i + 1
|
||||
with torch.no_grad():
|
||||
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
|
||||
constant_(self.attention_weights.weight.data, 0.)
|
||||
constant_(self.attention_weights.bias.data, 0.)
|
||||
xavier_uniform_(self.value_proj.weight.data)
|
||||
constant_(self.value_proj.bias.data, 0.)
|
||||
xavier_uniform_(self.output_proj.weight.data)
|
||||
constant_(self.output_proj.bias.data, 0.)
|
||||
|
||||
def forward(self, query, refer_bbox, value, value_shapes, value_mask=None):
|
||||
"""
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
|
||||
Args:
|
||||
query (torch.Tensor): [bs, query_length, C]
|
||||
refer_bbox (torch.Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0),
|
||||
bottom-right (1, 1), including padding area
|
||||
value (torch.Tensor): [bs, value_length, C]
|
||||
value_shapes (List): [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
|
||||
value_mask (Tensor): [bs, value_length], True for non-padding elements, False for padding elements
|
||||
|
||||
Returns:
|
||||
output (Tensor): [bs, Length_{query}, C]
|
||||
"""
|
||||
bs, len_q = query.shape[:2]
|
||||
len_v = value.shape[1]
|
||||
assert sum(s[0] * s[1] for s in value_shapes) == len_v
|
||||
|
||||
value = self.value_proj(value)
|
||||
if value_mask is not None:
|
||||
value = value.masked_fill(value_mask[..., None], float(0))
|
||||
value = value.view(bs, len_v, self.n_heads, self.d_model // self.n_heads)
|
||||
sampling_offsets = self.sampling_offsets(query).view(bs, len_q, self.n_heads, self.n_levels, self.n_points, 2)
|
||||
attention_weights = self.attention_weights(query).view(bs, len_q, self.n_heads, self.n_levels * self.n_points)
|
||||
attention_weights = F.softmax(attention_weights, -1).view(bs, len_q, self.n_heads, self.n_levels, self.n_points)
|
||||
# N, Len_q, n_heads, n_levels, n_points, 2
|
||||
num_points = refer_bbox.shape[-1]
|
||||
if num_points == 2:
|
||||
offset_normalizer = torch.as_tensor(value_shapes, dtype=query.dtype, device=query.device).flip(-1)
|
||||
add = sampling_offsets / offset_normalizer[None, None, None, :, None, :]
|
||||
sampling_locations = refer_bbox[:, :, None, :, None, :] + add
|
||||
elif num_points == 4:
|
||||
add = sampling_offsets / self.n_points * refer_bbox[:, :, None, :, None, 2:] * 0.5
|
||||
sampling_locations = refer_bbox[:, :, None, :, None, :2] + add
|
||||
else:
|
||||
raise ValueError(f'Last dim of reference_points must be 2 or 4, but got {num_points}.')
|
||||
output = multi_scale_deformable_attn_pytorch(value, value_shapes, sampling_locations, attention_weights)
|
||||
return self.output_proj(output)
|
||||
|
||||
|
||||
class DeformableTransformerDecoderLayer(nn.Module):
|
||||
"""
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
|
||||
https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/deformable_transformer.py
|
||||
"""
|
||||
|
||||
def __init__(self, d_model=256, n_heads=8, d_ffn=1024, dropout=0., act=nn.ReLU(), n_levels=4, n_points=4):
|
||||
super().__init__()
|
||||
|
||||
# self attention
|
||||
self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.norm1 = nn.LayerNorm(d_model)
|
||||
|
||||
# cross attention
|
||||
self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
self.norm2 = nn.LayerNorm(d_model)
|
||||
|
||||
# ffn
|
||||
self.linear1 = nn.Linear(d_model, d_ffn)
|
||||
self.act = act
|
||||
self.dropout3 = nn.Dropout(dropout)
|
||||
self.linear2 = nn.Linear(d_ffn, d_model)
|
||||
self.dropout4 = nn.Dropout(dropout)
|
||||
self.norm3 = nn.LayerNorm(d_model)
|
||||
|
||||
@staticmethod
|
||||
def with_pos_embed(tensor, pos):
|
||||
return tensor if pos is None else tensor + pos
|
||||
|
||||
def forward_ffn(self, tgt):
|
||||
tgt2 = self.linear2(self.dropout3(self.act(self.linear1(tgt))))
|
||||
tgt = tgt + self.dropout4(tgt2)
|
||||
return self.norm3(tgt)
|
||||
|
||||
def forward(self, embed, refer_bbox, feats, shapes, padding_mask=None, attn_mask=None, query_pos=None):
|
||||
# self attention
|
||||
q = k = self.with_pos_embed(embed, query_pos)
|
||||
tgt = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), embed.transpose(0, 1),
|
||||
attn_mask=attn_mask)[0].transpose(0, 1)
|
||||
embed = embed + self.dropout1(tgt)
|
||||
embed = self.norm1(embed)
|
||||
|
||||
# cross attention
|
||||
tgt = self.cross_attn(self.with_pos_embed(embed, query_pos), refer_bbox.unsqueeze(2), feats, shapes,
|
||||
padding_mask)
|
||||
embed = embed + self.dropout2(tgt)
|
||||
embed = self.norm2(embed)
|
||||
|
||||
# ffn
|
||||
return self.forward_ffn(embed)
|
||||
|
||||
|
||||
class DeformableTransformerDecoder(nn.Module):
|
||||
"""
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
|
||||
"""
|
||||
|
||||
def __init__(self, hidden_dim, decoder_layer, num_layers, eval_idx=-1):
|
||||
super().__init__()
|
||||
self.layers = _get_clones(decoder_layer, num_layers)
|
||||
self.num_layers = num_layers
|
||||
self.hidden_dim = hidden_dim
|
||||
self.eval_idx = eval_idx if eval_idx >= 0 else num_layers + eval_idx
|
||||
|
||||
def forward(
|
||||
self,
|
||||
embed, # decoder embeddings
|
||||
refer_bbox, # anchor
|
||||
feats, # image features
|
||||
shapes, # feature shapes
|
||||
bbox_head,
|
||||
score_head,
|
||||
pos_mlp,
|
||||
attn_mask=None,
|
||||
padding_mask=None):
|
||||
output = embed
|
||||
dec_bboxes = []
|
||||
dec_cls = []
|
||||
last_refined_bbox = None
|
||||
refer_bbox = refer_bbox.sigmoid()
|
||||
for i, layer in enumerate(self.layers):
|
||||
output = layer(output, refer_bbox, feats, shapes, padding_mask, attn_mask, pos_mlp(refer_bbox))
|
||||
|
||||
bbox = bbox_head[i](output)
|
||||
refined_bbox = torch.sigmoid(bbox + inverse_sigmoid(refer_bbox))
|
||||
|
||||
if self.training:
|
||||
dec_cls.append(score_head[i](output))
|
||||
if i == 0:
|
||||
dec_bboxes.append(refined_bbox)
|
||||
else:
|
||||
dec_bboxes.append(torch.sigmoid(bbox + inverse_sigmoid(last_refined_bbox)))
|
||||
elif i == self.eval_idx:
|
||||
dec_cls.append(score_head[i](output))
|
||||
dec_bboxes.append(refined_bbox)
|
||||
break
|
||||
|
||||
last_refined_bbox = refined_bbox
|
||||
refer_bbox = refined_bbox.detach() if self.training else refined_bbox
|
||||
|
||||
return torch.stack(dec_bboxes), torch.stack(dec_cls)
|
78
ultralytics/nn/modules/utils.py
Normal file
78
ultralytics/nn/modules/utils.py
Normal file
@ -0,0 +1,78 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Module utils
|
||||
"""
|
||||
|
||||
import copy
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.init import uniform_
|
||||
|
||||
__all__ = 'multi_scale_deformable_attn_pytorch', 'inverse_sigmoid'
|
||||
|
||||
|
||||
def _get_clones(module, n):
|
||||
return nn.ModuleList([copy.deepcopy(module) for _ in range(n)])
|
||||
|
||||
|
||||
def bias_init_with_prob(prior_prob=0.01):
|
||||
"""initialize conv/fc bias value according to a given probability value."""
|
||||
return float(-np.log((1 - prior_prob) / prior_prob)) # return bias_init
|
||||
|
||||
|
||||
def linear_init_(module):
|
||||
bound = 1 / math.sqrt(module.weight.shape[0])
|
||||
uniform_(module.weight, -bound, bound)
|
||||
if hasattr(module, 'bias') and module.bias is not None:
|
||||
uniform_(module.bias, -bound, bound)
|
||||
|
||||
|
||||
def inverse_sigmoid(x, eps=1e-5):
|
||||
x = x.clamp(min=0, max=1)
|
||||
x1 = x.clamp(min=eps)
|
||||
x2 = (1 - x).clamp(min=eps)
|
||||
return torch.log(x1 / x2)
|
||||
|
||||
|
||||
def multi_scale_deformable_attn_pytorch(value: torch.Tensor, value_spatial_shapes: torch.Tensor,
|
||||
sampling_locations: torch.Tensor,
|
||||
attention_weights: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Multi-scale deformable attention.
|
||||
https://github.com/IDEA-Research/detrex/blob/main/detrex/layers/multi_scale_deform_attn.py
|
||||
"""
|
||||
|
||||
bs, _, num_heads, embed_dims = value.shape
|
||||
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
|
||||
value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)
|
||||
sampling_grids = 2 * sampling_locations - 1
|
||||
sampling_value_list = []
|
||||
for level, (H_, W_) in enumerate(value_spatial_shapes):
|
||||
# bs, H_*W_, num_heads, embed_dims ->
|
||||
# bs, H_*W_, num_heads*embed_dims ->
|
||||
# bs, num_heads*embed_dims, H_*W_ ->
|
||||
# bs*num_heads, embed_dims, H_, W_
|
||||
value_l_ = (value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_))
|
||||
# bs, num_queries, num_heads, num_points, 2 ->
|
||||
# bs, num_heads, num_queries, num_points, 2 ->
|
||||
# bs*num_heads, num_queries, num_points, 2
|
||||
sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1)
|
||||
# bs*num_heads, embed_dims, num_queries, num_points
|
||||
sampling_value_l_ = F.grid_sample(value_l_,
|
||||
sampling_grid_l_,
|
||||
mode='bilinear',
|
||||
padding_mode='zeros',
|
||||
align_corners=False)
|
||||
sampling_value_list.append(sampling_value_l_)
|
||||
# (bs, num_queries, num_heads, num_levels, num_points) ->
|
||||
# (bs, num_heads, num_queries, num_levels, num_points) ->
|
||||
# (bs, num_heads, 1, num_queries, num_levels*num_points)
|
||||
attention_weights = attention_weights.transpose(1, 2).reshape(bs * num_heads, 1, num_queries,
|
||||
num_levels * num_points)
|
||||
output = ((torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights).sum(-1).view(
|
||||
bs, num_heads * embed_dims, num_queries))
|
||||
return output.transpose(1, 2).contiguous()
|
792
ultralytics/nn/tasks.py
Normal file
792
ultralytics/nn/tasks.py
Normal file
@ -0,0 +1,792 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import contextlib
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from ultralytics.nn.modules import (AIFI, C1, C2, C3, C3TR, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x,
|
||||
Classify, Concat, Conv, Conv2, ConvTranspose, Detect, DWConv, DWConvTranspose2d,
|
||||
Focus, GhostBottleneck, GhostConv, HGBlock, HGStem, Pose, RepC3, RepConv,
|
||||
RTDETRDecoder, Segment)
|
||||
from ultralytics.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, colorstr, emojis, yaml_load
|
||||
from ultralytics.utils.checks import check_requirements, check_suffix, check_yaml
|
||||
from ultralytics.utils.loss import v8ClassificationLoss, v8DetectionLoss, v8PoseLoss, v8SegmentationLoss
|
||||
from ultralytics.utils.plotting import feature_visualization
|
||||
from ultralytics.utils.torch_utils import (fuse_conv_and_bn, fuse_deconv_and_bn, initialize_weights, intersect_dicts,
|
||||
make_divisible, model_info, scale_img, time_sync)
|
||||
|
||||
try:
|
||||
import thop
|
||||
except ImportError:
|
||||
thop = None
|
||||
|
||||
|
||||
class BaseModel(nn.Module):
|
||||
"""
|
||||
The BaseModel class serves as a base class for all the models in the Ultralytics YOLO family.
|
||||
"""
|
||||
|
||||
def forward(self, x, *args, **kwargs):
|
||||
"""
|
||||
Forward pass of the model on a single scale.
|
||||
Wrapper for `_forward_once` method.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor | dict): The input image tensor or a dict including image tensor and gt labels.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): The output of the network.
|
||||
"""
|
||||
if isinstance(x, dict): # for cases of training and validating while training.
|
||||
return self.loss(x, *args, **kwargs)
|
||||
return self.predict(x, *args, **kwargs)
|
||||
|
||||
def predict(self, x, profile=False, visualize=False, augment=False):
|
||||
"""
|
||||
Perform a forward pass through the network.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): The input tensor to the model.
|
||||
profile (bool): Print the computation time of each layer if True, defaults to False.
|
||||
visualize (bool): Save the feature maps of the model if True, defaults to False.
|
||||
augment (bool): Augment image during prediction, defaults to False.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): The last output of the model.
|
||||
"""
|
||||
if augment:
|
||||
return self._predict_augment(x)
|
||||
return self._predict_once(x, profile, visualize)
|
||||
|
||||
def _predict_once(self, x, profile=False, visualize=False):
|
||||
"""
|
||||
Perform a forward pass through the network.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): The input tensor to the model.
|
||||
profile (bool): Print the computation time of each layer if True, defaults to False.
|
||||
visualize (bool): Save the feature maps of the model if True, defaults to False.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): The last output of the model.
|
||||
"""
|
||||
y, dt = [], [] # outputs
|
||||
for m in self.model:
|
||||
if m.f != -1: # if not from previous layer
|
||||
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
||||
if profile:
|
||||
self._profile_one_layer(m, x, dt)
|
||||
x = m(x) # run
|
||||
y.append(x if m.i in self.save else None) # save output
|
||||
if visualize:
|
||||
feature_visualization(x, m.type, m.i, save_dir=visualize)
|
||||
return x
|
||||
|
||||
def _predict_augment(self, x):
|
||||
"""Perform augmentations on input image x and return augmented inference."""
|
||||
LOGGER.warning(f'WARNING ⚠️ {self.__class__.__name__} does not support augmented inference yet. '
|
||||
f'Reverting to single-scale inference instead.')
|
||||
return self._predict_once(x)
|
||||
|
||||
def _profile_one_layer(self, m, x, dt):
|
||||
"""
|
||||
Profile the computation time and FLOPs of a single layer of the model on a given input.
|
||||
Appends the results to the provided list.
|
||||
|
||||
Args:
|
||||
m (nn.Module): The layer to be profiled.
|
||||
x (torch.Tensor): The input data to the layer.
|
||||
dt (list): A list to store the computation time of the layer.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
c = m == self.model[-1] and isinstance(x, list) # is final layer list, copy input as inplace fix
|
||||
flops = thop.profile(m, inputs=[x.copy() if c else x], verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
|
||||
t = time_sync()
|
||||
for _ in range(10):
|
||||
m(x.copy() if c else x)
|
||||
dt.append((time_sync() - t) * 100)
|
||||
if m == self.model[0]:
|
||||
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")
|
||||
LOGGER.info(f'{dt[-1]:10.2f} {flops:10.2f} {m.np:10.0f} {m.type}')
|
||||
if c:
|
||||
LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
|
||||
|
||||
def fuse(self, verbose=True):
|
||||
"""
|
||||
Fuse the `Conv2d()` and `BatchNorm2d()` layers of the model into a single layer, in order to improve the
|
||||
computation efficiency.
|
||||
|
||||
Returns:
|
||||
(nn.Module): The fused model is returned.
|
||||
"""
|
||||
if not self.is_fused():
|
||||
for m in self.model.modules():
|
||||
if isinstance(m, (Conv, Conv2, DWConv)) and hasattr(m, 'bn'):
|
||||
if isinstance(m, Conv2):
|
||||
m.fuse_convs()
|
||||
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
||||
delattr(m, 'bn') # remove batchnorm
|
||||
m.forward = m.forward_fuse # update forward
|
||||
if isinstance(m, ConvTranspose) and hasattr(m, 'bn'):
|
||||
m.conv_transpose = fuse_deconv_and_bn(m.conv_transpose, m.bn)
|
||||
delattr(m, 'bn') # remove batchnorm
|
||||
m.forward = m.forward_fuse # update forward
|
||||
if isinstance(m, RepConv):
|
||||
m.fuse_convs()
|
||||
m.forward = m.forward_fuse # update forward
|
||||
self.info(verbose=verbose)
|
||||
|
||||
return self
|
||||
|
||||
def is_fused(self, thresh=10):
|
||||
"""
|
||||
Check if the model has less than a certain threshold of BatchNorm layers.
|
||||
|
||||
Args:
|
||||
thresh (int, optional): The threshold number of BatchNorm layers. Default is 10.
|
||||
|
||||
Returns:
|
||||
(bool): True if the number of BatchNorm layers in the model is less than the threshold, False otherwise.
|
||||
"""
|
||||
bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d()
|
||||
return sum(isinstance(v, bn) for v in self.modules()) < thresh # True if < 'thresh' BatchNorm layers in model
|
||||
|
||||
def info(self, detailed=False, verbose=True, imgsz=640):
|
||||
"""
|
||||
Prints model information
|
||||
|
||||
Args:
|
||||
detailed (bool): if True, prints out detailed information about the model. Defaults to False
|
||||
verbose (bool): if True, prints out the model information. Defaults to False
|
||||
imgsz (int): the size of the image that the model will be trained on. Defaults to 640
|
||||
"""
|
||||
return model_info(self, detailed=detailed, verbose=verbose, imgsz=imgsz)
|
||||
|
||||
def _apply(self, fn):
|
||||
"""
|
||||
Applies a function to all the tensors in the model that are not parameters or registered buffers.
|
||||
|
||||
Args:
|
||||
fn (function): the function to apply to the model
|
||||
|
||||
Returns:
|
||||
A model that is a Detect() object.
|
||||
"""
|
||||
self = super()._apply(fn)
|
||||
m = self.model[-1] # Detect()
|
||||
if isinstance(m, (Detect, Segment)):
|
||||
m.stride = fn(m.stride)
|
||||
m.anchors = fn(m.anchors)
|
||||
m.strides = fn(m.strides)
|
||||
return self
|
||||
|
||||
def load(self, weights, verbose=True):
|
||||
"""
|
||||
Load the weights into the model.
|
||||
|
||||
Args:
|
||||
weights (dict | torch.nn.Module): The pre-trained weights to be loaded.
|
||||
verbose (bool, optional): Whether to log the transfer progress. Defaults to True.
|
||||
"""
|
||||
model = weights['model'] if isinstance(weights, dict) else weights # torchvision models are not dicts
|
||||
csd = model.float().state_dict() # checkpoint state_dict as FP32
|
||||
csd = intersect_dicts(csd, self.state_dict()) # intersect
|
||||
self.load_state_dict(csd, strict=False) # load
|
||||
if verbose:
|
||||
LOGGER.info(f'Transferred {len(csd)}/{len(self.model.state_dict())} items from pretrained weights')
|
||||
|
||||
def loss(self, batch, preds=None):
|
||||
"""
|
||||
Compute loss
|
||||
|
||||
Args:
|
||||
batch (dict): Batch to compute loss on
|
||||
preds (torch.Tensor | List[torch.Tensor]): Predictions.
|
||||
"""
|
||||
if not hasattr(self, 'criterion'):
|
||||
self.criterion = self.init_criterion()
|
||||
|
||||
preds = self.forward(batch['img']) if preds is None else preds
|
||||
return self.criterion(preds, batch)
|
||||
|
||||
def init_criterion(self):
|
||||
raise NotImplementedError('compute_loss() needs to be implemented by task heads')
|
||||
|
||||
|
||||
class DetectionModel(BaseModel):
|
||||
"""YOLOv8 detection model."""
|
||||
|
||||
def __init__(self, cfg='yolov8n.yaml', ch=3, nc=None, verbose=True): # model, input channels, number of classes
|
||||
super().__init__()
|
||||
self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg) # cfg dict
|
||||
|
||||
# Define model
|
||||
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
|
||||
if nc and nc != self.yaml['nc']:
|
||||
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
|
||||
self.yaml['nc'] = nc # override YAML value
|
||||
self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose) # model, savelist
|
||||
self.names = {i: f'{i}' for i in range(self.yaml['nc'])} # default names dict
|
||||
self.inplace = self.yaml.get('inplace', True)
|
||||
|
||||
# Build strides
|
||||
m = self.model[-1] # Detect()
|
||||
if isinstance(m, (Detect, Segment, Pose)):
|
||||
s = 256 # 2x min stride
|
||||
m.inplace = self.inplace
|
||||
forward = lambda x: self.forward(x)[0] if isinstance(m, (Segment, Pose)) else self.forward(x)
|
||||
m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward
|
||||
self.stride = m.stride
|
||||
m.bias_init() # only run once
|
||||
else:
|
||||
self.stride = torch.Tensor([32]) # default stride for i.e. RTDETR
|
||||
|
||||
# Init weights, biases
|
||||
initialize_weights(self)
|
||||
if verbose:
|
||||
self.info()
|
||||
LOGGER.info('')
|
||||
|
||||
def _predict_augment(self, x):
|
||||
"""Perform augmentations on input image x and return augmented inference and train outputs."""
|
||||
img_size = x.shape[-2:] # height, width
|
||||
s = [1, 0.83, 0.67] # scales
|
||||
f = [None, 3, None] # flips (2-ud, 3-lr)
|
||||
y = [] # outputs
|
||||
for si, fi in zip(s, f):
|
||||
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
|
||||
yi = super().predict(xi)[0] # forward
|
||||
yi = self._descale_pred(yi, fi, si, img_size)
|
||||
y.append(yi)
|
||||
y = self._clip_augmented(y) # clip augmented tails
|
||||
return torch.cat(y, -1), None # augmented inference, train
|
||||
|
||||
@staticmethod
|
||||
def _descale_pred(p, flips, scale, img_size, dim=1):
|
||||
"""De-scale predictions following augmented inference (inverse operation)."""
|
||||
p[:, :4] /= scale # de-scale
|
||||
x, y, wh, cls = p.split((1, 1, 2, p.shape[dim] - 4), dim)
|
||||
if flips == 2:
|
||||
y = img_size[0] - y # de-flip ud
|
||||
elif flips == 3:
|
||||
x = img_size[1] - x # de-flip lr
|
||||
return torch.cat((x, y, wh, cls), dim)
|
||||
|
||||
def _clip_augmented(self, y):
|
||||
"""Clip YOLOv5 augmented inference tails."""
|
||||
nl = self.model[-1].nl # number of detection layers (P3-P5)
|
||||
g = sum(4 ** x for x in range(nl)) # grid points
|
||||
e = 1 # exclude layer count
|
||||
i = (y[0].shape[-1] // g) * sum(4 ** x for x in range(e)) # indices
|
||||
y[0] = y[0][..., :-i] # large
|
||||
i = (y[-1].shape[-1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
|
||||
y[-1] = y[-1][..., i:] # small
|
||||
return y
|
||||
|
||||
def init_criterion(self):
|
||||
return v8DetectionLoss(self)
|
||||
|
||||
|
||||
class SegmentationModel(DetectionModel):
|
||||
"""YOLOv8 segmentation model."""
|
||||
|
||||
def __init__(self, cfg='yolov8n-seg.yaml', ch=3, nc=None, verbose=True):
|
||||
"""Initialize YOLOv8 segmentation model with given config and parameters."""
|
||||
super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)
|
||||
|
||||
def init_criterion(self):
|
||||
return v8SegmentationLoss(self)
|
||||
|
||||
|
||||
class PoseModel(DetectionModel):
|
||||
"""YOLOv8 pose model."""
|
||||
|
||||
def __init__(self, cfg='yolov8n-pose.yaml', ch=3, nc=None, data_kpt_shape=(None, None), verbose=True):
|
||||
"""Initialize YOLOv8 Pose model."""
|
||||
if not isinstance(cfg, dict):
|
||||
cfg = yaml_model_load(cfg) # load model YAML
|
||||
if any(data_kpt_shape) and list(data_kpt_shape) != list(cfg['kpt_shape']):
|
||||
LOGGER.info(f"Overriding model.yaml kpt_shape={cfg['kpt_shape']} with kpt_shape={data_kpt_shape}")
|
||||
cfg['kpt_shape'] = data_kpt_shape
|
||||
super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)
|
||||
|
||||
def init_criterion(self):
|
||||
return v8PoseLoss(self)
|
||||
|
||||
|
||||
class ClassificationModel(BaseModel):
|
||||
"""YOLOv8 classification model."""
|
||||
|
||||
def __init__(self, cfg='yolov8n-cls.yaml', ch=3, nc=None, verbose=True):
|
||||
"""Init ClassificationModel with YAML, channels, number of classes, verbose flag."""
|
||||
super().__init__()
|
||||
self._from_yaml(cfg, ch, nc, verbose)
|
||||
|
||||
def _from_yaml(self, cfg, ch, nc, verbose):
|
||||
"""Set YOLOv8 model configurations and define the model architecture."""
|
||||
self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg) # cfg dict
|
||||
|
||||
# Define model
|
||||
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
|
||||
if nc and nc != self.yaml['nc']:
|
||||
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
|
||||
self.yaml['nc'] = nc # override YAML value
|
||||
elif not nc and not self.yaml.get('nc', None):
|
||||
raise ValueError('nc not specified. Must specify nc in model.yaml or function arguments.')
|
||||
self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose) # model, savelist
|
||||
self.stride = torch.Tensor([1]) # no stride constraints
|
||||
self.names = {i: f'{i}' for i in range(self.yaml['nc'])} # default names dict
|
||||
self.info()
|
||||
|
||||
@staticmethod
|
||||
def reshape_outputs(model, nc):
|
||||
"""Update a TorchVision classification model to class count 'n' if required."""
|
||||
name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1] # last module
|
||||
if isinstance(m, Classify): # YOLO Classify() head
|
||||
if m.linear.out_features != nc:
|
||||
m.linear = nn.Linear(m.linear.in_features, nc)
|
||||
elif isinstance(m, nn.Linear): # ResNet, EfficientNet
|
||||
if m.out_features != nc:
|
||||
setattr(model, name, nn.Linear(m.in_features, nc))
|
||||
elif isinstance(m, nn.Sequential):
|
||||
types = [type(x) for x in m]
|
||||
if nn.Linear in types:
|
||||
i = types.index(nn.Linear) # nn.Linear index
|
||||
if m[i].out_features != nc:
|
||||
m[i] = nn.Linear(m[i].in_features, nc)
|
||||
elif nn.Conv2d in types:
|
||||
i = types.index(nn.Conv2d) # nn.Conv2d index
|
||||
if m[i].out_channels != nc:
|
||||
m[i] = nn.Conv2d(m[i].in_channels, nc, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None)
|
||||
|
||||
def init_criterion(self):
|
||||
"""Compute the classification loss between predictions and true labels."""
|
||||
return v8ClassificationLoss()
|
||||
|
||||
|
||||
class RTDETRDetectionModel(DetectionModel):
|
||||
|
||||
def __init__(self, cfg='rtdetr-l.yaml', ch=3, nc=None, verbose=True):
|
||||
super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)
|
||||
|
||||
def init_criterion(self):
|
||||
"""Compute the classification loss between predictions and true labels."""
|
||||
from ultralytics.models.utils.loss import RTDETRDetectionLoss
|
||||
|
||||
return RTDETRDetectionLoss(nc=self.nc, use_vfl=True)
|
||||
|
||||
def loss(self, batch, preds=None):
|
||||
if not hasattr(self, 'criterion'):
|
||||
self.criterion = self.init_criterion()
|
||||
|
||||
img = batch['img']
|
||||
# NOTE: preprocess gt_bbox and gt_labels to list.
|
||||
bs = len(img)
|
||||
batch_idx = batch['batch_idx']
|
||||
gt_groups = [(batch_idx == i).sum().item() for i in range(bs)]
|
||||
targets = {
|
||||
'cls': batch['cls'].to(img.device, dtype=torch.long).view(-1),
|
||||
'bboxes': batch['bboxes'].to(device=img.device),
|
||||
'batch_idx': batch_idx.to(img.device, dtype=torch.long).view(-1),
|
||||
'gt_groups': gt_groups}
|
||||
|
||||
preds = self.predict(img, batch=targets) if preds is None else preds
|
||||
dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta = preds if self.training else preds[1]
|
||||
if dn_meta is None:
|
||||
dn_bboxes, dn_scores = None, None
|
||||
else:
|
||||
dn_bboxes, dec_bboxes = torch.split(dec_bboxes, dn_meta['dn_num_split'], dim=2)
|
||||
dn_scores, dec_scores = torch.split(dec_scores, dn_meta['dn_num_split'], dim=2)
|
||||
|
||||
dec_bboxes = torch.cat([enc_bboxes.unsqueeze(0), dec_bboxes]) # (7, bs, 300, 4)
|
||||
dec_scores = torch.cat([enc_scores.unsqueeze(0), dec_scores])
|
||||
|
||||
loss = self.criterion((dec_bboxes, dec_scores),
|
||||
targets,
|
||||
dn_bboxes=dn_bboxes,
|
||||
dn_scores=dn_scores,
|
||||
dn_meta=dn_meta)
|
||||
# NOTE: There are like 12 losses in RTDETR, backward with all losses but only show the main three losses.
|
||||
return sum(loss.values()), torch.as_tensor([loss[k].detach() for k in ['loss_giou', 'loss_class', 'loss_bbox']],
|
||||
device=img.device)
|
||||
|
||||
def predict(self, x, profile=False, visualize=False, batch=None, augment=False):
|
||||
"""
|
||||
Perform a forward pass through the network.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): The input tensor to the model
|
||||
profile (bool): Print the computation time of each layer if True, defaults to False.
|
||||
visualize (bool): Save the feature maps of the model if True, defaults to False
|
||||
batch (dict): A dict including gt boxes and labels from dataloader.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): The last output of the model.
|
||||
"""
|
||||
y, dt = [], [] # outputs
|
||||
for m in self.model[:-1]: # except the head part
|
||||
if m.f != -1: # if not from previous layer
|
||||
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
||||
if profile:
|
||||
self._profile_one_layer(m, x, dt)
|
||||
x = m(x) # run
|
||||
y.append(x if m.i in self.save else None) # save output
|
||||
if visualize:
|
||||
feature_visualization(x, m.type, m.i, save_dir=visualize)
|
||||
head = self.model[-1]
|
||||
x = head([y[j] for j in head.f], batch) # head inference
|
||||
return x
|
||||
|
||||
|
||||
class Ensemble(nn.ModuleList):
|
||||
"""Ensemble of models."""
|
||||
|
||||
def __init__(self):
|
||||
"""Initialize an ensemble of models."""
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x, augment=False, profile=False, visualize=False):
|
||||
"""Function generates the YOLOv5 network's final layer."""
|
||||
y = [module(x, augment, profile, visualize)[0] for module in self]
|
||||
# y = torch.stack(y).max(0)[0] # max ensemble
|
||||
# y = torch.stack(y).mean(0) # mean ensemble
|
||||
y = torch.cat(y, 2) # nms ensemble, y shape(B, HW, C)
|
||||
return y, None # inference, train output
|
||||
|
||||
|
||||
# Functions ------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def temporary_modules(modules=None):
|
||||
"""
|
||||
Context manager for temporarily adding or modifying modules in Python's module cache (`sys.modules`).
|
||||
|
||||
This function can be used to change the module paths during runtime. It's useful when refactoring code,
|
||||
where you've moved a module from one location to another, but you still want to support the old import
|
||||
paths for backwards compatibility.
|
||||
|
||||
Args:
|
||||
modules (dict, optional): A dictionary mapping old module paths to new module paths.
|
||||
|
||||
Example:
|
||||
```python
|
||||
with temporary_modules({'old.module.path': 'new.module.path'}):
|
||||
import old.module.path # this will now import new.module.path
|
||||
```
|
||||
|
||||
Note:
|
||||
The changes are only in effect inside the context manager and are undone once the context manager exits.
|
||||
Be aware that directly manipulating `sys.modules` can lead to unpredictable results, especially in larger
|
||||
applications or libraries. Use this function with caution.
|
||||
"""
|
||||
if not modules:
|
||||
modules = {}
|
||||
|
||||
import importlib
|
||||
import sys
|
||||
try:
|
||||
# Set modules in sys.modules under their old name
|
||||
for old, new in modules.items():
|
||||
sys.modules[old] = importlib.import_module(new)
|
||||
|
||||
yield
|
||||
finally:
|
||||
# Remove the temporary module paths
|
||||
for old in modules:
|
||||
if old in sys.modules:
|
||||
del sys.modules[old]
|
||||
|
||||
|
||||
def torch_safe_load(weight):
|
||||
"""
|
||||
This function attempts to load a PyTorch model with the torch.load() function. If a ModuleNotFoundError is raised,
|
||||
it catches the error, logs a warning message, and attempts to install the missing module via the
|
||||
check_requirements() function. After installation, the function again attempts to load the model using torch.load().
|
||||
|
||||
Args:
|
||||
weight (str): The file path of the PyTorch model.
|
||||
|
||||
Returns:
|
||||
(dict): The loaded PyTorch model.
|
||||
"""
|
||||
from ultralytics.utils.downloads import attempt_download_asset
|
||||
|
||||
check_suffix(file=weight, suffix='.pt')
|
||||
file = attempt_download_asset(weight) # search online if missing locally
|
||||
try:
|
||||
with temporary_modules({
|
||||
'ultralytics.yolo.utils': 'ultralytics.utils',
|
||||
'ultralytics.yolo.v8': 'ultralytics.models.yolo',
|
||||
'ultralytics.yolo.data': 'ultralytics.data'}): # for legacy 8.0 Classify and Pose models
|
||||
return torch.load(file, map_location='cpu'), file # load
|
||||
|
||||
except ModuleNotFoundError as e: # e.name is missing module name
|
||||
if e.name == 'models':
|
||||
raise TypeError(
|
||||
emojis(f'ERROR ❌️ {weight} appears to be an Ultralytics YOLOv5 model originally trained '
|
||||
f'with https://github.com/ultralytics/yolov5.\nThis model is NOT forwards compatible with '
|
||||
f'YOLOv8 at https://github.com/ultralytics/ultralytics.'
|
||||
f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to "
|
||||
f"run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'")) from e
|
||||
LOGGER.warning(f"WARNING ⚠️ {weight} appears to require '{e.name}', which is not in ultralytics requirements."
|
||||
f"\nAutoInstall will run now for '{e.name}' but this feature will be removed in the future."
|
||||
f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to "
|
||||
f"run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'")
|
||||
check_requirements(e.name) # install missing module
|
||||
|
||||
return torch.load(file, map_location='cpu'), file # load
|
||||
|
||||
|
||||
def attempt_load_weights(weights, device=None, inplace=True, fuse=False):
|
||||
"""Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a."""
|
||||
|
||||
ensemble = Ensemble()
|
||||
for w in weights if isinstance(weights, list) else [weights]:
|
||||
ckpt, w = torch_safe_load(w) # load ckpt
|
||||
args = {**DEFAULT_CFG_DICT, **ckpt['train_args']} if 'train_args' in ckpt else None # combined args
|
||||
model = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
|
||||
|
||||
# Model compatibility updates
|
||||
model.args = args # attach args to model
|
||||
model.pt_path = w # attach *.pt file path to model
|
||||
model.task = guess_model_task(model)
|
||||
if not hasattr(model, 'stride'):
|
||||
model.stride = torch.tensor([32.])
|
||||
|
||||
# Append
|
||||
ensemble.append(model.fuse().eval() if fuse and hasattr(model, 'fuse') else model.eval()) # model in eval mode
|
||||
|
||||
# Module updates
|
||||
for m in ensemble.modules():
|
||||
t = type(m)
|
||||
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment):
|
||||
m.inplace = inplace
|
||||
elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
|
||||
m.recompute_scale_factor = None # torch 1.11.0 compatibility
|
||||
|
||||
# Return model
|
||||
if len(ensemble) == 1:
|
||||
return ensemble[-1]
|
||||
|
||||
# Return ensemble
|
||||
LOGGER.info(f'Ensemble created with {weights}\n')
|
||||
for k in 'names', 'nc', 'yaml':
|
||||
setattr(ensemble, k, getattr(ensemble[0], k))
|
||||
ensemble.stride = ensemble[torch.argmax(torch.tensor([m.stride.max() for m in ensemble])).int()].stride
|
||||
assert all(ensemble[0].nc == m.nc for m in ensemble), f'Models differ in class counts {[m.nc for m in ensemble]}'
|
||||
return ensemble
|
||||
|
||||
|
||||
def attempt_load_one_weight(weight, device=None, inplace=True, fuse=False):
|
||||
"""Loads a single model weights."""
|
||||
ckpt, weight = torch_safe_load(weight) # load ckpt
|
||||
args = {**DEFAULT_CFG_DICT, **(ckpt.get('train_args', {}))} # combine model and default args, preferring model args
|
||||
model = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
|
||||
|
||||
# Model compatibility updates
|
||||
model.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # attach args to model
|
||||
model.pt_path = weight # attach *.pt file path to model
|
||||
model.task = guess_model_task(model)
|
||||
if not hasattr(model, 'stride'):
|
||||
model.stride = torch.tensor([32.])
|
||||
|
||||
model = model.fuse().eval() if fuse and hasattr(model, 'fuse') else model.eval() # model in eval mode
|
||||
|
||||
# Module updates
|
||||
for m in model.modules():
|
||||
t = type(m)
|
||||
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment):
|
||||
m.inplace = inplace
|
||||
elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
|
||||
m.recompute_scale_factor = None # torch 1.11.0 compatibility
|
||||
|
||||
# Return model and ckpt
|
||||
return model, ckpt
|
||||
|
||||
|
||||
def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)
|
||||
"""Parse a YOLO model.yaml dictionary into a PyTorch model."""
|
||||
import ast
|
||||
|
||||
# Args
|
||||
max_channels = float('inf')
|
||||
nc, act, scales = (d.get(x) for x in ('nc', 'activation', 'scales'))
|
||||
depth, width, kpt_shape = (d.get(x, 1.0) for x in ('depth_multiple', 'width_multiple', 'kpt_shape'))
|
||||
if scales:
|
||||
scale = d.get('scale')
|
||||
if not scale:
|
||||
scale = tuple(scales.keys())[0]
|
||||
LOGGER.warning(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.")
|
||||
depth, width, max_channels = scales[scale]
|
||||
|
||||
if act:
|
||||
Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
|
||||
if verbose:
|
||||
LOGGER.info(f"{colorstr('activation:')} {act}") # print
|
||||
|
||||
if verbose:
|
||||
LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10} {'module':<45}{'arguments':<30}")
|
||||
ch = [ch]
|
||||
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
||||
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
||||
m = getattr(torch.nn, m[3:]) if 'nn.' in m else globals()[m] # get module
|
||||
for j, a in enumerate(args):
|
||||
if isinstance(a, str):
|
||||
with contextlib.suppress(ValueError):
|
||||
args[j] = locals()[a] if a in locals() else ast.literal_eval(a)
|
||||
|
||||
n = n_ = max(round(n * depth), 1) if n > 1 else n # depth gain
|
||||
if m in (Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus,
|
||||
BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x, RepC3):
|
||||
c1, c2 = ch[f], args[0]
|
||||
if c2 != nc: # if c2 not equal to number of classes (i.e. for Classify() output)
|
||||
c2 = make_divisible(min(c2, max_channels) * width, 8)
|
||||
|
||||
args = [c1, c2, *args[1:]]
|
||||
if m in (BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, C3x, RepC3):
|
||||
args.insert(2, n) # number of repeats
|
||||
n = 1
|
||||
elif m is AIFI:
|
||||
args = [ch[f], *args]
|
||||
elif m in (HGStem, HGBlock):
|
||||
c1, cm, c2 = ch[f], args[0], args[1]
|
||||
args = [c1, cm, c2, *args[2:]]
|
||||
if m is HGBlock:
|
||||
args.insert(4, n) # number of repeats
|
||||
n = 1
|
||||
|
||||
elif m is nn.BatchNorm2d:
|
||||
args = [ch[f]]
|
||||
elif m is Concat:
|
||||
c2 = sum(ch[x] for x in f)
|
||||
elif m in (Detect, Segment, Pose):
|
||||
args.append([ch[x] for x in f])
|
||||
if m is Segment:
|
||||
args[2] = make_divisible(min(args[2], max_channels) * width, 8)
|
||||
elif m is RTDETRDecoder: # special case, channels arg must be passed in index 1
|
||||
args.insert(1, [ch[x] for x in f])
|
||||
else:
|
||||
c2 = ch[f]
|
||||
|
||||
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
|
||||
t = str(m)[8:-2].replace('__main__.', '') # module type
|
||||
m.np = sum(x.numel() for x in m_.parameters()) # number params
|
||||
m_.i, m_.f, m_.type = i, f, t # attach index, 'from' index, type
|
||||
if verbose:
|
||||
LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f} {t:<45}{str(args):<30}') # print
|
||||
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
||||
layers.append(m_)
|
||||
if i == 0:
|
||||
ch = []
|
||||
ch.append(c2)
|
||||
return nn.Sequential(*layers), sorted(save)
|
||||
|
||||
|
||||
def yaml_model_load(path):
|
||||
"""Load a YOLOv8 model from a YAML file."""
|
||||
import re
|
||||
|
||||
path = Path(path)
|
||||
if path.stem in (f'yolov{d}{x}6' for x in 'nsmlx' for d in (5, 8)):
|
||||
new_stem = re.sub(r'(\d+)([nslmx])6(.+)?$', r'\1\2-p6\3', path.stem)
|
||||
LOGGER.warning(f'WARNING ⚠️ Ultralytics YOLO P6 models now use -p6 suffix. Renaming {path.stem} to {new_stem}.')
|
||||
path = path.with_name(new_stem + path.suffix)
|
||||
|
||||
unified_path = re.sub(r'(\d+)([nslmx])(.+)?$', r'\1\3', str(path)) # i.e. yolov8x.yaml -> yolov8.yaml
|
||||
yaml_file = check_yaml(unified_path, hard=False) or check_yaml(path)
|
||||
d = yaml_load(yaml_file) # model dict
|
||||
d['scale'] = guess_model_scale(path)
|
||||
d['yaml_file'] = str(path)
|
||||
return d
|
||||
|
||||
|
||||
def guess_model_scale(model_path):
|
||||
"""
|
||||
Takes a path to a YOLO model's YAML file as input and extracts the size character of the model's scale.
|
||||
The function uses regular expression matching to find the pattern of the model scale in the YAML file name,
|
||||
which is denoted by n, s, m, l, or x. The function returns the size character of the model scale as a string.
|
||||
|
||||
Args:
|
||||
model_path (str | Path): The path to the YOLO model's YAML file.
|
||||
|
||||
Returns:
|
||||
(str): The size character of the model's scale, which can be n, s, m, l, or x.
|
||||
"""
|
||||
with contextlib.suppress(AttributeError):
|
||||
import re
|
||||
return re.search(r'yolov\d+([nslmx])', Path(model_path).stem).group(1) # n, s, m, l, or x
|
||||
return ''
|
||||
|
||||
|
||||
def guess_model_task(model):
|
||||
"""
|
||||
Guess the task of a PyTorch model from its architecture or configuration.
|
||||
|
||||
Args:
|
||||
model (nn.Module | dict): PyTorch model or model configuration in YAML format.
|
||||
|
||||
Returns:
|
||||
(str): Task of the model ('detect', 'segment', 'classify', 'pose').
|
||||
|
||||
Raises:
|
||||
SyntaxError: If the task of the model could not be determined.
|
||||
"""
|
||||
|
||||
def cfg2task(cfg):
|
||||
"""Guess from YAML dictionary."""
|
||||
m = cfg['head'][-1][-2].lower() # output module name
|
||||
if m in ('classify', 'classifier', 'cls', 'fc'):
|
||||
return 'classify'
|
||||
if m == 'detect':
|
||||
return 'detect'
|
||||
if m == 'segment':
|
||||
return 'segment'
|
||||
if m == 'pose':
|
||||
return 'pose'
|
||||
|
||||
# Guess from model cfg
|
||||
if isinstance(model, dict):
|
||||
with contextlib.suppress(Exception):
|
||||
return cfg2task(model)
|
||||
|
||||
# Guess from PyTorch model
|
||||
if isinstance(model, nn.Module): # PyTorch model
|
||||
for x in 'model.args', 'model.model.args', 'model.model.model.args':
|
||||
with contextlib.suppress(Exception):
|
||||
return eval(x)['task']
|
||||
for x in 'model.yaml', 'model.model.yaml', 'model.model.model.yaml':
|
||||
with contextlib.suppress(Exception):
|
||||
return cfg2task(eval(x))
|
||||
|
||||
for m in model.modules():
|
||||
if isinstance(m, Detect):
|
||||
return 'detect'
|
||||
elif isinstance(m, Segment):
|
||||
return 'segment'
|
||||
elif isinstance(m, Classify):
|
||||
return 'classify'
|
||||
elif isinstance(m, Pose):
|
||||
return 'pose'
|
||||
|
||||
# Guess from model filename
|
||||
if isinstance(model, (str, Path)):
|
||||
model = Path(model)
|
||||
if '-seg' in model.stem or 'segment' in model.parts:
|
||||
return 'segment'
|
||||
elif '-cls' in model.stem or 'classify' in model.parts:
|
||||
return 'classify'
|
||||
elif '-pose' in model.stem or 'pose' in model.parts:
|
||||
return 'pose'
|
||||
elif 'detect' in model.parts:
|
||||
return 'detect'
|
||||
|
||||
# Unable to determine task from model
|
||||
LOGGER.warning("WARNING ⚠️ Unable to automatically guess model task, assuming 'task=detect'. "
|
||||
"Explicitly define task for your model, i.e. 'task=detect', 'segment', 'classify', or 'pose'.")
|
||||
return 'detect' # assume detect
|
Reference in New Issue
Block a user