initial project version!
This commit is contained in:
0
ultralytics/engine/__init__.py
Normal file
0
ultralytics/engine/__init__.py
Normal file
BIN
ultralytics/engine/__pycache__/__init__.cpython-39.pyc
Normal file
BIN
ultralytics/engine/__pycache__/__init__.cpython-39.pyc
Normal file
Binary file not shown.
BIN
ultralytics/engine/__pycache__/model.cpython-39.pyc
Normal file
BIN
ultralytics/engine/__pycache__/model.cpython-39.pyc
Normal file
Binary file not shown.
BIN
ultralytics/engine/__pycache__/predictor.cpython-39.pyc
Normal file
BIN
ultralytics/engine/__pycache__/predictor.cpython-39.pyc
Normal file
Binary file not shown.
BIN
ultralytics/engine/__pycache__/results.cpython-39.pyc
Normal file
BIN
ultralytics/engine/__pycache__/results.cpython-39.pyc
Normal file
Binary file not shown.
BIN
ultralytics/engine/__pycache__/trainer.cpython-39.pyc
Normal file
BIN
ultralytics/engine/__pycache__/trainer.cpython-39.pyc
Normal file
Binary file not shown.
BIN
ultralytics/engine/__pycache__/validator.cpython-39.pyc
Normal file
BIN
ultralytics/engine/__pycache__/validator.cpython-39.pyc
Normal file
Binary file not shown.
1012
ultralytics/engine/exporter.py
Normal file
1012
ultralytics/engine/exporter.py
Normal file
File diff suppressed because it is too large
Load Diff
436
ultralytics/engine/model.py
Normal file
436
ultralytics/engine/model.py
Normal file
@ -0,0 +1,436 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import inspect
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
|
||||
from ultralytics.cfg import TASK2DATA, get_cfg, get_save_dir
|
||||
from ultralytics.hub.utils import HUB_WEB_ROOT
|
||||
from ultralytics.nn.tasks import attempt_load_one_weight, guess_model_task, nn, yaml_model_load
|
||||
from ultralytics.utils import ASSETS, DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, RANK, callbacks, emojis, yaml_load
|
||||
from ultralytics.utils.checks import check_file, check_imgsz, check_pip_update_available, check_yaml
|
||||
from ultralytics.utils.downloads import GITHUB_ASSETS_STEMS
|
||||
from ultralytics.utils.torch_utils import smart_inference_mode
|
||||
|
||||
|
||||
class Model:
|
||||
"""
|
||||
A base model class to unify apis for all the models.
|
||||
|
||||
Args:
|
||||
model (str, Path): Path to the model file to load or create.
|
||||
task (Any, optional): Task type for the YOLO model. Defaults to None.
|
||||
|
||||
Attributes:
|
||||
predictor (Any): The predictor object.
|
||||
model (Any): The model object.
|
||||
trainer (Any): The trainer object.
|
||||
task (str): The type of model task.
|
||||
ckpt (Any): The checkpoint object if the model loaded from *.pt file.
|
||||
cfg (str): The model configuration if loaded from *.yaml file.
|
||||
ckpt_path (str): The checkpoint file path.
|
||||
overrides (dict): Overrides for the trainer object.
|
||||
metrics (Any): The data for metrics.
|
||||
|
||||
Methods:
|
||||
__call__(source=None, stream=False, **kwargs):
|
||||
Alias for the predict method.
|
||||
_new(cfg:str, verbose:bool=True) -> None:
|
||||
Initializes a new model and infers the task type from the model definitions.
|
||||
_load(weights:str, task:str='') -> None:
|
||||
Initializes a new model and infers the task type from the model head.
|
||||
_check_is_pytorch_model() -> None:
|
||||
Raises TypeError if the model is not a PyTorch model.
|
||||
reset() -> None:
|
||||
Resets the model modules.
|
||||
info(verbose:bool=False) -> None:
|
||||
Logs the model info.
|
||||
fuse() -> None:
|
||||
Fuses the model for faster inference.
|
||||
predict(source=None, stream=False, **kwargs) -> List[ultralytics.engine.results.Results]:
|
||||
Performs prediction using the YOLO model.
|
||||
|
||||
Returns:
|
||||
list(ultralytics.engine.results.Results): The prediction results.
|
||||
"""
|
||||
|
||||
def __init__(self, model: Union[str, Path] = 'yolov8n.pt', task=None) -> None:
|
||||
"""
|
||||
Initializes the YOLO model.
|
||||
|
||||
Args:
|
||||
model (Union[str, Path], optional): Path or name of the model to load or create. Defaults to 'yolov8n.pt'.
|
||||
task (Any, optional): Task type for the YOLO model. Defaults to None.
|
||||
"""
|
||||
self.callbacks = callbacks.get_default_callbacks()
|
||||
self.predictor = None # reuse predictor
|
||||
self.model = None # model object
|
||||
self.trainer = None # trainer object
|
||||
self.ckpt = None # if loaded from *.pt
|
||||
self.cfg = None # if loaded from *.yaml
|
||||
self.ckpt_path = None
|
||||
self.overrides = {} # overrides for trainer object
|
||||
self.metrics = None # validation/training metrics
|
||||
self.session = None # HUB session
|
||||
self.task = task # task type
|
||||
model = str(model).strip() # strip spaces
|
||||
|
||||
# Check if Ultralytics HUB model from https://hub.ultralytics.com
|
||||
if self.is_hub_model(model):
|
||||
from ultralytics.hub.session import HUBTrainingSession
|
||||
self.session = HUBTrainingSession(model)
|
||||
model = self.session.model_file
|
||||
|
||||
# Load or create new YOLO model
|
||||
suffix = Path(model).suffix
|
||||
if not suffix and Path(model).stem in GITHUB_ASSETS_STEMS:
|
||||
model, suffix = Path(model).with_suffix('.pt'), '.pt' # add suffix, i.e. yolov8n -> yolov8n.pt
|
||||
if suffix in ('.yaml', '.yml'):
|
||||
self._new(model, task)
|
||||
else:
|
||||
self._load(model, task)
|
||||
|
||||
def __call__(self, source=None, stream=False, **kwargs):
|
||||
"""Calls the 'predict' function with given arguments to perform object detection."""
|
||||
return self.predict(source, stream, **kwargs)
|
||||
|
||||
@staticmethod
|
||||
def is_hub_model(model):
|
||||
"""Check if the provided model is a HUB model."""
|
||||
return any((
|
||||
model.startswith(f'{HUB_WEB_ROOT}/models/'), # i.e. https://hub.ultralytics.com/models/MODEL_ID
|
||||
[len(x) for x in model.split('_')] == [42, 20], # APIKEY_MODELID
|
||||
len(model) == 20 and not Path(model).exists() and all(x not in model for x in './\\'))) # MODELID
|
||||
|
||||
def _new(self, cfg: str, task=None, model=None, verbose=True):
|
||||
"""
|
||||
Initializes a new model and infers the task type from the model definitions.
|
||||
|
||||
Args:
|
||||
cfg (str): model configuration file
|
||||
task (str | None): model task
|
||||
model (BaseModel): Customized model.
|
||||
verbose (bool): display model info on load
|
||||
"""
|
||||
cfg_dict = yaml_model_load(cfg)
|
||||
self.cfg = cfg
|
||||
self.task = task or guess_model_task(cfg_dict)
|
||||
self.model = (model or self.smart_load('model'))(cfg_dict, verbose=verbose and RANK == -1) # build model
|
||||
self.overrides['model'] = self.cfg
|
||||
self.overrides['task'] = self.task
|
||||
|
||||
# Below added to allow export from YAMLs
|
||||
args = {**DEFAULT_CFG_DICT, **self.overrides} # combine model and default args, preferring model args
|
||||
self.model.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # attach args to model
|
||||
self.model.task = self.task
|
||||
|
||||
def _load(self, weights: str, task=None):
|
||||
"""
|
||||
Initializes a new model and infers the task type from the model head.
|
||||
|
||||
Args:
|
||||
weights (str): model checkpoint to be loaded
|
||||
task (str | None): model task
|
||||
"""
|
||||
suffix = Path(weights).suffix
|
||||
if suffix == '.pt':
|
||||
self.model, self.ckpt = attempt_load_one_weight(weights)
|
||||
self.task = self.model.args['task']
|
||||
self.overrides = self.model.args = self._reset_ckpt_args(self.model.args)
|
||||
self.ckpt_path = self.model.pt_path
|
||||
else:
|
||||
weights = check_file(weights)
|
||||
self.model, self.ckpt = weights, None
|
||||
self.task = task or guess_model_task(weights)
|
||||
self.ckpt_path = weights
|
||||
self.overrides['model'] = weights
|
||||
self.overrides['task'] = self.task
|
||||
|
||||
def _check_is_pytorch_model(self):
|
||||
"""
|
||||
Raises TypeError is model is not a PyTorch model
|
||||
"""
|
||||
pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == '.pt'
|
||||
pt_module = isinstance(self.model, nn.Module)
|
||||
if not (pt_module or pt_str):
|
||||
raise TypeError(f"model='{self.model}' must be a *.pt PyTorch model, but is a different type. "
|
||||
f'PyTorch models can be used to train, val, predict and export, i.e. '
|
||||
f"'yolo export model=yolov8n.pt', but exported formats like ONNX, TensorRT etc. only "
|
||||
f"support 'predict' and 'val' modes, i.e. 'yolo predict model=yolov8n.onnx'.")
|
||||
|
||||
@smart_inference_mode()
|
||||
def reset_weights(self):
|
||||
"""
|
||||
Resets the model modules parameters to randomly initialized values, losing all training information.
|
||||
"""
|
||||
self._check_is_pytorch_model()
|
||||
for m in self.model.modules():
|
||||
if hasattr(m, 'reset_parameters'):
|
||||
m.reset_parameters()
|
||||
for p in self.model.parameters():
|
||||
p.requires_grad = True
|
||||
return self
|
||||
|
||||
@smart_inference_mode()
|
||||
def load(self, weights='yolov8n.pt'):
|
||||
"""
|
||||
Transfers parameters with matching names and shapes from 'weights' to model.
|
||||
"""
|
||||
self._check_is_pytorch_model()
|
||||
if isinstance(weights, (str, Path)):
|
||||
weights, self.ckpt = attempt_load_one_weight(weights)
|
||||
self.model.load(weights)
|
||||
return self
|
||||
|
||||
def info(self, detailed=False, verbose=True):
|
||||
"""
|
||||
Logs model info.
|
||||
|
||||
Args:
|
||||
detailed (bool): Show detailed information about model.
|
||||
verbose (bool): Controls verbosity.
|
||||
"""
|
||||
self._check_is_pytorch_model()
|
||||
return self.model.info(detailed=detailed, verbose=verbose)
|
||||
|
||||
def fuse(self):
|
||||
"""Fuse PyTorch Conv2d and BatchNorm2d layers."""
|
||||
self._check_is_pytorch_model()
|
||||
self.model.fuse()
|
||||
|
||||
@smart_inference_mode()
|
||||
def predict(self, source=None, stream=False, predictor=None, **kwargs):
|
||||
"""
|
||||
Perform prediction using the YOLO model.
|
||||
|
||||
Args:
|
||||
source (str | int | PIL | np.ndarray): The source of the image to make predictions on.
|
||||
Accepts all source types accepted by the YOLO model.
|
||||
stream (bool): Whether to stream the predictions or not. Defaults to False.
|
||||
predictor (BasePredictor): Customized predictor.
|
||||
**kwargs : Additional keyword arguments passed to the predictor.
|
||||
Check the 'configuration' section in the documentation for all available options.
|
||||
|
||||
Returns:
|
||||
(List[ultralytics.engine.results.Results]): The prediction results.
|
||||
"""
|
||||
if source is None:
|
||||
source = ASSETS
|
||||
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.")
|
||||
|
||||
is_cli = (sys.argv[0].endswith('yolo') or sys.argv[0].endswith('ultralytics')) and any(
|
||||
x in sys.argv for x in ('predict', 'track', 'mode=predict', 'mode=track'))
|
||||
|
||||
custom = {'conf': 0.25, 'save': is_cli} # method defaults
|
||||
args = {**self.overrides, **custom, **kwargs, 'mode': 'predict'} # highest priority args on the right
|
||||
prompts = args.pop('prompts', None) # for SAM-type models
|
||||
|
||||
if not self.predictor:
|
||||
self.predictor = (predictor or self.smart_load('predictor'))(overrides=args, _callbacks=self.callbacks)
|
||||
self.predictor.setup_model(model=self.model, verbose=is_cli)
|
||||
else: # only update args if predictor is already setup
|
||||
self.predictor.args = get_cfg(self.predictor.args, args)
|
||||
if 'project' in args or 'name' in args:
|
||||
self.predictor.save_dir = get_save_dir(self.predictor.args)
|
||||
if prompts and hasattr(self.predictor, 'set_prompts'): # for SAM-type models
|
||||
self.predictor.set_prompts(prompts)
|
||||
return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream)
|
||||
|
||||
def track(self, source=None, stream=False, persist=False, **kwargs):
|
||||
"""
|
||||
Perform object tracking on the input source using the registered trackers.
|
||||
|
||||
Args:
|
||||
source (str, optional): The input source for object tracking. Can be a file path or a video stream.
|
||||
stream (bool, optional): Whether the input source is a video stream. Defaults to False.
|
||||
persist (bool, optional): Whether to persist the trackers if they already exist. Defaults to False.
|
||||
**kwargs (optional): Additional keyword arguments for the tracking process.
|
||||
|
||||
Returns:
|
||||
(List[ultralytics.engine.results.Results]): The tracking results.
|
||||
"""
|
||||
if not hasattr(self.predictor, 'trackers'):
|
||||
from ultralytics.trackers import register_tracker
|
||||
register_tracker(self, persist)
|
||||
# ByteTrack-based method needs low confidence predictions as input
|
||||
kwargs['conf'] = kwargs.get('conf') or 0.1
|
||||
kwargs['mode'] = 'track'
|
||||
return self.predict(source=source, stream=stream, **kwargs)
|
||||
|
||||
@smart_inference_mode()
|
||||
def val(self, validator=None, **kwargs):
|
||||
"""
|
||||
Validate a model on a given dataset.
|
||||
|
||||
Args:
|
||||
validator (BaseValidator): Customized validator.
|
||||
**kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs
|
||||
"""
|
||||
custom = {'rect': True} # method defaults
|
||||
args = {**self.overrides, **custom, **kwargs, 'mode': 'val'} # highest priority args on the right
|
||||
args['imgsz'] = check_imgsz(args['imgsz'], max_dim=1)
|
||||
|
||||
validator = (validator or self.smart_load('validator'))(args=args, _callbacks=self.callbacks)
|
||||
validator(model=self.model)
|
||||
self.metrics = validator.metrics
|
||||
return validator.metrics
|
||||
|
||||
@smart_inference_mode()
|
||||
def benchmark(self, **kwargs):
|
||||
"""
|
||||
Benchmark a model on all export formats.
|
||||
|
||||
Args:
|
||||
**kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs
|
||||
"""
|
||||
self._check_is_pytorch_model()
|
||||
from ultralytics.utils.benchmarks import benchmark
|
||||
|
||||
custom = {'verbose': False} # method defaults
|
||||
args = {**DEFAULT_CFG_DICT, **self.model.args, **custom, **kwargs, 'mode': 'benchmark'}
|
||||
return benchmark(
|
||||
model=self,
|
||||
data=kwargs.get('data'), # if no 'data' argument passed set data=None for default datasets
|
||||
imgsz=args['imgsz'],
|
||||
half=args['half'],
|
||||
int8=args['int8'],
|
||||
device=args['device'],
|
||||
verbose=kwargs.get('verbose'))
|
||||
|
||||
def export(self, **kwargs):
|
||||
"""
|
||||
Export model.
|
||||
|
||||
Args:
|
||||
**kwargs : Any other args accepted by the Exporter. To see all args check 'configuration' section in docs.
|
||||
"""
|
||||
self._check_is_pytorch_model()
|
||||
from .exporter import Exporter
|
||||
|
||||
custom = {'imgsz': self.model.args['imgsz'], 'batch': 1, 'data': None, 'verbose': False} # method defaults
|
||||
args = {**self.overrides, **custom, **kwargs, 'mode': 'export'} # highest priority args on the right
|
||||
return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model)
|
||||
|
||||
def train(self, trainer=None, **kwargs):
|
||||
"""
|
||||
Trains the model on a given dataset.
|
||||
|
||||
Args:
|
||||
trainer (BaseTrainer, optional): Customized trainer.
|
||||
**kwargs (Any): Any number of arguments representing the training configuration.
|
||||
"""
|
||||
self._check_is_pytorch_model()
|
||||
if self.session: # Ultralytics HUB session
|
||||
if any(kwargs):
|
||||
LOGGER.warning('WARNING ⚠️ using HUB training arguments, ignoring local training arguments.')
|
||||
kwargs = self.session.train_args
|
||||
check_pip_update_available()
|
||||
|
||||
overrides = yaml_load(check_yaml(kwargs['cfg'])) if kwargs.get('cfg') else self.overrides
|
||||
custom = {'data': TASK2DATA[self.task]} # method defaults
|
||||
args = {**overrides, **custom, **kwargs, 'mode': 'train'} # highest priority args on the right
|
||||
if args.get('resume'):
|
||||
args['resume'] = self.ckpt_path
|
||||
|
||||
self.trainer = (trainer or self.smart_load('trainer'))(overrides=args, _callbacks=self.callbacks)
|
||||
if not args.get('resume'): # manually set model only if not resuming
|
||||
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
|
||||
self.model = self.trainer.model
|
||||
self.trainer.hub_session = self.session # attach optional HUB session
|
||||
self.trainer.train()
|
||||
# Update model and cfg after training
|
||||
if RANK in (-1, 0):
|
||||
ckpt = self.trainer.best if self.trainer.best.exists() else self.trainer.last
|
||||
self.model, _ = attempt_load_one_weight(ckpt)
|
||||
self.overrides = self.model.args
|
||||
self.metrics = getattr(self.trainer.validator, 'metrics', None) # TODO: no metrics returned by DDP
|
||||
return self.metrics
|
||||
|
||||
def tune(self, use_ray=False, iterations=10, *args, **kwargs):
|
||||
"""
|
||||
Runs hyperparameter tuning, optionally using Ray Tune. See ultralytics.utils.tuner.run_ray_tune for Args.
|
||||
|
||||
Returns:
|
||||
(dict): A dictionary containing the results of the hyperparameter search.
|
||||
"""
|
||||
self._check_is_pytorch_model()
|
||||
if use_ray:
|
||||
from ultralytics.utils.tuner import run_ray_tune
|
||||
return run_ray_tune(self, max_samples=iterations, *args, **kwargs)
|
||||
else:
|
||||
from .tuner import Tuner
|
||||
|
||||
custom = {'plots': False, 'save': False} # method defaults
|
||||
args = {**self.overrides, **custom, **kwargs, 'mode': 'train'} # highest priority args on the right
|
||||
return Tuner(args=args, _callbacks=self.callbacks)(model=self, iterations=iterations)
|
||||
|
||||
def to(self, device):
|
||||
"""
|
||||
Sends the model to the given device.
|
||||
|
||||
Args:
|
||||
device (str): device
|
||||
"""
|
||||
self._check_is_pytorch_model()
|
||||
self.model.to(device)
|
||||
return self
|
||||
|
||||
@property
|
||||
def names(self):
|
||||
"""Returns class names of the loaded model."""
|
||||
return self.model.names if hasattr(self.model, 'names') else None
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
"""Returns device if PyTorch model."""
|
||||
return next(self.model.parameters()).device if isinstance(self.model, nn.Module) else None
|
||||
|
||||
@property
|
||||
def transforms(self):
|
||||
"""Returns transform of the loaded model."""
|
||||
return self.model.transforms if hasattr(self.model, 'transforms') else None
|
||||
|
||||
def add_callback(self, event: str, func):
|
||||
"""Add a callback."""
|
||||
self.callbacks[event].append(func)
|
||||
|
||||
def clear_callback(self, event: str):
|
||||
"""Clear all event callbacks."""
|
||||
self.callbacks[event] = []
|
||||
|
||||
@staticmethod
|
||||
def _reset_ckpt_args(args):
|
||||
"""Reset arguments when loading a PyTorch model."""
|
||||
include = {'imgsz', 'data', 'task', 'single_cls'} # only remember these arguments when loading a PyTorch model
|
||||
return {k: v for k, v in args.items() if k in include}
|
||||
|
||||
def _reset_callbacks(self):
|
||||
"""Reset all registered callbacks."""
|
||||
for event in callbacks.default_callbacks.keys():
|
||||
self.callbacks[event] = [callbacks.default_callbacks[event][0]]
|
||||
|
||||
def __getattr__(self, attr):
|
||||
"""Raises error if object has no requested attribute."""
|
||||
name = self.__class__.__name__
|
||||
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
||||
|
||||
def smart_load(self, key):
|
||||
"""Load model/trainer/validator/predictor."""
|
||||
try:
|
||||
return self.task_map[self.task][key]
|
||||
except Exception as e:
|
||||
name = self.__class__.__name__
|
||||
mode = inspect.stack()[1][3] # get the function name.
|
||||
raise NotImplementedError(
|
||||
emojis(f"WARNING ⚠️ '{name}' model does not support '{mode}' mode for '{self.task}' task yet.")) from e
|
||||
|
||||
@property
|
||||
def task_map(self):
|
||||
"""
|
||||
Map head to model, trainer, validator, and predictor classes.
|
||||
|
||||
Returns:
|
||||
task_map (dict): The map of model task to mode classes.
|
||||
"""
|
||||
raise NotImplementedError('Please provide task map for your model!')
|
358
ultralytics/engine/predictor.py
Normal file
358
ultralytics/engine/predictor.py
Normal file
@ -0,0 +1,358 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Run prediction on images, videos, directories, globs, YouTube, webcam, streams, etc.
|
||||
|
||||
Usage - sources:
|
||||
$ yolo mode=predict model=yolov8n.pt source=0 # webcam
|
||||
img.jpg # image
|
||||
vid.mp4 # video
|
||||
screen # screenshot
|
||||
path/ # directory
|
||||
list.txt # list of images
|
||||
list.streams # list of streams
|
||||
'path/*.jpg' # glob
|
||||
'https://youtu.be/Zgi9g1ksQHc' # YouTube
|
||||
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
||||
|
||||
Usage - formats:
|
||||
$ yolo mode=predict model=yolov8n.pt # PyTorch
|
||||
yolov8n.torchscript # TorchScript
|
||||
yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
|
||||
yolov8n_openvino_model # OpenVINO
|
||||
yolov8n.engine # TensorRT
|
||||
yolov8n.mlpackage # CoreML (macOS-only)
|
||||
yolov8n_saved_model # TensorFlow SavedModel
|
||||
yolov8n.pb # TensorFlow GraphDef
|
||||
yolov8n.tflite # TensorFlow Lite
|
||||
yolov8n_edgetpu.tflite # TensorFlow Edge TPU
|
||||
yolov8n_paddle_model # PaddlePaddle
|
||||
"""
|
||||
import platform
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from ultralytics.cfg import get_cfg, get_save_dir
|
||||
from ultralytics.data import load_inference_source
|
||||
from ultralytics.data.augment import LetterBox, classify_transforms
|
||||
from ultralytics.nn.autobackend import AutoBackend
|
||||
from ultralytics.utils import DEFAULT_CFG, LOGGER, MACOS, WINDOWS, callbacks, colorstr, ops
|
||||
from ultralytics.utils.checks import check_imgsz, check_imshow
|
||||
from ultralytics.utils.files import increment_path
|
||||
from ultralytics.utils.torch_utils import select_device, smart_inference_mode
|
||||
|
||||
STREAM_WARNING = """
|
||||
WARNING ⚠️ inference results will accumulate in RAM unless `stream=True` is passed, causing potential out-of-memory
|
||||
errors for large sources or long-running streams and videos. See https://docs.ultralytics.com/modes/predict/ for help.
|
||||
|
||||
Example:
|
||||
results = model(source=..., stream=True) # generator of Results objects
|
||||
for r in results:
|
||||
boxes = r.boxes # Boxes object for bbox outputs
|
||||
masks = r.masks # Masks object for segment masks outputs
|
||||
probs = r.probs # Class probabilities for classification outputs
|
||||
"""
|
||||
|
||||
|
||||
class BasePredictor:
|
||||
"""
|
||||
BasePredictor
|
||||
|
||||
A base class for creating predictors.
|
||||
|
||||
Attributes:
|
||||
args (SimpleNamespace): Configuration for the predictor.
|
||||
save_dir (Path): Directory to save results.
|
||||
done_warmup (bool): Whether the predictor has finished setup.
|
||||
model (nn.Module): Model used for prediction.
|
||||
data (dict): Data configuration.
|
||||
device (torch.device): Device used for prediction.
|
||||
dataset (Dataset): Dataset used for prediction.
|
||||
vid_path (str): Path to video file.
|
||||
vid_writer (cv2.VideoWriter): Video writer for saving video output.
|
||||
data_path (str): Path to data.
|
||||
"""
|
||||
|
||||
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
||||
"""
|
||||
Initializes the BasePredictor class.
|
||||
|
||||
Args:
|
||||
cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG.
|
||||
overrides (dict, optional): Configuration overrides. Defaults to None.
|
||||
"""
|
||||
self.args = get_cfg(cfg, overrides)
|
||||
self.save_dir = get_save_dir(self.args)
|
||||
if self.args.conf is None:
|
||||
self.args.conf = 0.25 # default conf=0.25
|
||||
self.done_warmup = False
|
||||
if self.args.show:
|
||||
self.args.show = check_imshow(warn=True)
|
||||
|
||||
# Usable if setup is done
|
||||
self.model = None
|
||||
self.data = self.args.data # data_dict
|
||||
self.imgsz = None
|
||||
self.device = None
|
||||
self.dataset = None
|
||||
self.vid_path, self.vid_writer = None, None
|
||||
self.plotted_img = None
|
||||
self.data_path = None
|
||||
self.source_type = None
|
||||
self.batch = None
|
||||
self.results = None
|
||||
self.transforms = None
|
||||
self.callbacks = _callbacks or callbacks.get_default_callbacks()
|
||||
self.txt_path = None
|
||||
callbacks.add_integration_callbacks(self)
|
||||
|
||||
def preprocess(self, im):
|
||||
"""Prepares input image before inference.
|
||||
|
||||
Args:
|
||||
im (torch.Tensor | List(np.ndarray)): BCHW for tensor, [(HWC) x B] for list.
|
||||
"""
|
||||
not_tensor = not isinstance(im, torch.Tensor)
|
||||
if not_tensor:
|
||||
im = np.stack(self.pre_transform(im))
|
||||
im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW, (n, 3, h, w)
|
||||
im = np.ascontiguousarray(im) # contiguous
|
||||
im = torch.from_numpy(im)
|
||||
|
||||
im = im.to(self.device)
|
||||
im = im.half() if self.model.fp16 else im.float() # uint8 to fp16/32
|
||||
if not_tensor:
|
||||
im /= 255 # 0 - 255 to 0.0 - 1.0
|
||||
return im
|
||||
|
||||
def inference(self, im, *args, **kwargs):
|
||||
visualize = increment_path(self.save_dir / Path(self.batch[0][0]).stem,
|
||||
mkdir=True) if self.args.visualize and (not self.source_type.tensor) else False
|
||||
return self.model(im, augment=self.args.augment, visualize=visualize)
|
||||
|
||||
def pre_transform(self, im):
|
||||
"""
|
||||
Pre-transform input image before inference.
|
||||
|
||||
Args:
|
||||
im (List(np.ndarray)): (N, 3, h, w) for tensor, [(h, w, 3) x N] for list.
|
||||
|
||||
Returns:
|
||||
(list): A list of transformed images.
|
||||
"""
|
||||
same_shapes = all(x.shape == im[0].shape for x in im)
|
||||
letterbox = LetterBox(self.imgsz, auto=same_shapes and self.model.pt, stride=self.model.stride)
|
||||
return [letterbox(image=x) for x in im]
|
||||
|
||||
def write_results(self, idx, results, batch):
|
||||
"""Write inference results to a file or directory."""
|
||||
p, im, _ = batch
|
||||
log_string = ''
|
||||
if len(im.shape) == 3:
|
||||
im = im[None] # expand for batch dim
|
||||
if self.source_type.webcam or self.source_type.from_img or self.source_type.tensor: # batch_size >= 1
|
||||
log_string += f'{idx}: '
|
||||
frame = self.dataset.count
|
||||
else:
|
||||
frame = getattr(self.dataset, 'frame', 0)
|
||||
self.data_path = p
|
||||
self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}')
|
||||
log_string += '%gx%g ' % im.shape[2:] # print string
|
||||
result = results[idx]
|
||||
log_string += result.verbose()
|
||||
|
||||
if self.args.save or self.args.show: # Add bbox to image
|
||||
plot_args = {
|
||||
'line_width': self.args.line_width,
|
||||
'boxes': self.args.boxes,
|
||||
'conf': self.args.show_conf,
|
||||
'labels': self.args.show_labels}
|
||||
if not self.args.retina_masks:
|
||||
plot_args['im_gpu'] = im[idx]
|
||||
self.plotted_img = result.plot(**plot_args)
|
||||
# Write
|
||||
if self.args.save_txt:
|
||||
result.save_txt(f'{self.txt_path}.txt', save_conf=self.args.save_conf)
|
||||
if self.args.save_crop:
|
||||
result.save_crop(save_dir=self.save_dir / 'crops',
|
||||
file_name=self.data_path.stem + ('' if self.dataset.mode == 'image' else f'_{frame}'))
|
||||
|
||||
return log_string
|
||||
|
||||
def postprocess(self, preds, img, orig_imgs):
|
||||
"""Post-processes predictions for an image and returns them."""
|
||||
return preds
|
||||
|
||||
def __call__(self, source=None, model=None, stream=False, *args, **kwargs):
|
||||
"""Performs inference on an image or stream."""
|
||||
self.stream = stream
|
||||
if stream:
|
||||
return self.stream_inference(source, model, *args, **kwargs)
|
||||
else:
|
||||
return list(self.stream_inference(source, model, *args, **kwargs)) # merge list of Result into one
|
||||
|
||||
def predict_cli(self, source=None, model=None):
|
||||
"""Method used for CLI prediction. It uses always generator as outputs as not required by CLI mode."""
|
||||
gen = self.stream_inference(source, model)
|
||||
for _ in gen: # running CLI inference without accumulating any outputs (do not modify)
|
||||
pass
|
||||
|
||||
def setup_source(self, source):
|
||||
"""Sets up source and inference mode."""
|
||||
self.imgsz = check_imgsz(self.args.imgsz, stride=self.model.stride, min_dim=2) # check image size
|
||||
self.transforms = getattr(self.model.model, 'transforms', classify_transforms(
|
||||
self.imgsz[0])) if self.args.task == 'classify' else None
|
||||
self.dataset = load_inference_source(source=source,
|
||||
imgsz=self.imgsz,
|
||||
vid_stride=self.args.vid_stride,
|
||||
stream_buffer=self.args.stream_buffer)
|
||||
self.source_type = self.dataset.source_type
|
||||
if not getattr(self, 'stream', True) and (self.dataset.mode == 'stream' or # streams
|
||||
len(self.dataset) > 1000 or # images
|
||||
any(getattr(self.dataset, 'video_flag', [False]))): # videos
|
||||
LOGGER.warning(STREAM_WARNING)
|
||||
self.vid_path, self.vid_writer = [None] * self.dataset.bs, [None] * self.dataset.bs
|
||||
|
||||
@smart_inference_mode()
|
||||
def stream_inference(self, source=None, model=None, *args, **kwargs):
|
||||
"""Streams real-time inference on camera feed and saves results to file."""
|
||||
if self.args.verbose:
|
||||
LOGGER.info('')
|
||||
|
||||
# Setup model
|
||||
if not self.model:
|
||||
self.setup_model(model)
|
||||
|
||||
# Setup source every time predict is called
|
||||
self.setup_source(source if source is not None else self.args.source)
|
||||
|
||||
# Check if save_dir/ label file exists
|
||||
if self.args.save or self.args.save_txt:
|
||||
(self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Warmup model
|
||||
if not self.done_warmup:
|
||||
self.model.warmup(imgsz=(1 if self.model.pt or self.model.triton else self.dataset.bs, 3, *self.imgsz))
|
||||
self.done_warmup = True
|
||||
|
||||
self.seen, self.windows, self.batch, profilers = 0, [], None, (ops.Profile(), ops.Profile(), ops.Profile())
|
||||
self.run_callbacks('on_predict_start')
|
||||
for batch in self.dataset:
|
||||
self.run_callbacks('on_predict_batch_start')
|
||||
self.batch = batch
|
||||
path, im0s, vid_cap, s = batch
|
||||
|
||||
# Preprocess
|
||||
with profilers[0]:
|
||||
im = self.preprocess(im0s)
|
||||
|
||||
# Inference
|
||||
with profilers[1]:
|
||||
preds = self.inference(im, *args, **kwargs)
|
||||
|
||||
# Postprocess
|
||||
with profilers[2]:
|
||||
self.results = self.postprocess(preds, im, im0s)
|
||||
self.run_callbacks('on_predict_postprocess_end')
|
||||
|
||||
# Visualize, save, write results
|
||||
n = len(im0s)
|
||||
for i in range(n):
|
||||
self.seen += 1
|
||||
self.results[i].speed = {
|
||||
'preprocess': profilers[0].dt * 1E3 / n,
|
||||
'inference': profilers[1].dt * 1E3 / n,
|
||||
'postprocess': profilers[2].dt * 1E3 / n}
|
||||
p, im0 = path[i], None if self.source_type.tensor else im0s[i].copy()
|
||||
p = Path(p)
|
||||
|
||||
if self.args.verbose or self.args.save or self.args.save_txt or self.args.show:
|
||||
s += self.write_results(i, self.results, (p, im, im0))
|
||||
if self.args.save or self.args.save_txt:
|
||||
self.results[i].save_dir = self.save_dir.__str__()
|
||||
if self.args.show and self.plotted_img is not None:
|
||||
self.show(p)
|
||||
if self.args.save and self.plotted_img is not None:
|
||||
self.save_preds(vid_cap, i, str(self.save_dir / p.name))
|
||||
|
||||
self.run_callbacks('on_predict_batch_end')
|
||||
yield from self.results
|
||||
|
||||
# Print time (inference-only)
|
||||
if self.args.verbose:
|
||||
LOGGER.info(f'{s}{profilers[1].dt * 1E3:.1f}ms')
|
||||
|
||||
# Release assets
|
||||
if isinstance(self.vid_writer[-1], cv2.VideoWriter):
|
||||
self.vid_writer[-1].release() # release final video writer
|
||||
|
||||
# Print results
|
||||
if self.args.verbose and self.seen:
|
||||
t = tuple(x.t / self.seen * 1E3 for x in profilers) # speeds per image
|
||||
LOGGER.info(f'Speed: %.1fms preprocess, %.1fms inference, %.1fms postprocess per image at shape '
|
||||
f'{(1, 3, *im.shape[2:])}' % t)
|
||||
if self.args.save or self.args.save_txt or self.args.save_crop:
|
||||
nl = len(list(self.save_dir.glob('labels/*.txt'))) # number of labels
|
||||
s = f"\n{nl} label{'s' * (nl > 1)} saved to {self.save_dir / 'labels'}" if self.args.save_txt else ''
|
||||
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}")
|
||||
|
||||
self.run_callbacks('on_predict_end')
|
||||
|
||||
def setup_model(self, model, verbose=True):
|
||||
"""Initialize YOLO model with given parameters and set it to evaluation mode."""
|
||||
self.model = AutoBackend(model or self.args.model,
|
||||
device=select_device(self.args.device, verbose=verbose),
|
||||
dnn=self.args.dnn,
|
||||
data=self.args.data,
|
||||
fp16=self.args.half,
|
||||
fuse=True,
|
||||
verbose=verbose)
|
||||
|
||||
self.device = self.model.device # update device
|
||||
self.args.half = self.model.fp16 # update half
|
||||
self.model.eval()
|
||||
|
||||
def show(self, p):
|
||||
"""Display an image in a window using OpenCV imshow()."""
|
||||
im0 = self.plotted_img
|
||||
if platform.system() == 'Linux' and p not in self.windows:
|
||||
self.windows.append(p)
|
||||
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
|
||||
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
|
||||
cv2.imshow(str(p), im0)
|
||||
cv2.waitKey(500 if self.batch[3].startswith('image') else 1) # 1 millisecond
|
||||
|
||||
def save_preds(self, vid_cap, idx, save_path):
|
||||
"""Save video predictions as mp4 at specified path."""
|
||||
im0 = self.plotted_img
|
||||
# Save imgs
|
||||
if self.dataset.mode == 'image':
|
||||
cv2.imwrite(save_path, im0)
|
||||
else: # 'video' or 'stream'
|
||||
if self.vid_path[idx] != save_path: # new video
|
||||
self.vid_path[idx] = save_path
|
||||
if isinstance(self.vid_writer[idx], cv2.VideoWriter):
|
||||
self.vid_writer[idx].release() # release previous video writer
|
||||
if vid_cap: # video
|
||||
fps = int(vid_cap.get(cv2.CAP_PROP_FPS)) # integer required, floats produce error in MP4 codec
|
||||
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
else: # stream
|
||||
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
||||
suffix, fourcc = ('.mp4', 'avc1') if MACOS else ('.avi', 'WMV2') if WINDOWS else ('.avi', 'MJPG')
|
||||
save_path = str(Path(save_path).with_suffix(suffix))
|
||||
self.vid_writer[idx] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
|
||||
self.vid_writer[idx].write(im0)
|
||||
|
||||
def run_callbacks(self, event: str):
|
||||
"""Runs all registered callbacks for a specific event."""
|
||||
for callback in self.callbacks.get(event, []):
|
||||
callback(self)
|
||||
|
||||
def add_callback(self, event: str, func):
|
||||
"""
|
||||
Add callback
|
||||
"""
|
||||
self.callbacks[event].append(func)
|
593
ultralytics/engine/results.py
Normal file
593
ultralytics/engine/results.py
Normal file
@ -0,0 +1,593 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Ultralytics Results, Boxes and Masks classes for handling inference results
|
||||
|
||||
Usage: See https://docs.ultralytics.com/modes/predict/
|
||||
"""
|
||||
|
||||
from copy import deepcopy
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from ultralytics.data.augment import LetterBox
|
||||
from ultralytics.utils import LOGGER, SimpleClass, deprecation_warn, ops
|
||||
from ultralytics.utils.plotting import Annotator, colors, save_one_box
|
||||
|
||||
|
||||
class BaseTensor(SimpleClass):
|
||||
"""
|
||||
Base tensor class with additional methods for easy manipulation and device handling.
|
||||
"""
|
||||
|
||||
def __init__(self, data, orig_shape) -> None:
|
||||
"""Initialize BaseTensor with data and original shape.
|
||||
|
||||
Args:
|
||||
data (torch.Tensor | np.ndarray): Predictions, such as bboxes, masks and keypoints.
|
||||
orig_shape (tuple): Original shape of image.
|
||||
"""
|
||||
assert isinstance(data, (torch.Tensor, np.ndarray))
|
||||
self.data = data
|
||||
self.orig_shape = orig_shape
|
||||
|
||||
@property
|
||||
def shape(self):
|
||||
"""Return the shape of the data tensor."""
|
||||
return self.data.shape
|
||||
|
||||
def cpu(self):
|
||||
"""Return a copy of the tensor on CPU memory."""
|
||||
return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.cpu(), self.orig_shape)
|
||||
|
||||
def numpy(self):
|
||||
"""Return a copy of the tensor as a numpy array."""
|
||||
return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.numpy(), self.orig_shape)
|
||||
|
||||
def cuda(self):
|
||||
"""Return a copy of the tensor on GPU memory."""
|
||||
return self.__class__(torch.as_tensor(self.data).cuda(), self.orig_shape)
|
||||
|
||||
def to(self, *args, **kwargs):
|
||||
"""Return a copy of the tensor with the specified device and dtype."""
|
||||
return self.__class__(torch.as_tensor(self.data).to(*args, **kwargs), self.orig_shape)
|
||||
|
||||
def __len__(self): # override len(results)
|
||||
"""Return the length of the data tensor."""
|
||||
return len(self.data)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
"""Return a BaseTensor with the specified index of the data tensor."""
|
||||
return self.__class__(self.data[idx], self.orig_shape)
|
||||
|
||||
|
||||
class Results(SimpleClass):
|
||||
"""
|
||||
A class for storing and manipulating inference results.
|
||||
|
||||
Args:
|
||||
orig_img (numpy.ndarray): The original image as a numpy array.
|
||||
path (str): The path to the image file.
|
||||
names (dict): A dictionary of class names.
|
||||
boxes (torch.tensor, optional): A 2D tensor of bounding box coordinates for each detection.
|
||||
masks (torch.tensor, optional): A 3D tensor of detection masks, where each mask is a binary image.
|
||||
probs (torch.tensor, optional): A 1D tensor of probabilities of each class for classification task.
|
||||
keypoints (List[List[float]], optional): A list of detected keypoints for each object.
|
||||
|
||||
Attributes:
|
||||
orig_img (numpy.ndarray): The original image as a numpy array.
|
||||
orig_shape (tuple): The original image shape in (height, width) format.
|
||||
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes.
|
||||
masks (Masks, optional): A Masks object containing the detection masks.
|
||||
probs (Probs, optional): A Probs object containing probabilities of each class for classification task.
|
||||
keypoints (Keypoints, optional): A Keypoints object containing detected keypoints for each object.
|
||||
speed (dict): A dictionary of preprocess, inference, and postprocess speeds in milliseconds per image.
|
||||
names (dict): A dictionary of class names.
|
||||
path (str): The path to the image file.
|
||||
_keys (tuple): A tuple of attribute names for non-empty attributes.
|
||||
"""
|
||||
|
||||
def __init__(self, orig_img, path, names, boxes=None, masks=None, probs=None, keypoints=None) -> None:
|
||||
"""Initialize the Results class."""
|
||||
self.orig_img = orig_img
|
||||
self.orig_shape = orig_img.shape[:2]
|
||||
self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None # native size boxes
|
||||
self.masks = Masks(masks, self.orig_shape) if masks is not None else None # native size or imgsz masks
|
||||
self.probs = Probs(probs) if probs is not None else None
|
||||
self.keypoints = Keypoints(keypoints, self.orig_shape) if keypoints is not None else None
|
||||
self.speed = {'preprocess': None, 'inference': None, 'postprocess': None} # milliseconds per image
|
||||
self.names = names
|
||||
self.path = path
|
||||
self.save_dir = None
|
||||
self._keys = 'boxes', 'masks', 'probs', 'keypoints'
|
||||
|
||||
def __getitem__(self, idx):
|
||||
"""Return a Results object for the specified index."""
|
||||
return self._apply('__getitem__', idx)
|
||||
|
||||
def __len__(self):
|
||||
"""Return the number of detections in the Results object."""
|
||||
for k in self._keys:
|
||||
v = getattr(self, k)
|
||||
if v is not None:
|
||||
return len(v)
|
||||
|
||||
def update(self, boxes=None, masks=None, probs=None):
|
||||
"""Update the boxes, masks, and probs attributes of the Results object."""
|
||||
if boxes is not None:
|
||||
ops.clip_boxes(boxes, self.orig_shape) # clip boxes
|
||||
self.boxes = Boxes(boxes, self.orig_shape)
|
||||
if masks is not None:
|
||||
self.masks = Masks(masks, self.orig_shape)
|
||||
if probs is not None:
|
||||
self.probs = probs
|
||||
|
||||
def _apply(self, fn, *args, **kwargs):
|
||||
r = self.new()
|
||||
for k in self._keys:
|
||||
v = getattr(self, k)
|
||||
if v is not None:
|
||||
setattr(r, k, getattr(v, fn)(*args, **kwargs))
|
||||
return r
|
||||
|
||||
def cpu(self):
|
||||
"""Return a copy of the Results object with all tensors on CPU memory."""
|
||||
return self._apply('cpu')
|
||||
|
||||
def numpy(self):
|
||||
"""Return a copy of the Results object with all tensors as numpy arrays."""
|
||||
return self._apply('numpy')
|
||||
|
||||
def cuda(self):
|
||||
"""Return a copy of the Results object with all tensors on GPU memory."""
|
||||
return self._apply('cuda')
|
||||
|
||||
def to(self, *args, **kwargs):
|
||||
"""Return a copy of the Results object with tensors on the specified device and dtype."""
|
||||
return self._apply('to', *args, **kwargs)
|
||||
|
||||
def new(self):
|
||||
"""Return a new Results object with the same image, path, and names."""
|
||||
return Results(orig_img=self.orig_img, path=self.path, names=self.names)
|
||||
|
||||
def plot(
|
||||
self,
|
||||
conf=True,
|
||||
line_width=None,
|
||||
font_size=None,
|
||||
font='Arial.ttf',
|
||||
pil=False,
|
||||
img=None,
|
||||
im_gpu=None,
|
||||
kpt_radius=5,
|
||||
kpt_line=True,
|
||||
labels=True,
|
||||
boxes=True,
|
||||
masks=True,
|
||||
probs=True,
|
||||
**kwargs # deprecated args TODO: remove support in 8.2
|
||||
):
|
||||
"""
|
||||
Plots the detection results on an input RGB image. Accepts a numpy array (cv2) or a PIL Image.
|
||||
|
||||
Args:
|
||||
conf (bool): Whether to plot the detection confidence score.
|
||||
line_width (float, optional): The line width of the bounding boxes. If None, it is scaled to the image size.
|
||||
font_size (float, optional): The font size of the text. If None, it is scaled to the image size.
|
||||
font (str): The font to use for the text.
|
||||
pil (bool): Whether to return the image as a PIL Image.
|
||||
img (numpy.ndarray): Plot to another image. if not, plot to original image.
|
||||
im_gpu (torch.Tensor): Normalized image in gpu with shape (1, 3, 640, 640), for faster mask plotting.
|
||||
kpt_radius (int, optional): Radius of the drawn keypoints. Default is 5.
|
||||
kpt_line (bool): Whether to draw lines connecting keypoints.
|
||||
labels (bool): Whether to plot the label of bounding boxes.
|
||||
boxes (bool): Whether to plot the bounding boxes.
|
||||
masks (bool): Whether to plot the masks.
|
||||
probs (bool): Whether to plot classification probability
|
||||
|
||||
Returns:
|
||||
(numpy.ndarray): A numpy array of the annotated image.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from PIL import Image
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO('yolov8n.pt')
|
||||
results = model('bus.jpg') # results list
|
||||
for r in results:
|
||||
im_array = r.plot() # plot a BGR numpy array of predictions
|
||||
im = Image.fromarray(im_array[..., ::-1]) # RGB PIL image
|
||||
im.show() # show image
|
||||
im.save('results.jpg') # save image
|
||||
```
|
||||
"""
|
||||
if img is None and isinstance(self.orig_img, torch.Tensor):
|
||||
img = (self.orig_img[0].detach().permute(1, 2, 0).contiguous() * 255).to(torch.uint8).cpu().numpy()
|
||||
|
||||
# Deprecation warn TODO: remove in 8.2
|
||||
if 'show_conf' in kwargs:
|
||||
deprecation_warn('show_conf', 'conf')
|
||||
conf = kwargs['show_conf']
|
||||
assert isinstance(conf, bool), '`show_conf` should be of boolean type, i.e, show_conf=True/False'
|
||||
|
||||
if 'line_thickness' in kwargs:
|
||||
deprecation_warn('line_thickness', 'line_width')
|
||||
line_width = kwargs['line_thickness']
|
||||
assert isinstance(line_width, int), '`line_width` should be of int type, i.e, line_width=3'
|
||||
|
||||
names = self.names
|
||||
pred_boxes, show_boxes = self.boxes, boxes
|
||||
pred_masks, show_masks = self.masks, masks
|
||||
pred_probs, show_probs = self.probs, probs
|
||||
annotator = Annotator(
|
||||
deepcopy(self.orig_img if img is None else img),
|
||||
line_width,
|
||||
font_size,
|
||||
font,
|
||||
pil or (pred_probs is not None and show_probs), # Classify tasks default to pil=True
|
||||
example=names)
|
||||
|
||||
# Plot Segment results
|
||||
if pred_masks and show_masks:
|
||||
if im_gpu is None:
|
||||
img = LetterBox(pred_masks.shape[1:])(image=annotator.result())
|
||||
im_gpu = torch.as_tensor(img, dtype=torch.float16, device=pred_masks.data.device).permute(
|
||||
2, 0, 1).flip(0).contiguous() / 255
|
||||
idx = pred_boxes.cls if pred_boxes else range(len(pred_masks))
|
||||
annotator.masks(pred_masks.data, colors=[colors(x, True) for x in idx], im_gpu=im_gpu)
|
||||
|
||||
# Plot Detect results
|
||||
if pred_boxes and show_boxes:
|
||||
for d in reversed(pred_boxes):
|
||||
c, conf, id = int(d.cls), float(d.conf) if conf else None, None if d.id is None else int(d.id.item())
|
||||
name = ('' if id is None else f'id:{id} ') + names[c]
|
||||
label = (f'{name} {conf:.2f}' if conf else name) if labels else None
|
||||
annotator.box_label(d.xyxy.squeeze(), label, color=colors(c, True))
|
||||
|
||||
# Plot Classify results
|
||||
if pred_probs is not None and show_probs:
|
||||
text = ',\n'.join(f'{names[j] if names else j} {pred_probs.data[j]:.2f}' for j in pred_probs.top5)
|
||||
x = round(self.orig_shape[0] * 0.03)
|
||||
annotator.text([x, x], text, txt_color=(255, 255, 255)) # TODO: allow setting colors
|
||||
|
||||
# Plot Pose results
|
||||
if self.keypoints is not None:
|
||||
for k in reversed(self.keypoints.data):
|
||||
annotator.kpts(k, self.orig_shape, radius=kpt_radius, kpt_line=kpt_line)
|
||||
|
||||
return annotator.result()
|
||||
|
||||
def verbose(self):
|
||||
"""
|
||||
Return log string for each task.
|
||||
"""
|
||||
log_string = ''
|
||||
probs = self.probs
|
||||
boxes = self.boxes
|
||||
if len(self) == 0:
|
||||
return log_string if probs is not None else f'{log_string}(no detections), '
|
||||
if probs is not None:
|
||||
log_string += f"{', '.join(f'{self.names[j]} {probs.data[j]:.2f}' for j in probs.top5)}, "
|
||||
if boxes:
|
||||
for c in boxes.cls.unique():
|
||||
n = (boxes.cls == c).sum() # detections per class
|
||||
log_string += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "
|
||||
return log_string
|
||||
|
||||
def save_txt(self, txt_file, save_conf=False):
|
||||
"""
|
||||
Save predictions into txt file.
|
||||
|
||||
Args:
|
||||
txt_file (str): txt file path.
|
||||
save_conf (bool): save confidence score or not.
|
||||
"""
|
||||
boxes = self.boxes
|
||||
masks = self.masks
|
||||
probs = self.probs
|
||||
kpts = self.keypoints
|
||||
texts = []
|
||||
if probs is not None:
|
||||
# Classify
|
||||
[texts.append(f'{probs.data[j]:.2f} {self.names[j]}') for j in probs.top5]
|
||||
elif boxes:
|
||||
# Detect/segment/pose
|
||||
for j, d in enumerate(boxes):
|
||||
c, conf, id = int(d.cls), float(d.conf), None if d.id is None else int(d.id.item())
|
||||
line = (c, *d.xywhn.view(-1))
|
||||
if masks:
|
||||
seg = masks[j].xyn[0].copy().reshape(-1) # reversed mask.xyn, (n,2) to (n*2)
|
||||
line = (c, *seg)
|
||||
if kpts is not None:
|
||||
kpt = torch.cat((kpts[j].xyn, kpts[j].conf[..., None]), 2) if kpts[j].has_visible else kpts[j].xyn
|
||||
line += (*kpt.reshape(-1).tolist(), )
|
||||
line += (conf, ) * save_conf + (() if id is None else (id, ))
|
||||
texts.append(('%g ' * len(line)).rstrip() % line)
|
||||
|
||||
if texts:
|
||||
Path(txt_file).parent.mkdir(parents=True, exist_ok=True) # make directory
|
||||
with open(txt_file, 'a') as f:
|
||||
f.writelines(text + '\n' for text in texts)
|
||||
|
||||
def save_crop(self, save_dir, file_name=Path('im.jpg')):
|
||||
"""
|
||||
Save cropped predictions to `save_dir/cls/file_name.jpg`.
|
||||
|
||||
Args:
|
||||
save_dir (str | pathlib.Path): Save path.
|
||||
file_name (str | pathlib.Path): File name.
|
||||
"""
|
||||
if self.probs is not None:
|
||||
LOGGER.warning('WARNING ⚠️ Classify task do not support `save_crop`.')
|
||||
return
|
||||
for d in self.boxes:
|
||||
save_one_box(d.xyxy,
|
||||
self.orig_img.copy(),
|
||||
file=Path(save_dir) / self.names[int(d.cls)] / f'{Path(file_name).stem}.jpg',
|
||||
BGR=True)
|
||||
|
||||
def tojson(self, normalize=False):
|
||||
"""Convert the object to JSON format."""
|
||||
if self.probs is not None:
|
||||
LOGGER.warning('Warning: Classify task do not support `tojson` yet.')
|
||||
return
|
||||
|
||||
import json
|
||||
|
||||
# Create list of detection dictionaries
|
||||
results = []
|
||||
data = self.boxes.data.cpu().tolist()
|
||||
h, w = self.orig_shape if normalize else (1, 1)
|
||||
for i, row in enumerate(data): # xyxy, track_id if tracking, conf, class_id
|
||||
box = {'x1': row[0] / w, 'y1': row[1] / h, 'x2': row[2] / w, 'y2': row[3] / h}
|
||||
conf = row[-2]
|
||||
class_id = int(row[-1])
|
||||
name = self.names[class_id]
|
||||
result = {'name': name, 'class': class_id, 'confidence': conf, 'box': box}
|
||||
if self.boxes.is_track:
|
||||
result['track_id'] = int(row[-3]) # track ID
|
||||
if self.masks:
|
||||
x, y = self.masks.xy[i][:, 0], self.masks.xy[i][:, 1] # numpy array
|
||||
result['segments'] = {'x': (x / w).tolist(), 'y': (y / h).tolist()}
|
||||
if self.keypoints is not None:
|
||||
x, y, visible = self.keypoints[i].data[0].cpu().unbind(dim=1) # torch Tensor
|
||||
result['keypoints'] = {'x': (x / w).tolist(), 'y': (y / h).tolist(), 'visible': visible.tolist()}
|
||||
results.append(result)
|
||||
|
||||
# Convert detections to JSON
|
||||
return json.dumps(results, indent=2)
|
||||
|
||||
|
||||
class Boxes(BaseTensor):
|
||||
"""
|
||||
A class for storing and manipulating detection boxes.
|
||||
|
||||
Args:
|
||||
boxes (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the detection boxes,
|
||||
with shape (num_boxes, 6) or (num_boxes, 7). The last two columns contain confidence and class values.
|
||||
If present, the third last column contains track IDs.
|
||||
orig_shape (tuple): Original image size, in the format (height, width).
|
||||
|
||||
Attributes:
|
||||
xyxy (torch.Tensor | numpy.ndarray): The boxes in xyxy format.
|
||||
conf (torch.Tensor | numpy.ndarray): The confidence values of the boxes.
|
||||
cls (torch.Tensor | numpy.ndarray): The class values of the boxes.
|
||||
id (torch.Tensor | numpy.ndarray): The track IDs of the boxes (if available).
|
||||
xywh (torch.Tensor | numpy.ndarray): The boxes in xywh format.
|
||||
xyxyn (torch.Tensor | numpy.ndarray): The boxes in xyxy format normalized by original image size.
|
||||
xywhn (torch.Tensor | numpy.ndarray): The boxes in xywh format normalized by original image size.
|
||||
data (torch.Tensor): The raw bboxes tensor (alias for `boxes`).
|
||||
|
||||
Methods:
|
||||
cpu(): Move the object to CPU memory.
|
||||
numpy(): Convert the object to a numpy array.
|
||||
cuda(): Move the object to CUDA memory.
|
||||
to(*args, **kwargs): Move the object to the specified device.
|
||||
"""
|
||||
|
||||
def __init__(self, boxes, orig_shape) -> None:
|
||||
"""Initialize the Boxes class."""
|
||||
if boxes.ndim == 1:
|
||||
boxes = boxes[None, :]
|
||||
n = boxes.shape[-1]
|
||||
assert n in (6, 7), f'expected `n` in [6, 7], but got {n}' # xyxy, track_id, conf, cls
|
||||
super().__init__(boxes, orig_shape)
|
||||
self.is_track = n == 7
|
||||
self.orig_shape = orig_shape
|
||||
|
||||
@property
|
||||
def xyxy(self):
|
||||
"""Return the boxes in xyxy format."""
|
||||
return self.data[:, :4]
|
||||
|
||||
@property
|
||||
def conf(self):
|
||||
"""Return the confidence values of the boxes."""
|
||||
return self.data[:, -2]
|
||||
|
||||
@property
|
||||
def cls(self):
|
||||
"""Return the class values of the boxes."""
|
||||
return self.data[:, -1]
|
||||
|
||||
@property
|
||||
def id(self):
|
||||
"""Return the track IDs of the boxes (if available)."""
|
||||
return self.data[:, -3] if self.is_track else None
|
||||
|
||||
@property
|
||||
@lru_cache(maxsize=2) # maxsize 1 should suffice
|
||||
def xywh(self):
|
||||
"""Return the boxes in xywh format."""
|
||||
return ops.xyxy2xywh(self.xyxy)
|
||||
|
||||
@property
|
||||
@lru_cache(maxsize=2)
|
||||
def xyxyn(self):
|
||||
"""Return the boxes in xyxy format normalized by original image size."""
|
||||
xyxy = self.xyxy.clone() if isinstance(self.xyxy, torch.Tensor) else np.copy(self.xyxy)
|
||||
xyxy[..., [0, 2]] /= self.orig_shape[1]
|
||||
xyxy[..., [1, 3]] /= self.orig_shape[0]
|
||||
return xyxy
|
||||
|
||||
@property
|
||||
@lru_cache(maxsize=2)
|
||||
def xywhn(self):
|
||||
"""Return the boxes in xywh format normalized by original image size."""
|
||||
xywh = ops.xyxy2xywh(self.xyxy)
|
||||
xywh[..., [0, 2]] /= self.orig_shape[1]
|
||||
xywh[..., [1, 3]] /= self.orig_shape[0]
|
||||
return xywh
|
||||
|
||||
@property
|
||||
def boxes(self):
|
||||
"""Return the raw bboxes tensor (deprecated)."""
|
||||
LOGGER.warning("WARNING ⚠️ 'Boxes.boxes' is deprecated. Use 'Boxes.data' instead.")
|
||||
return self.data
|
||||
|
||||
|
||||
class Masks(BaseTensor):
|
||||
"""
|
||||
A class for storing and manipulating detection masks.
|
||||
|
||||
Attributes:
|
||||
segments (list): Deprecated property for segments (normalized).
|
||||
xy (list): A list of segments in pixel coordinates.
|
||||
xyn (list): A list of normalized segments.
|
||||
|
||||
Methods:
|
||||
cpu(): Returns the masks tensor on CPU memory.
|
||||
numpy(): Returns the masks tensor as a numpy array.
|
||||
cuda(): Returns the masks tensor on GPU memory.
|
||||
to(device, dtype): Returns the masks tensor with the specified device and dtype.
|
||||
"""
|
||||
|
||||
def __init__(self, masks, orig_shape) -> None:
|
||||
"""Initialize the Masks class with the given masks tensor and original image shape."""
|
||||
if masks.ndim == 2:
|
||||
masks = masks[None, :]
|
||||
super().__init__(masks, orig_shape)
|
||||
|
||||
@property
|
||||
@lru_cache(maxsize=1)
|
||||
def segments(self):
|
||||
"""Return segments (normalized). Deprecated; use xyn property instead."""
|
||||
LOGGER.warning(
|
||||
"WARNING ⚠️ 'Masks.segments' is deprecated. Use 'Masks.xyn' for segments (normalized) and 'Masks.xy' for segments (pixels) instead."
|
||||
)
|
||||
return self.xyn
|
||||
|
||||
@property
|
||||
@lru_cache(maxsize=1)
|
||||
def xyn(self):
|
||||
"""Return normalized segments."""
|
||||
return [
|
||||
ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=True)
|
||||
for x in ops.masks2segments(self.data)]
|
||||
|
||||
@property
|
||||
@lru_cache(maxsize=1)
|
||||
def xy(self):
|
||||
"""Return segments in pixel coordinates."""
|
||||
return [
|
||||
ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=False)
|
||||
for x in ops.masks2segments(self.data)]
|
||||
|
||||
@property
|
||||
def masks(self):
|
||||
"""Return the raw masks tensor. Deprecated; use data attribute instead."""
|
||||
LOGGER.warning("WARNING ⚠️ 'Masks.masks' is deprecated. Use 'Masks.data' instead.")
|
||||
return self.data
|
||||
|
||||
|
||||
class Keypoints(BaseTensor):
|
||||
"""
|
||||
A class for storing and manipulating detection keypoints.
|
||||
|
||||
Attributes:
|
||||
xy (torch.Tensor): A collection of keypoints containing x, y coordinates for each detection.
|
||||
xyn (torch.Tensor): A normalized version of xy with coordinates in the range [0, 1].
|
||||
conf (torch.Tensor): Confidence values associated with keypoints if available, otherwise None.
|
||||
|
||||
Methods:
|
||||
cpu(): Returns a copy of the keypoints tensor on CPU memory.
|
||||
numpy(): Returns a copy of the keypoints tensor as a numpy array.
|
||||
cuda(): Returns a copy of the keypoints tensor on GPU memory.
|
||||
to(device, dtype): Returns a copy of the keypoints tensor with the specified device and dtype.
|
||||
"""
|
||||
|
||||
def __init__(self, keypoints, orig_shape) -> None:
|
||||
"""Initializes the Keypoints object with detection keypoints and original image size."""
|
||||
if keypoints.ndim == 2:
|
||||
keypoints = keypoints[None, :]
|
||||
super().__init__(keypoints, orig_shape)
|
||||
self.has_visible = self.data.shape[-1] == 3
|
||||
|
||||
@property
|
||||
@lru_cache(maxsize=1)
|
||||
def xy(self):
|
||||
"""Returns x, y coordinates of keypoints."""
|
||||
return self.data[..., :2]
|
||||
|
||||
@property
|
||||
@lru_cache(maxsize=1)
|
||||
def xyn(self):
|
||||
"""Returns normalized x, y coordinates of keypoints."""
|
||||
xy = self.xy.clone() if isinstance(self.xy, torch.Tensor) else np.copy(self.xy)
|
||||
xy[..., 0] /= self.orig_shape[1]
|
||||
xy[..., 1] /= self.orig_shape[0]
|
||||
return xy
|
||||
|
||||
@property
|
||||
@lru_cache(maxsize=1)
|
||||
def conf(self):
|
||||
"""Returns confidence values of keypoints if available, else None."""
|
||||
return self.data[..., 2] if self.has_visible else None
|
||||
|
||||
|
||||
class Probs(BaseTensor):
|
||||
"""
|
||||
A class for storing and manipulating classification predictions.
|
||||
|
||||
Attributes:
|
||||
top1 (int): Index of the top 1 class.
|
||||
top5 (list[int]): Indices of the top 5 classes.
|
||||
top1conf (torch.Tensor): Confidence of the top 1 class.
|
||||
top5conf (torch.Tensor): Confidences of the top 5 classes.
|
||||
|
||||
Methods:
|
||||
cpu(): Returns a copy of the probs tensor on CPU memory.
|
||||
numpy(): Returns a copy of the probs tensor as a numpy array.
|
||||
cuda(): Returns a copy of the probs tensor on GPU memory.
|
||||
to(): Returns a copy of the probs tensor with the specified device and dtype.
|
||||
"""
|
||||
|
||||
def __init__(self, probs, orig_shape=None) -> None:
|
||||
super().__init__(probs, orig_shape)
|
||||
|
||||
@property
|
||||
@lru_cache(maxsize=1)
|
||||
def top1(self):
|
||||
"""Return the index of top 1."""
|
||||
return int(self.data.argmax())
|
||||
|
||||
@property
|
||||
@lru_cache(maxsize=1)
|
||||
def top5(self):
|
||||
"""Return the indices of top 5."""
|
||||
return (-self.data).argsort(0)[:5].tolist() # this way works with both torch and numpy.
|
||||
|
||||
@property
|
||||
@lru_cache(maxsize=1)
|
||||
def top1conf(self):
|
||||
"""Return the confidence of top 1."""
|
||||
return self.data[self.top1]
|
||||
|
||||
@property
|
||||
@lru_cache(maxsize=1)
|
||||
def top5conf(self):
|
||||
"""Return the confidences of top 5."""
|
||||
return self.data[self.top5]
|
689
ultralytics/engine/trainer.py
Normal file
689
ultralytics/engine/trainer.py
Normal file
@ -0,0 +1,689 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Train a model on a dataset
|
||||
|
||||
Usage:
|
||||
$ yolo mode=train model=yolov8n.pt data=coco128.yaml imgsz=640 epochs=100 batch=16
|
||||
"""
|
||||
|
||||
import math
|
||||
import os
|
||||
import subprocess
|
||||
import time
|
||||
import warnings
|
||||
from copy import deepcopy
|
||||
from datetime import datetime, timedelta
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import distributed as dist
|
||||
from torch import nn, optim
|
||||
from torch.cuda import amp
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
|
||||
from ultralytics.cfg import get_cfg, get_save_dir
|
||||
from ultralytics.data.utils import check_cls_dataset, check_det_dataset
|
||||
from ultralytics.nn.tasks import attempt_load_one_weight, attempt_load_weights
|
||||
from ultralytics.utils import (DEFAULT_CFG, LOGGER, RANK, TQDM, __version__, callbacks, clean_url, colorstr, emojis,
|
||||
yaml_save)
|
||||
from ultralytics.utils.autobatch import check_train_batch_size
|
||||
from ultralytics.utils.checks import check_amp, check_file, check_imgsz, print_args
|
||||
from ultralytics.utils.dist import ddp_cleanup, generate_ddp_command
|
||||
from ultralytics.utils.files import get_latest_run
|
||||
from ultralytics.utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, init_seeds, one_cycle, select_device,
|
||||
strip_optimizer)
|
||||
|
||||
|
||||
class BaseTrainer:
|
||||
"""
|
||||
BaseTrainer
|
||||
|
||||
A base class for creating trainers.
|
||||
|
||||
Attributes:
|
||||
args (SimpleNamespace): Configuration for the trainer.
|
||||
check_resume (method): Method to check if training should be resumed from a saved checkpoint.
|
||||
validator (BaseValidator): Validator instance.
|
||||
model (nn.Module): Model instance.
|
||||
callbacks (defaultdict): Dictionary of callbacks.
|
||||
save_dir (Path): Directory to save results.
|
||||
wdir (Path): Directory to save weights.
|
||||
last (Path): Path to the last checkpoint.
|
||||
best (Path): Path to the best checkpoint.
|
||||
save_period (int): Save checkpoint every x epochs (disabled if < 1).
|
||||
batch_size (int): Batch size for training.
|
||||
epochs (int): Number of epochs to train for.
|
||||
start_epoch (int): Starting epoch for training.
|
||||
device (torch.device): Device to use for training.
|
||||
amp (bool): Flag to enable AMP (Automatic Mixed Precision).
|
||||
scaler (amp.GradScaler): Gradient scaler for AMP.
|
||||
data (str): Path to data.
|
||||
trainset (torch.utils.data.Dataset): Training dataset.
|
||||
testset (torch.utils.data.Dataset): Testing dataset.
|
||||
ema (nn.Module): EMA (Exponential Moving Average) of the model.
|
||||
lf (nn.Module): Loss function.
|
||||
scheduler (torch.optim.lr_scheduler._LRScheduler): Learning rate scheduler.
|
||||
best_fitness (float): The best fitness value achieved.
|
||||
fitness (float): Current fitness value.
|
||||
loss (float): Current loss value.
|
||||
tloss (float): Total loss value.
|
||||
loss_names (list): List of loss names.
|
||||
csv (Path): Path to results CSV file.
|
||||
"""
|
||||
|
||||
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
||||
"""
|
||||
Initializes the BaseTrainer class.
|
||||
|
||||
Args:
|
||||
cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG.
|
||||
overrides (dict, optional): Configuration overrides. Defaults to None.
|
||||
"""
|
||||
self.args = get_cfg(cfg, overrides)
|
||||
self.check_resume(overrides)
|
||||
self.device = select_device(self.args.device, self.args.batch)
|
||||
self.validator = None
|
||||
self.model = None
|
||||
self.metrics = None
|
||||
self.plots = {}
|
||||
init_seeds(self.args.seed + 1 + RANK, deterministic=self.args.deterministic)
|
||||
|
||||
# Dirs
|
||||
self.save_dir = get_save_dir(self.args)
|
||||
self.wdir = self.save_dir / 'weights' # weights dir
|
||||
if RANK in (-1, 0):
|
||||
self.wdir.mkdir(parents=True, exist_ok=True) # make dir
|
||||
self.args.save_dir = str(self.save_dir)
|
||||
yaml_save(self.save_dir / 'args.yaml', vars(self.args)) # save run args
|
||||
self.last, self.best = self.wdir / 'last.pt', self.wdir / 'best.pt' # checkpoint paths
|
||||
self.save_period = self.args.save_period
|
||||
|
||||
self.batch_size = self.args.batch
|
||||
self.epochs = self.args.epochs
|
||||
self.start_epoch = 0
|
||||
if RANK == -1:
|
||||
print_args(vars(self.args))
|
||||
|
||||
# Device
|
||||
if self.device.type in ('cpu', 'mps'):
|
||||
self.args.workers = 0 # faster CPU training as time dominated by inference, not dataloading
|
||||
|
||||
# Model and Dataset
|
||||
self.model = self.args.model
|
||||
try:
|
||||
if self.args.task == 'classify':
|
||||
self.data = check_cls_dataset(self.args.data)
|
||||
elif self.args.data.split('.')[-1] in ('yaml', 'yml') or self.args.task in ('detect', 'segment', 'pose'):
|
||||
self.data = check_det_dataset(self.args.data)
|
||||
if 'yaml_file' in self.data:
|
||||
self.args.data = self.data['yaml_file'] # for validating 'yolo train data=url.zip' usage
|
||||
except Exception as e:
|
||||
raise RuntimeError(emojis(f"Dataset '{clean_url(self.args.data)}' error ❌ {e}")) from e
|
||||
|
||||
self.trainset, self.testset = self.get_dataset(self.data)
|
||||
self.ema = None
|
||||
|
||||
# Optimization utils init
|
||||
self.lf = None
|
||||
self.scheduler = None
|
||||
|
||||
# Epoch level metrics
|
||||
self.best_fitness = None
|
||||
self.fitness = None
|
||||
self.loss = None
|
||||
self.tloss = None
|
||||
self.loss_names = ['Loss']
|
||||
self.csv = self.save_dir / 'results.csv'
|
||||
self.plot_idx = [0, 1, 2]
|
||||
|
||||
# Callbacks
|
||||
self.callbacks = _callbacks or callbacks.get_default_callbacks()
|
||||
if RANK in (-1, 0):
|
||||
callbacks.add_integration_callbacks(self)
|
||||
|
||||
def add_callback(self, event: str, callback):
|
||||
"""
|
||||
Appends the given callback.
|
||||
"""
|
||||
self.callbacks[event].append(callback)
|
||||
|
||||
def set_callback(self, event: str, callback):
|
||||
"""
|
||||
Overrides the existing callbacks with the given callback.
|
||||
"""
|
||||
self.callbacks[event] = [callback]
|
||||
|
||||
def run_callbacks(self, event: str):
|
||||
"""Run all existing callbacks associated with a particular event."""
|
||||
for callback in self.callbacks.get(event, []):
|
||||
callback(self)
|
||||
|
||||
def train(self):
|
||||
"""Allow device='', device=None on Multi-GPU systems to default to device=0."""
|
||||
if isinstance(self.args.device, str) and len(self.args.device): # i.e. device='0' or device='0,1,2,3'
|
||||
world_size = len(self.args.device.split(','))
|
||||
elif isinstance(self.args.device, (tuple, list)): # i.e. device=[0, 1, 2, 3] (multi-GPU from CLI is list)
|
||||
world_size = len(self.args.device)
|
||||
elif torch.cuda.is_available(): # i.e. device=None or device='' or device=number
|
||||
world_size = 1 # default to device 0
|
||||
else: # i.e. device='cpu' or 'mps'
|
||||
world_size = 0
|
||||
|
||||
# Run subprocess if DDP training, else train normally
|
||||
if world_size > 1 and 'LOCAL_RANK' not in os.environ:
|
||||
# Argument checks
|
||||
if self.args.rect:
|
||||
LOGGER.warning("WARNING ⚠️ 'rect=True' is incompatible with Multi-GPU training, setting 'rect=False'")
|
||||
self.args.rect = False
|
||||
if self.args.batch == -1:
|
||||
LOGGER.warning("WARNING ⚠️ 'batch=-1' for AutoBatch is incompatible with Multi-GPU training, setting "
|
||||
"default 'batch=16'")
|
||||
self.args.batch = 16
|
||||
|
||||
# Command
|
||||
cmd, file = generate_ddp_command(world_size, self)
|
||||
try:
|
||||
LOGGER.info(f'{colorstr("DDP:")} debug command {" ".join(cmd)}')
|
||||
subprocess.run(cmd, check=True)
|
||||
except Exception as e:
|
||||
raise e
|
||||
finally:
|
||||
ddp_cleanup(self, str(file))
|
||||
|
||||
else:
|
||||
self._do_train(world_size)
|
||||
|
||||
def _setup_ddp(self, world_size):
|
||||
"""Initializes and sets the DistributedDataParallel parameters for training."""
|
||||
torch.cuda.set_device(RANK)
|
||||
self.device = torch.device('cuda', RANK)
|
||||
# LOGGER.info(f'DDP info: RANK {RANK}, WORLD_SIZE {world_size}, DEVICE {self.device}')
|
||||
os.environ['NCCL_BLOCKING_WAIT'] = '1' # set to enforce timeout
|
||||
dist.init_process_group(
|
||||
'nccl' if dist.is_nccl_available() else 'gloo',
|
||||
timeout=timedelta(seconds=10800), # 3 hours
|
||||
rank=RANK,
|
||||
world_size=world_size)
|
||||
|
||||
def _setup_train(self, world_size):
|
||||
"""
|
||||
Builds dataloaders and optimizer on correct rank process.
|
||||
"""
|
||||
|
||||
# Model
|
||||
self.run_callbacks('on_pretrain_routine_start')
|
||||
ckpt = self.setup_model()
|
||||
self.model = self.model.to(self.device)
|
||||
self.set_model_attributes()
|
||||
|
||||
# Freeze layers
|
||||
freeze_list = self.args.freeze if isinstance(
|
||||
self.args.freeze, list) else range(self.args.freeze) if isinstance(self.args.freeze, int) else []
|
||||
always_freeze_names = ['.dfl'] # always freeze these layers
|
||||
freeze_layer_names = [f'model.{x}.' for x in freeze_list] + always_freeze_names
|
||||
for k, v in self.model.named_parameters():
|
||||
# v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
|
||||
if any(x in k for x in freeze_layer_names):
|
||||
LOGGER.info(f"Freezing layer '{k}'")
|
||||
v.requires_grad = False
|
||||
elif not v.requires_grad:
|
||||
LOGGER.info(f"WARNING ⚠️ setting 'requires_grad=True' for frozen layer '{k}'. "
|
||||
'See ultralytics.engine.trainer for customization of frozen layers.')
|
||||
v.requires_grad = True
|
||||
|
||||
# Check AMP
|
||||
self.amp = torch.tensor(self.args.amp).to(self.device) # True or False
|
||||
if self.amp and RANK in (-1, 0): # Single-GPU and DDP
|
||||
callbacks_backup = callbacks.default_callbacks.copy() # backup callbacks as check_amp() resets them
|
||||
self.amp = torch.tensor(check_amp(self.model), device=self.device)
|
||||
callbacks.default_callbacks = callbacks_backup # restore callbacks
|
||||
if RANK > -1 and world_size > 1: # DDP
|
||||
dist.broadcast(self.amp, src=0) # broadcast the tensor from rank 0 to all other ranks (returns None)
|
||||
self.amp = bool(self.amp) # as boolean
|
||||
self.scaler = amp.GradScaler(enabled=self.amp)
|
||||
if world_size > 1:
|
||||
self.model = DDP(self.model, device_ids=[RANK])
|
||||
|
||||
# Check imgsz
|
||||
gs = max(int(self.model.stride.max() if hasattr(self.model, 'stride') else 32), 32) # grid size (max stride)
|
||||
self.args.imgsz = check_imgsz(self.args.imgsz, stride=gs, floor=gs, max_dim=1)
|
||||
|
||||
# Batch size
|
||||
if self.batch_size == -1 and RANK == -1: # single-GPU only, estimate best batch size
|
||||
self.args.batch = self.batch_size = check_train_batch_size(self.model, self.args.imgsz, self.amp)
|
||||
|
||||
# Dataloaders
|
||||
batch_size = self.batch_size // max(world_size, 1)
|
||||
self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=RANK, mode='train')
|
||||
if RANK in (-1, 0):
|
||||
self.test_loader = self.get_dataloader(self.testset, batch_size=batch_size * 2, rank=-1, mode='val')
|
||||
self.validator = self.get_validator()
|
||||
metric_keys = self.validator.metrics.keys + self.label_loss_items(prefix='val')
|
||||
self.metrics = dict(zip(metric_keys, [0] * len(metric_keys)))
|
||||
self.ema = ModelEMA(self.model)
|
||||
if self.args.plots:
|
||||
self.plot_training_labels()
|
||||
|
||||
# Optimizer
|
||||
self.accumulate = max(round(self.args.nbs / self.batch_size), 1) # accumulate loss before optimizing
|
||||
weight_decay = self.args.weight_decay * self.batch_size * self.accumulate / self.args.nbs # scale weight_decay
|
||||
iterations = math.ceil(len(self.train_loader.dataset) / max(self.batch_size, self.args.nbs)) * self.epochs
|
||||
self.optimizer = self.build_optimizer(model=self.model,
|
||||
name=self.args.optimizer,
|
||||
lr=self.args.lr0,
|
||||
momentum=self.args.momentum,
|
||||
decay=weight_decay,
|
||||
iterations=iterations)
|
||||
# Scheduler
|
||||
if self.args.cos_lr:
|
||||
self.lf = one_cycle(1, self.args.lrf, self.epochs) # cosine 1->hyp['lrf']
|
||||
else:
|
||||
self.lf = lambda x: (1 - x / self.epochs) * (1.0 - self.args.lrf) + self.args.lrf # linear
|
||||
self.scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=self.lf)
|
||||
self.stopper, self.stop = EarlyStopping(patience=self.args.patience), False
|
||||
self.resume_training(ckpt)
|
||||
self.scheduler.last_epoch = self.start_epoch - 1 # do not move
|
||||
self.run_callbacks('on_pretrain_routine_end')
|
||||
|
||||
def _do_train(self, world_size=1):
|
||||
"""Train completed, evaluate and plot if specified by arguments."""
|
||||
if world_size > 1:
|
||||
self._setup_ddp(world_size)
|
||||
self._setup_train(world_size)
|
||||
|
||||
self.epoch_time = None
|
||||
self.epoch_time_start = time.time()
|
||||
self.train_time_start = time.time()
|
||||
nb = len(self.train_loader) # number of batches
|
||||
nw = max(round(self.args.warmup_epochs * nb), 100) if self.args.warmup_epochs > 0 else -1 # warmup iterations
|
||||
last_opt_step = -1
|
||||
self.run_callbacks('on_train_start')
|
||||
LOGGER.info(f'Image sizes {self.args.imgsz} train, {self.args.imgsz} val\n'
|
||||
f'Using {self.train_loader.num_workers * (world_size or 1)} dataloader workers\n'
|
||||
f"Logging results to {colorstr('bold', self.save_dir)}\n"
|
||||
f'Starting training for {self.epochs} epochs...')
|
||||
if self.args.close_mosaic:
|
||||
base_idx = (self.epochs - self.args.close_mosaic) * nb
|
||||
self.plot_idx.extend([base_idx, base_idx + 1, base_idx + 2])
|
||||
epoch = self.epochs # predefine for resume fully trained model edge cases
|
||||
for epoch in range(self.start_epoch, self.epochs):
|
||||
self.epoch = epoch
|
||||
self.run_callbacks('on_train_epoch_start')
|
||||
self.model.train()
|
||||
if RANK != -1:
|
||||
self.train_loader.sampler.set_epoch(epoch)
|
||||
pbar = enumerate(self.train_loader)
|
||||
# Update dataloader attributes (optional)
|
||||
if epoch == (self.epochs - self.args.close_mosaic):
|
||||
LOGGER.info('Closing dataloader mosaic')
|
||||
if hasattr(self.train_loader.dataset, 'mosaic'):
|
||||
self.train_loader.dataset.mosaic = False
|
||||
if hasattr(self.train_loader.dataset, 'close_mosaic'):
|
||||
self.train_loader.dataset.close_mosaic(hyp=self.args)
|
||||
self.train_loader.reset()
|
||||
|
||||
if RANK in (-1, 0):
|
||||
LOGGER.info(self.progress_string())
|
||||
pbar = TQDM(enumerate(self.train_loader), total=nb)
|
||||
self.tloss = None
|
||||
self.optimizer.zero_grad()
|
||||
for i, batch in pbar:
|
||||
self.run_callbacks('on_train_batch_start')
|
||||
# Warmup
|
||||
ni = i + nb * epoch
|
||||
if ni <= nw:
|
||||
xi = [0, nw] # x interp
|
||||
self.accumulate = max(1, np.interp(ni, xi, [1, self.args.nbs / self.batch_size]).round())
|
||||
for j, x in enumerate(self.optimizer.param_groups):
|
||||
# Bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
||||
x['lr'] = np.interp(
|
||||
ni, xi, [self.args.warmup_bias_lr if j == 0 else 0.0, x['initial_lr'] * self.lf(epoch)])
|
||||
if 'momentum' in x:
|
||||
x['momentum'] = np.interp(ni, xi, [self.args.warmup_momentum, self.args.momentum])
|
||||
|
||||
# Forward
|
||||
with torch.cuda.amp.autocast(self.amp):
|
||||
batch = self.preprocess_batch(batch)
|
||||
self.loss, self.loss_items = self.model(batch)
|
||||
if RANK != -1:
|
||||
self.loss *= world_size
|
||||
self.tloss = (self.tloss * i + self.loss_items) / (i + 1) if self.tloss is not None \
|
||||
else self.loss_items
|
||||
|
||||
# Backward
|
||||
self.scaler.scale(self.loss).backward()
|
||||
|
||||
# Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
|
||||
if ni - last_opt_step >= self.accumulate:
|
||||
self.optimizer_step()
|
||||
last_opt_step = ni
|
||||
|
||||
# Log
|
||||
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
|
||||
loss_len = self.tloss.shape[0] if len(self.tloss.size()) else 1
|
||||
losses = self.tloss if loss_len > 1 else torch.unsqueeze(self.tloss, 0)
|
||||
if RANK in (-1, 0):
|
||||
pbar.set_description(
|
||||
('%11s' * 2 + '%11.4g' * (2 + loss_len)) %
|
||||
(f'{epoch + 1}/{self.epochs}', mem, *losses, batch['cls'].shape[0], batch['img'].shape[-1]))
|
||||
self.run_callbacks('on_batch_end')
|
||||
if self.args.plots and ni in self.plot_idx:
|
||||
self.plot_training_samples(batch, ni)
|
||||
|
||||
self.run_callbacks('on_train_batch_end')
|
||||
|
||||
self.lr = {f'lr/pg{ir}': x['lr'] for ir, x in enumerate(self.optimizer.param_groups)} # for loggers
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter('ignore') # suppress 'Detected lr_scheduler.step() before optimizer.step()'
|
||||
self.scheduler.step()
|
||||
self.run_callbacks('on_train_epoch_end')
|
||||
|
||||
if RANK in (-1, 0):
|
||||
|
||||
# Validation
|
||||
self.ema.update_attr(self.model, include=['yaml', 'nc', 'args', 'names', 'stride', 'class_weights'])
|
||||
final_epoch = (epoch + 1 == self.epochs) or self.stopper.possible_stop
|
||||
|
||||
if self.args.val or final_epoch:
|
||||
self.metrics, self.fitness = self.validate()
|
||||
self.save_metrics(metrics={**self.label_loss_items(self.tloss), **self.metrics, **self.lr})
|
||||
self.stop = self.stopper(epoch + 1, self.fitness)
|
||||
|
||||
# Save model
|
||||
if self.args.save or (epoch + 1 == self.epochs):
|
||||
self.save_model()
|
||||
self.run_callbacks('on_model_save')
|
||||
|
||||
tnow = time.time()
|
||||
self.epoch_time = tnow - self.epoch_time_start
|
||||
self.epoch_time_start = tnow
|
||||
self.run_callbacks('on_fit_epoch_end')
|
||||
torch.cuda.empty_cache() # clears GPU vRAM at end of epoch, can help with out of memory errors
|
||||
|
||||
# Early Stopping
|
||||
if RANK != -1: # if DDP training
|
||||
broadcast_list = [self.stop if RANK == 0 else None]
|
||||
dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
|
||||
if RANK != 0:
|
||||
self.stop = broadcast_list[0]
|
||||
if self.stop:
|
||||
break # must break all DDP ranks
|
||||
|
||||
if RANK in (-1, 0):
|
||||
# Do final val with best.pt
|
||||
LOGGER.info(f'\n{epoch - self.start_epoch + 1} epochs completed in '
|
||||
f'{(time.time() - self.train_time_start) / 3600:.3f} hours.')
|
||||
self.final_eval()
|
||||
if self.args.plots:
|
||||
self.plot_metrics()
|
||||
self.run_callbacks('on_train_end')
|
||||
torch.cuda.empty_cache()
|
||||
self.run_callbacks('teardown')
|
||||
|
||||
def save_model(self):
|
||||
"""Save model checkpoints based on various conditions."""
|
||||
ckpt = {
|
||||
'epoch': self.epoch,
|
||||
'best_fitness': self.best_fitness,
|
||||
'model': deepcopy(de_parallel(self.model)).half(),
|
||||
'ema': deepcopy(self.ema.ema).half(),
|
||||
'updates': self.ema.updates,
|
||||
'optimizer': self.optimizer.state_dict(),
|
||||
'train_args': vars(self.args), # save as dict
|
||||
'date': datetime.now().isoformat(),
|
||||
'version': __version__}
|
||||
|
||||
# Use dill (if exists) to serialize the lambda functions where pickle does not do this
|
||||
try:
|
||||
import dill as pickle
|
||||
except ImportError:
|
||||
import pickle
|
||||
|
||||
# Save last, best and delete
|
||||
torch.save(ckpt, self.last, pickle_module=pickle)
|
||||
if self.best_fitness == self.fitness:
|
||||
torch.save(ckpt, self.best, pickle_module=pickle)
|
||||
if (self.epoch > 0) and (self.save_period > 0) and (self.epoch % self.save_period == 0):
|
||||
torch.save(ckpt, self.wdir / f'epoch{self.epoch}.pt', pickle_module=pickle)
|
||||
del ckpt
|
||||
|
||||
@staticmethod
|
||||
def get_dataset(data):
|
||||
"""
|
||||
Get train, val path from data dict if it exists. Returns None if data format is not recognized.
|
||||
"""
|
||||
return data['train'], data.get('val') or data.get('test')
|
||||
|
||||
def setup_model(self):
|
||||
"""
|
||||
load/create/download model for any task.
|
||||
"""
|
||||
if isinstance(self.model, torch.nn.Module): # if model is loaded beforehand. No setup needed
|
||||
return
|
||||
|
||||
model, weights = self.model, None
|
||||
ckpt = None
|
||||
if str(model).endswith('.pt'):
|
||||
weights, ckpt = attempt_load_one_weight(model)
|
||||
cfg = ckpt['model'].yaml
|
||||
else:
|
||||
cfg = model
|
||||
self.model = self.get_model(cfg=cfg, weights=weights, verbose=RANK == -1) # calls Model(cfg, weights)
|
||||
return ckpt
|
||||
|
||||
def optimizer_step(self):
|
||||
"""Perform a single step of the training optimizer with gradient clipping and EMA update."""
|
||||
self.scaler.unscale_(self.optimizer) # unscale gradients
|
||||
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=10.0) # clip gradients
|
||||
self.scaler.step(self.optimizer)
|
||||
self.scaler.update()
|
||||
self.optimizer.zero_grad()
|
||||
if self.ema:
|
||||
self.ema.update(self.model)
|
||||
|
||||
def preprocess_batch(self, batch):
|
||||
"""
|
||||
Allows custom preprocessing model inputs and ground truths depending on task type.
|
||||
"""
|
||||
return batch
|
||||
|
||||
def validate(self):
|
||||
"""
|
||||
Runs validation on test set using self.validator. The returned dict is expected to contain "fitness" key.
|
||||
"""
|
||||
metrics = self.validator(self)
|
||||
fitness = metrics.pop('fitness', -self.loss.detach().cpu().numpy()) # use loss as fitness measure if not found
|
||||
if not self.best_fitness or self.best_fitness < fitness:
|
||||
self.best_fitness = fitness
|
||||
return metrics, fitness
|
||||
|
||||
def get_model(self, cfg=None, weights=None, verbose=True):
|
||||
"""Get model and raise NotImplementedError for loading cfg files."""
|
||||
raise NotImplementedError("This task trainer doesn't support loading cfg files")
|
||||
|
||||
def get_validator(self):
|
||||
"""Returns a NotImplementedError when the get_validator function is called."""
|
||||
raise NotImplementedError('get_validator function not implemented in trainer')
|
||||
|
||||
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode='train'):
|
||||
"""
|
||||
Returns dataloader derived from torch.data.Dataloader.
|
||||
"""
|
||||
raise NotImplementedError('get_dataloader function not implemented in trainer')
|
||||
|
||||
def build_dataset(self, img_path, mode='train', batch=None):
|
||||
"""Build dataset"""
|
||||
raise NotImplementedError('build_dataset function not implemented in trainer')
|
||||
|
||||
def label_loss_items(self, loss_items=None, prefix='train'):
|
||||
"""
|
||||
Returns a loss dict with labelled training loss items tensor
|
||||
"""
|
||||
# Not needed for classification but necessary for segmentation & detection
|
||||
return {'loss': loss_items} if loss_items is not None else ['loss']
|
||||
|
||||
def set_model_attributes(self):
|
||||
"""
|
||||
To set or update model parameters before training.
|
||||
"""
|
||||
self.model.names = self.data['names']
|
||||
|
||||
def build_targets(self, preds, targets):
|
||||
"""Builds target tensors for training YOLO model."""
|
||||
pass
|
||||
|
||||
def progress_string(self):
|
||||
"""Returns a string describing training progress."""
|
||||
return ''
|
||||
|
||||
# TODO: may need to put these following functions into callback
|
||||
def plot_training_samples(self, batch, ni):
|
||||
"""Plots training samples during YOLOv5 training."""
|
||||
pass
|
||||
|
||||
def plot_training_labels(self):
|
||||
"""Plots training labels for YOLO model."""
|
||||
pass
|
||||
|
||||
def save_metrics(self, metrics):
|
||||
"""Saves training metrics to a CSV file."""
|
||||
keys, vals = list(metrics.keys()), list(metrics.values())
|
||||
n = len(metrics) + 1 # number of cols
|
||||
s = '' if self.csv.exists() else (('%23s,' * n % tuple(['epoch'] + keys)).rstrip(',') + '\n') # header
|
||||
with open(self.csv, 'a') as f:
|
||||
f.write(s + ('%23.5g,' * n % tuple([self.epoch + 1] + vals)).rstrip(',') + '\n')
|
||||
|
||||
def plot_metrics(self):
|
||||
"""Plot and display metrics visually."""
|
||||
pass
|
||||
|
||||
def on_plot(self, name, data=None):
|
||||
"""Registers plots (e.g. to be consumed in callbacks)"""
|
||||
path = Path(name)
|
||||
self.plots[path] = {'data': data, 'timestamp': time.time()}
|
||||
|
||||
def final_eval(self):
|
||||
"""Performs final evaluation and validation for object detection YOLO model."""
|
||||
for f in self.last, self.best:
|
||||
if f.exists():
|
||||
strip_optimizer(f) # strip optimizers
|
||||
if f is self.best:
|
||||
LOGGER.info(f'\nValidating {f}...')
|
||||
self.validator.args.plots = self.args.plots
|
||||
self.metrics = self.validator(model=f)
|
||||
self.metrics.pop('fitness', None)
|
||||
self.run_callbacks('on_fit_epoch_end')
|
||||
|
||||
def check_resume(self, overrides):
|
||||
"""Check if resume checkpoint exists and update arguments accordingly."""
|
||||
resume = self.args.resume
|
||||
if resume:
|
||||
try:
|
||||
exists = isinstance(resume, (str, Path)) and Path(resume).exists()
|
||||
last = Path(check_file(resume) if exists else get_latest_run())
|
||||
|
||||
# Check that resume data YAML exists, otherwise strip to force re-download of dataset
|
||||
ckpt_args = attempt_load_weights(last).args
|
||||
if not Path(ckpt_args['data']).exists():
|
||||
ckpt_args['data'] = self.args.data
|
||||
|
||||
resume = True
|
||||
self.args = get_cfg(ckpt_args)
|
||||
self.args.model = str(last) # reinstate model
|
||||
for k in 'imgsz', 'batch': # allow arg updates to reduce memory on resume if crashed due to CUDA OOM
|
||||
if k in overrides:
|
||||
setattr(self.args, k, overrides[k])
|
||||
|
||||
except Exception as e:
|
||||
raise FileNotFoundError('Resume checkpoint not found. Please pass a valid checkpoint to resume from, '
|
||||
"i.e. 'yolo train resume model=path/to/last.pt'") from e
|
||||
self.resume = resume
|
||||
|
||||
def resume_training(self, ckpt):
|
||||
"""Resume YOLO training from given epoch and best fitness."""
|
||||
if ckpt is None:
|
||||
return
|
||||
best_fitness = 0.0
|
||||
start_epoch = ckpt['epoch'] + 1
|
||||
if ckpt['optimizer'] is not None:
|
||||
self.optimizer.load_state_dict(ckpt['optimizer']) # optimizer
|
||||
best_fitness = ckpt['best_fitness']
|
||||
if self.ema and ckpt.get('ema'):
|
||||
self.ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) # EMA
|
||||
self.ema.updates = ckpt['updates']
|
||||
if self.resume:
|
||||
assert start_epoch > 0, \
|
||||
f'{self.args.model} training to {self.epochs} epochs is finished, nothing to resume.\n' \
|
||||
f"Start a new training without resuming, i.e. 'yolo train model={self.args.model}'"
|
||||
LOGGER.info(
|
||||
f'Resuming training from {self.args.model} from epoch {start_epoch + 1} to {self.epochs} total epochs')
|
||||
if self.epochs < start_epoch:
|
||||
LOGGER.info(
|
||||
f"{self.model} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {self.epochs} more epochs.")
|
||||
self.epochs += ckpt['epoch'] # finetune additional epochs
|
||||
self.best_fitness = best_fitness
|
||||
self.start_epoch = start_epoch
|
||||
if start_epoch > (self.epochs - self.args.close_mosaic):
|
||||
LOGGER.info('Closing dataloader mosaic')
|
||||
if hasattr(self.train_loader.dataset, 'mosaic'):
|
||||
self.train_loader.dataset.mosaic = False
|
||||
if hasattr(self.train_loader.dataset, 'close_mosaic'):
|
||||
self.train_loader.dataset.close_mosaic(hyp=self.args)
|
||||
|
||||
def build_optimizer(self, model, name='auto', lr=0.001, momentum=0.9, decay=1e-5, iterations=1e5):
|
||||
"""
|
||||
Constructs an optimizer for the given model, based on the specified optimizer name, learning rate,
|
||||
momentum, weight decay, and number of iterations.
|
||||
|
||||
Args:
|
||||
model (torch.nn.Module): The model for which to build an optimizer.
|
||||
name (str, optional): The name of the optimizer to use. If 'auto', the optimizer is selected
|
||||
based on the number of iterations. Default: 'auto'.
|
||||
lr (float, optional): The learning rate for the optimizer. Default: 0.001.
|
||||
momentum (float, optional): The momentum factor for the optimizer. Default: 0.9.
|
||||
decay (float, optional): The weight decay for the optimizer. Default: 1e-5.
|
||||
iterations (float, optional): The number of iterations, which determines the optimizer if
|
||||
name is 'auto'. Default: 1e5.
|
||||
|
||||
Returns:
|
||||
(torch.optim.Optimizer): The constructed optimizer.
|
||||
"""
|
||||
|
||||
g = [], [], [] # optimizer parameter groups
|
||||
bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d()
|
||||
if name == 'auto':
|
||||
nc = getattr(model, 'nc', 10) # number of classes
|
||||
lr_fit = round(0.002 * 5 / (4 + nc), 6) # lr0 fit equation to 6 decimal places
|
||||
name, lr, momentum = ('SGD', 0.01, 0.9) if iterations > 10000 else ('AdamW', lr_fit, 0.9)
|
||||
self.args.warmup_bias_lr = 0.0 # no higher than 0.01 for Adam
|
||||
|
||||
for module_name, module in model.named_modules():
|
||||
for param_name, param in module.named_parameters(recurse=False):
|
||||
fullname = f'{module_name}.{param_name}' if module_name else param_name
|
||||
if 'bias' in fullname: # bias (no decay)
|
||||
g[2].append(param)
|
||||
elif isinstance(module, bn): # weight (no decay)
|
||||
g[1].append(param)
|
||||
else: # weight (with decay)
|
||||
g[0].append(param)
|
||||
|
||||
if name in ('Adam', 'Adamax', 'AdamW', 'NAdam', 'RAdam'):
|
||||
optimizer = getattr(optim, name, optim.Adam)(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0)
|
||||
elif name == 'RMSProp':
|
||||
optimizer = optim.RMSprop(g[2], lr=lr, momentum=momentum)
|
||||
elif name == 'SGD':
|
||||
optimizer = optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"Optimizer '{name}' not found in list of available optimizers "
|
||||
f'[Adam, AdamW, NAdam, RAdam, RMSProp, SGD, auto].'
|
||||
'To request support for addition optimizers please visit https://github.com/ultralytics/ultralytics.')
|
||||
|
||||
optimizer.add_param_group({'params': g[0], 'weight_decay': decay}) # add g0 with weight_decay
|
||||
optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0}) # add g1 (BatchNorm2d weights)
|
||||
LOGGER.info(
|
||||
f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}, momentum={momentum}) with parameter groups "
|
||||
f'{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias(decay=0.0)')
|
||||
return optimizer
|
205
ultralytics/engine/tuner.py
Normal file
205
ultralytics/engine/tuner.py
Normal file
@ -0,0 +1,205 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
This module provides functionalities for hyperparameter tuning of the Ultralytics YOLO models for object detection,
|
||||
instance segmentation, image classification, pose estimation, and multi-object tracking.
|
||||
|
||||
Hyperparameter tuning is the process of systematically searching for the optimal set of hyperparameters
|
||||
that yield the best model performance. This is particularly crucial in deep learning models like YOLO,
|
||||
where small changes in hyperparameters can lead to significant differences in model accuracy and efficiency.
|
||||
|
||||
Example:
|
||||
Tune hyperparameters for YOLOv8n on COCO8 at imgsz=640 and epochs=30 for 300 tuning iterations.
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO('yolov8n.pt')
|
||||
model.tune(data='coco8.yaml', imgsz=640, epochs=100, iterations=10)
|
||||
```
|
||||
"""
|
||||
import random
|
||||
import time
|
||||
from copy import deepcopy
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ultralytics import YOLO
|
||||
from ultralytics.cfg import get_cfg, get_save_dir
|
||||
from ultralytics.utils import DEFAULT_CFG, LOGGER, callbacks, colorstr, yaml_print, yaml_save
|
||||
|
||||
|
||||
class Tuner:
|
||||
"""
|
||||
Class responsible for hyperparameter tuning of YOLO models.
|
||||
|
||||
The class evolves YOLO model hyperparameters over a given number of iterations
|
||||
by mutating them according to the search space and retraining the model to evaluate their performance.
|
||||
|
||||
Attributes:
|
||||
space (dict): Hyperparameter search space containing bounds and scaling factors for mutation.
|
||||
tune_dir (Path): Directory where evolution logs and results will be saved.
|
||||
evolve_csv (Path): Path to the CSV file where evolution logs are saved.
|
||||
|
||||
Methods:
|
||||
_mutate(hyp: dict) -> dict:
|
||||
Mutates the given hyperparameters within the bounds specified in `self.space`.
|
||||
|
||||
__call__():
|
||||
Executes the hyperparameter evolution across multiple iterations.
|
||||
|
||||
Example:
|
||||
Tune hyperparameters for YOLOv8n on COCO8 at imgsz=640 and epochs=30 for 300 tuning iterations.
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO('yolov8n.pt')
|
||||
model.tune(data='coco8.yaml', imgsz=640, epochs=100, iterations=10, val=False, cache=True)
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, args=DEFAULT_CFG, _callbacks=None):
|
||||
"""
|
||||
Initialize the Tuner with configurations.
|
||||
|
||||
Args:
|
||||
args (dict, optional): Configuration for hyperparameter evolution.
|
||||
"""
|
||||
self.args = get_cfg(overrides=args)
|
||||
self.space = { # key: (min, max, gain(optionaL))
|
||||
# 'optimizer': tune.choice(['SGD', 'Adam', 'AdamW', 'NAdam', 'RAdam', 'RMSProp']),
|
||||
'lr0': (1e-5, 1e-1),
|
||||
'lrf': (0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
|
||||
'momentum': (0.6, 0.98, 0.3), # SGD momentum/Adam beta1
|
||||
'weight_decay': (0.0, 0.001), # optimizer weight decay 5e-4
|
||||
'warmup_epochs': (0.0, 5.0), # warmup epochs (fractions ok)
|
||||
'warmup_momentum': (0.0, 0.95), # warmup initial momentum
|
||||
'box': (0.02, 0.2), # box loss gain
|
||||
'cls': (0.2, 4.0), # cls loss gain (scale with pixels)
|
||||
'hsv_h': (0.0, 0.1), # image HSV-Hue augmentation (fraction)
|
||||
'hsv_s': (0.0, 0.9), # image HSV-Saturation augmentation (fraction)
|
||||
'hsv_v': (0.0, 0.9), # image HSV-Value augmentation (fraction)
|
||||
'degrees': (0.0, 45.0), # image rotation (+/- deg)
|
||||
'translate': (0.0, 0.9), # image translation (+/- fraction)
|
||||
'scale': (0.0, 0.9), # image scale (+/- gain)
|
||||
'shear': (0.0, 10.0), # image shear (+/- deg)
|
||||
'perspective': (0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
|
||||
'flipud': (0.0, 1.0), # image flip up-down (probability)
|
||||
'fliplr': (0.0, 1.0), # image flip left-right (probability)
|
||||
'mosaic': (0.0, 1.0), # image mixup (probability)
|
||||
'mixup': (0.0, 1.0), # image mixup (probability)
|
||||
'copy_paste': (0.0, 1.0)} # segment copy-paste (probability)
|
||||
self.tune_dir = get_save_dir(self.args, name='_tune')
|
||||
self.evolve_csv = self.tune_dir / 'evolve.csv'
|
||||
self.callbacks = _callbacks or callbacks.get_default_callbacks()
|
||||
callbacks.add_integration_callbacks(self)
|
||||
LOGGER.info(f"Initialized Tuner instance with 'tune_dir={self.tune_dir}'.")
|
||||
|
||||
def _mutate(self, parent='single', n=5, mutation=0.8, sigma=0.2):
|
||||
"""
|
||||
Mutates the hyperparameters based on bounds and scaling factors specified in `self.space`.
|
||||
|
||||
Args:
|
||||
parent (str): Parent selection method: 'single' or 'weighted'.
|
||||
n (int): Number of parents to consider.
|
||||
mutation (float): Probability of a parameter mutation in any given iteration.
|
||||
sigma (float): Standard deviation for Gaussian random number generator.
|
||||
|
||||
Returns:
|
||||
(dict): A dictionary containing mutated hyperparameters.
|
||||
"""
|
||||
if self.evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
|
||||
# Select parent(s)
|
||||
x = np.loadtxt(self.evolve_csv, ndmin=2, delimiter=',', skiprows=1)
|
||||
fitness = x[:, 0] # first column
|
||||
n = min(n, len(x)) # number of previous results to consider
|
||||
x = x[np.argsort(-fitness)][:n] # top n mutations
|
||||
w = x[:, 0] - x[:, 0].min() + 1E-6 # weights (sum > 0)
|
||||
if parent == 'single' or len(x) == 1:
|
||||
# x = x[random.randint(0, n - 1)] # random selection
|
||||
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
|
||||
elif parent == 'weighted':
|
||||
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
|
||||
|
||||
# Mutate
|
||||
r = np.random # method
|
||||
r.seed(int(time.time()))
|
||||
g = np.array([v[2] if len(v) == 3 else 1.0 for k, v in self.space.items()]) # gains 0-1
|
||||
ng = len(self.space)
|
||||
v = np.ones(ng)
|
||||
while all(v == 1): # mutate until a change occurs (prevent duplicates)
|
||||
v = (g * (r.random(ng) < mutation) * r.randn(ng) * r.random() * sigma + 1).clip(0.3, 3.0)
|
||||
hyp = {k: float(x[i + 1] * v[i]) for i, k in enumerate(self.space.keys())}
|
||||
else:
|
||||
hyp = {k: getattr(self.args, k) for k in self.space.keys()}
|
||||
|
||||
# Constrain to limits
|
||||
for k, v in self.space.items():
|
||||
hyp[k] = max(hyp[k], v[0]) # lower limit
|
||||
hyp[k] = min(hyp[k], v[1]) # upper limit
|
||||
hyp[k] = round(hyp[k], 5) # significant digits
|
||||
|
||||
return hyp
|
||||
|
||||
def __call__(self, model=None, iterations=10, prefix=colorstr('Tuner:')):
|
||||
"""
|
||||
Executes the hyperparameter evolution process when the Tuner instance is called.
|
||||
|
||||
This method iterates through the number of iterations, performing the following steps in each iteration:
|
||||
1. Load the existing hyperparameters or initialize new ones.
|
||||
2. Mutate the hyperparameters using the `mutate` method.
|
||||
3. Train a YOLO model with the mutated hyperparameters.
|
||||
4. Log the fitness score and mutated hyperparameters to a CSV file.
|
||||
|
||||
Args:
|
||||
model (Model): A pre-initialized YOLO model to be used for training.
|
||||
iterations (int): The number of generations to run the evolution for.
|
||||
|
||||
Note:
|
||||
The method utilizes the `self.evolve_csv` Path object to read and log hyperparameters and fitness scores.
|
||||
Ensure this path is set correctly in the Tuner instance.
|
||||
"""
|
||||
|
||||
t0 = time.time()
|
||||
best_save_dir, best_metrics = None, None
|
||||
self.tune_dir.mkdir(parents=True, exist_ok=True)
|
||||
for i in range(iterations):
|
||||
# Mutate hyperparameters
|
||||
mutated_hyp = self._mutate()
|
||||
LOGGER.info(f'{prefix} Starting iteration {i + 1}/{iterations} with hyperparameters: {mutated_hyp}')
|
||||
|
||||
try:
|
||||
# Train YOLO model with mutated hyperparameters
|
||||
train_args = {**vars(self.args), **mutated_hyp}
|
||||
results = (deepcopy(model) or YOLO(self.args.model)).train(**train_args)
|
||||
fitness = results.fitness
|
||||
except Exception as e:
|
||||
LOGGER.warning(f'WARNING ❌️ training failure for hyperparameter tuning iteration {i}\n{e}')
|
||||
fitness = 0.0
|
||||
|
||||
# Save results and mutated_hyp to evolve_csv
|
||||
log_row = [round(fitness, 5)] + [mutated_hyp[k] for k in self.space.keys()]
|
||||
headers = '' if self.evolve_csv.exists() else (','.join(['fitness_score'] + list(self.space.keys())) + '\n')
|
||||
with open(self.evolve_csv, 'a') as f:
|
||||
f.write(headers + ','.join(map(str, log_row)) + '\n')
|
||||
|
||||
# Print tuning results
|
||||
x = np.loadtxt(self.evolve_csv, ndmin=2, delimiter=',', skiprows=1)
|
||||
fitness = x[:, 0] # first column
|
||||
best_idx = fitness.argmax()
|
||||
best_is_current = best_idx == i
|
||||
if best_is_current:
|
||||
best_save_dir = results.save_dir
|
||||
best_metrics = {k: round(v, 5) for k, v in results.results_dict.items()}
|
||||
header = (f'{prefix} {i + 1} iterations complete ✅ ({time.time() - t0:.2f}s)\n'
|
||||
f'{prefix} Results saved to {colorstr("bold", self.tune_dir)}\n'
|
||||
f'{prefix} Best fitness={fitness[best_idx]} observed at iteration {best_idx + 1}\n'
|
||||
f'{prefix} Best fitness metrics are {best_metrics}\n'
|
||||
f'{prefix} Best fitness model is {best_save_dir}\n'
|
||||
f'{prefix} Best fitness hyperparameters are printed below.\n')
|
||||
|
||||
LOGGER.info('\n' + header)
|
||||
|
||||
# Save turning results
|
||||
data = {k: float(x[0, i + 1]) for i, k in enumerate(self.space.keys())}
|
||||
header = header.replace(prefix, '#').replace('[1m/', '').replace('[0m', '') + '\n'
|
||||
yaml_save(self.tune_dir / 'best.yaml', data=data, header=header)
|
||||
yaml_print(self.tune_dir / 'best.yaml')
|
325
ultralytics/engine/validator.py
Normal file
325
ultralytics/engine/validator.py
Normal file
@ -0,0 +1,325 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Check a model's accuracy on a test or val split of a dataset.
|
||||
|
||||
Usage:
|
||||
$ yolo mode=val model=yolov8n.pt data=coco128.yaml imgsz=640
|
||||
|
||||
Usage - formats:
|
||||
$ yolo mode=val model=yolov8n.pt # PyTorch
|
||||
yolov8n.torchscript # TorchScript
|
||||
yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
|
||||
yolov8n_openvino_model # OpenVINO
|
||||
yolov8n.engine # TensorRT
|
||||
yolov8n.mlpackage # CoreML (macOS-only)
|
||||
yolov8n_saved_model # TensorFlow SavedModel
|
||||
yolov8n.pb # TensorFlow GraphDef
|
||||
yolov8n.tflite # TensorFlow Lite
|
||||
yolov8n_edgetpu.tflite # TensorFlow Edge TPU
|
||||
yolov8n_paddle_model # PaddlePaddle
|
||||
"""
|
||||
import json
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from ultralytics.cfg import get_cfg, get_save_dir
|
||||
from ultralytics.data.utils import check_cls_dataset, check_det_dataset
|
||||
from ultralytics.nn.autobackend import AutoBackend
|
||||
from ultralytics.utils import LOGGER, TQDM, callbacks, colorstr, emojis
|
||||
from ultralytics.utils.checks import check_imgsz
|
||||
from ultralytics.utils.ops import Profile
|
||||
from ultralytics.utils.torch_utils import de_parallel, select_device, smart_inference_mode
|
||||
|
||||
|
||||
class BaseValidator:
|
||||
"""
|
||||
BaseValidator
|
||||
|
||||
A base class for creating validators.
|
||||
|
||||
Attributes:
|
||||
args (SimpleNamespace): Configuration for the validator.
|
||||
dataloader (DataLoader): Dataloader to use for validation.
|
||||
pbar (tqdm): Progress bar to update during validation.
|
||||
model (nn.Module): Model to validate.
|
||||
data (dict): Data dictionary.
|
||||
device (torch.device): Device to use for validation.
|
||||
batch_i (int): Current batch index.
|
||||
training (bool): Whether the model is in training mode.
|
||||
names (dict): Class names.
|
||||
seen: Records the number of images seen so far during validation.
|
||||
stats: Placeholder for statistics during validation.
|
||||
confusion_matrix: Placeholder for a confusion matrix.
|
||||
nc: Number of classes.
|
||||
iouv: (torch.Tensor): IoU thresholds from 0.50 to 0.95 in spaces of 0.05.
|
||||
jdict (dict): Dictionary to store JSON validation results.
|
||||
speed (dict): Dictionary with keys 'preprocess', 'inference', 'loss', 'postprocess' and their respective
|
||||
batch processing times in milliseconds.
|
||||
save_dir (Path): Directory to save results.
|
||||
plots (dict): Dictionary to store plots for visualization.
|
||||
callbacks (dict): Dictionary to store various callback functions.
|
||||
"""
|
||||
|
||||
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
|
||||
"""
|
||||
Initializes a BaseValidator instance.
|
||||
|
||||
Args:
|
||||
dataloader (torch.utils.data.DataLoader): Dataloader to be used for validation.
|
||||
save_dir (Path, optional): Directory to save results.
|
||||
pbar (tqdm.tqdm): Progress bar for displaying progress.
|
||||
args (SimpleNamespace): Configuration for the validator.
|
||||
_callbacks (dict): Dictionary to store various callback functions.
|
||||
"""
|
||||
self.args = get_cfg(overrides=args)
|
||||
self.dataloader = dataloader
|
||||
self.pbar = pbar
|
||||
self.model = None
|
||||
self.data = None
|
||||
self.device = None
|
||||
self.batch_i = None
|
||||
self.training = True
|
||||
self.names = None
|
||||
self.seen = None
|
||||
self.stats = None
|
||||
self.confusion_matrix = None
|
||||
self.nc = None
|
||||
self.iouv = None
|
||||
self.jdict = None
|
||||
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
|
||||
|
||||
self.save_dir = save_dir or get_save_dir(self.args)
|
||||
(self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
|
||||
if self.args.conf is None:
|
||||
self.args.conf = 0.001 # default conf=0.001
|
||||
|
||||
self.plots = {}
|
||||
self.callbacks = _callbacks or callbacks.get_default_callbacks()
|
||||
|
||||
@smart_inference_mode()
|
||||
def __call__(self, trainer=None, model=None):
|
||||
"""
|
||||
Supports validation of a pre-trained model if passed or a model being trained if trainer is passed (trainer
|
||||
gets priority).
|
||||
"""
|
||||
self.training = trainer is not None
|
||||
augment = self.args.augment and (not self.training)
|
||||
if self.training:
|
||||
self.device = trainer.device
|
||||
self.data = trainer.data
|
||||
self.args.half = self.device.type != 'cpu' # force FP16 val during training
|
||||
model = trainer.ema.ema or trainer.model
|
||||
model = model.half() if self.args.half else model.float()
|
||||
# self.model = model
|
||||
self.loss = torch.zeros_like(trainer.loss_items, device=trainer.device)
|
||||
self.args.plots &= trainer.stopper.possible_stop or (trainer.epoch == trainer.epochs - 1)
|
||||
model.eval()
|
||||
else:
|
||||
callbacks.add_integration_callbacks(self)
|
||||
self.run_callbacks('on_val_start')
|
||||
model = AutoBackend(model or self.args.model,
|
||||
device=select_device(self.args.device, self.args.batch),
|
||||
dnn=self.args.dnn,
|
||||
data=self.args.data,
|
||||
fp16=self.args.half)
|
||||
# self.model = model
|
||||
self.device = model.device # update device
|
||||
self.args.half = model.fp16 # update half
|
||||
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
|
||||
imgsz = check_imgsz(self.args.imgsz, stride=stride)
|
||||
if engine:
|
||||
self.args.batch = model.batch_size
|
||||
elif not pt and not jit:
|
||||
self.args.batch = 1 # export.py models default to batch-size 1
|
||||
LOGGER.info(f'Forcing batch=1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
|
||||
|
||||
if isinstance(self.args.data, str) and self.args.data.split('.')[-1] in ('yaml', 'yml'):
|
||||
self.data = check_det_dataset(self.args.data)
|
||||
elif self.args.task == 'classify':
|
||||
self.data = check_cls_dataset(self.args.data, split=self.args.split)
|
||||
else:
|
||||
raise FileNotFoundError(emojis(f"Dataset '{self.args.data}' for task={self.args.task} not found ❌"))
|
||||
|
||||
if self.device.type in ('cpu', 'mps'):
|
||||
self.args.workers = 0 # faster CPU val as time dominated by inference, not dataloading
|
||||
if not pt:
|
||||
self.args.rect = False
|
||||
self.dataloader = self.dataloader or self.get_dataloader(self.data.get(self.args.split), self.args.batch)
|
||||
|
||||
model.eval()
|
||||
model.warmup(imgsz=(1 if pt else self.args.batch, 3, imgsz, imgsz)) # warmup
|
||||
|
||||
dt = Profile(), Profile(), Profile(), Profile()
|
||||
bar = TQDM(self.dataloader, desc=self.get_desc(), total=len(self.dataloader))
|
||||
self.init_metrics(de_parallel(model))
|
||||
self.jdict = [] # empty before each val
|
||||
for batch_i, batch in enumerate(bar):
|
||||
self.run_callbacks('on_val_batch_start')
|
||||
self.batch_i = batch_i
|
||||
# Preprocess
|
||||
with dt[0]:
|
||||
batch = self.preprocess(batch)
|
||||
|
||||
# Inference
|
||||
with dt[1]:
|
||||
preds = model(batch['img'], augment=augment)
|
||||
|
||||
# Loss
|
||||
with dt[2]:
|
||||
if self.training:
|
||||
self.loss += model.loss(batch, preds)[1]
|
||||
|
||||
# Postprocess
|
||||
with dt[3]:
|
||||
preds = self.postprocess(preds)
|
||||
|
||||
self.update_metrics(preds, batch)
|
||||
if self.args.plots and batch_i < 3:
|
||||
self.plot_val_samples(batch, batch_i)
|
||||
self.plot_predictions(batch, preds, batch_i)
|
||||
|
||||
self.run_callbacks('on_val_batch_end')
|
||||
stats = self.get_stats()
|
||||
self.check_stats(stats)
|
||||
self.speed = dict(zip(self.speed.keys(), (x.t / len(self.dataloader.dataset) * 1E3 for x in dt)))
|
||||
self.finalize_metrics()
|
||||
self.print_results()
|
||||
self.run_callbacks('on_val_end')
|
||||
if self.training:
|
||||
model.float()
|
||||
results = {**stats, **trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix='val')}
|
||||
return {k: round(float(v), 5) for k, v in results.items()} # return results as 5 decimal place floats
|
||||
else:
|
||||
LOGGER.info('Speed: %.1fms preprocess, %.1fms inference, %.1fms loss, %.1fms postprocess per image' %
|
||||
tuple(self.speed.values()))
|
||||
if self.args.save_json and self.jdict:
|
||||
with open(str(self.save_dir / 'predictions.json'), 'w') as f:
|
||||
LOGGER.info(f'Saving {f.name}...')
|
||||
json.dump(self.jdict, f) # flatten and save
|
||||
stats = self.eval_json(stats) # update stats
|
||||
if self.args.plots or self.args.save_json:
|
||||
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}")
|
||||
return stats
|
||||
|
||||
def match_predictions(self, pred_classes, true_classes, iou, use_scipy=False):
|
||||
"""
|
||||
Matches predictions to ground truth objects (pred_classes, true_classes) using IoU.
|
||||
|
||||
Args:
|
||||
pred_classes (torch.Tensor): Predicted class indices of shape(N,).
|
||||
true_classes (torch.Tensor): Target class indices of shape(M,).
|
||||
iou (torch.Tensor): An NxM tensor containing the pairwise IoU values for predictions and ground of truth
|
||||
use_scipy (bool): Whether to use scipy for matching (more precise).
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Correct tensor of shape(N,10) for 10 IoU thresholds.
|
||||
"""
|
||||
# Dx10 matrix, where D - detections, 10 - IoU thresholds
|
||||
correct = np.zeros((pred_classes.shape[0], self.iouv.shape[0])).astype(bool)
|
||||
# LxD matrix where L - labels (rows), D - detections (columns)
|
||||
correct_class = true_classes[:, None] == pred_classes
|
||||
iou = iou * correct_class # zero out the wrong classes
|
||||
iou = iou.cpu().numpy()
|
||||
for i, threshold in enumerate(self.iouv.cpu().tolist()):
|
||||
if use_scipy:
|
||||
# WARNING: known issue that reduces mAP in https://github.com/ultralytics/ultralytics/pull/4708
|
||||
import scipy # scope import to avoid importing for all commands
|
||||
cost_matrix = iou * (iou >= threshold)
|
||||
if cost_matrix.any():
|
||||
labels_idx, detections_idx = scipy.optimize.linear_sum_assignment(cost_matrix, maximize=True)
|
||||
valid = cost_matrix[labels_idx, detections_idx] > 0
|
||||
if valid.any():
|
||||
correct[detections_idx[valid], i] = True
|
||||
else:
|
||||
matches = np.nonzero(iou >= threshold) # IoU > threshold and classes match
|
||||
matches = np.array(matches).T
|
||||
if matches.shape[0]:
|
||||
if matches.shape[0] > 1:
|
||||
matches = matches[iou[matches[:, 0], matches[:, 1]].argsort()[::-1]]
|
||||
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
||||
# matches = matches[matches[:, 2].argsort()[::-1]]
|
||||
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
||||
correct[matches[:, 1].astype(int), i] = True
|
||||
return torch.tensor(correct, dtype=torch.bool, device=pred_classes.device)
|
||||
|
||||
def add_callback(self, event: str, callback):
|
||||
"""Appends the given callback."""
|
||||
self.callbacks[event].append(callback)
|
||||
|
||||
def run_callbacks(self, event: str):
|
||||
"""Runs all callbacks associated with a specified event."""
|
||||
for callback in self.callbacks.get(event, []):
|
||||
callback(self)
|
||||
|
||||
def get_dataloader(self, dataset_path, batch_size):
|
||||
"""Get data loader from dataset path and batch size."""
|
||||
raise NotImplementedError('get_dataloader function not implemented for this validator')
|
||||
|
||||
def build_dataset(self, img_path):
|
||||
"""Build dataset"""
|
||||
raise NotImplementedError('build_dataset function not implemented in validator')
|
||||
|
||||
def preprocess(self, batch):
|
||||
"""Preprocesses an input batch."""
|
||||
return batch
|
||||
|
||||
def postprocess(self, preds):
|
||||
"""Describes and summarizes the purpose of 'postprocess()' but no details mentioned."""
|
||||
return preds
|
||||
|
||||
def init_metrics(self, model):
|
||||
"""Initialize performance metrics for the YOLO model."""
|
||||
pass
|
||||
|
||||
def update_metrics(self, preds, batch):
|
||||
"""Updates metrics based on predictions and batch."""
|
||||
pass
|
||||
|
||||
def finalize_metrics(self, *args, **kwargs):
|
||||
"""Finalizes and returns all metrics."""
|
||||
pass
|
||||
|
||||
def get_stats(self):
|
||||
"""Returns statistics about the model's performance."""
|
||||
return {}
|
||||
|
||||
def check_stats(self, stats):
|
||||
"""Checks statistics."""
|
||||
pass
|
||||
|
||||
def print_results(self):
|
||||
"""Prints the results of the model's predictions."""
|
||||
pass
|
||||
|
||||
def get_desc(self):
|
||||
"""Get description of the YOLO model."""
|
||||
pass
|
||||
|
||||
@property
|
||||
def metric_keys(self):
|
||||
"""Returns the metric keys used in YOLO training/validation."""
|
||||
return []
|
||||
|
||||
def on_plot(self, name, data=None):
|
||||
"""Registers plots (e.g. to be consumed in callbacks)"""
|
||||
self.plots[Path(name)] = {'data': data, 'timestamp': time.time()}
|
||||
|
||||
# TODO: may need to put these following functions into callback
|
||||
def plot_val_samples(self, batch, ni):
|
||||
"""Plots validation samples during training."""
|
||||
pass
|
||||
|
||||
def plot_predictions(self, batch, preds, ni):
|
||||
"""Plots YOLO model predictions on batch images."""
|
||||
pass
|
||||
|
||||
def pred_to_json(self, preds, batch):
|
||||
"""Convert predictions to JSON format."""
|
||||
pass
|
||||
|
||||
def eval_json(self, stats):
|
||||
"""Evaluate and return JSON format of prediction statistics."""
|
||||
pass
|
Reference in New Issue
Block a user