box select in a track and feat simi modify in tracker

This commit is contained in:
王庆刚
2025-01-14 19:00:59 +08:00
parent 744fb7b7b2
commit bfe7bc0fd5
11 changed files with 157 additions and 22 deletions

View File

@ -10,6 +10,7 @@ import cv2
import pickle
import numpy as np
from pathlib import Path
from scipy.spatial.distance import cdist
from track_reid import yolo_resnet_tracker
from tracking.dotrack.dotracks_back import doBackTracks
@ -19,13 +20,45 @@ from utils.getsource import get_image_pairs, get_video_pairs
from tracking.utils.read_data import read_similar
def save_subimgs(imgdict, boxes, spath, ctype):
def save_subimgs(imgdict, boxes, spath, ctype, featdict = None):
'''
当前 box 特征和该轨迹前一个 box 特征的相似度,可用于和跟踪序列中的相似度进行比较
'''
boxes = boxes[np.argsort(boxes[:, 7])]
for i in range(len(boxes)):
fid, bid = int(boxes[i, 7]), int(boxes[i, 8])
if f"{fid}_{bid}" in imgdict.keys():
img = imgdict[f"{fid}_{bid}"]
imgpath = spath / f"{ctype}_{fid}_{bid}.png"
cv2.imwrite(imgpath, img)
simi = None
tid, fid, bid = int(boxes[i, 4]), int(boxes[i, 7]), int(boxes[i, 8])
if i>0:
_, fid0, bid0 = int(boxes[i-1, 4]), int(boxes[i-1, 7]), int(boxes[i-1, 8])
if f"{fid0}_{bid0}" in featdict.keys() and f"{fid}_{bid}" in featdict.keys():
feat0 = featdict[f"{fid0}_{bid0}"]
feat1 = featdict[f"{fid}_{bid}"]
simi = 1 - np.maximum(0.0, cdist(feat0[None, :], feat1[None, :], "cosine"))[0][0]
img = imgdict[f"{fid}_{bid}"]
imgpath = spath / f"{ctype}_tid{tid}-{fid}-{bid}.png"
if simi is not None:
imgpath = spath / f"{ctype}_tid{tid}-{fid}-{bid}_sim{simi:.2f}.png"
cv2.imwrite(imgpath, img)
def save_subimgs_1(imgdict, boxes, spath, ctype, simidict = None):
'''
当前 box 特征和该轨迹 smooth_feat 特征的相似度, yolo_resnet_tracker 函数中,
采用该方式记录特征相似度
'''
for i in range(len(boxes)):
tid, fid, bid = int(boxes[i, 4]), int(boxes[i, 7]), int(boxes[i, 8])
key = f"{fid}_{bid}"
img = imgdict[key]
imgpath = spath / f"{ctype}_tid{tid}-{fid}-{bid}.png"
if simidict is not None and key in simidict.keys():
imgpath = spath / f"{ctype}_tid{tid}-{fid}-{bid}_sim{simidict[key]:.2f}.png"
cv2.imwrite(imgpath, img)
def pipeline(
@ -177,15 +210,18 @@ def pipeline(
yolos = ShoppingDict["backCamera"]["yoloResnetTracker"]
ctype = 0
imgdict = {}
imgdict, featdict, simidict = {}, {}, {}
for y in yolos:
imgdict.update(y["imgs"])
featdict.update(y["feats"])
simidict.update(y["featsimi"])
for track in vts.Residual:
if isinstance(track, np.ndarray):
save_subimgs(imgdict, track, savepath_pipeline_subimgs, ctype)
save_subimgs(imgdict, track, savepath_pipeline_subimgs, ctype, featdict)
else:
save_subimgs(imgdict, track.boxes, savepath_pipeline_subimgs, ctype)
save_subimgs(imgdict, track.slt_boxes, savepath_pipeline_subimgs, ctype, featdict)
'''轨迹显示模块'''
@ -243,14 +279,14 @@ def main():
if item.is_dir():
# item = evtdir/Path("20241209-160201-b97f7a0e-7322-4375-9f17-c475500097e9_6926265317292")
parmDict["eventpath"] = item
# pipeline(**parmDict)
pipeline(**parmDict)
try:
pipeline(**parmDict)
except Exception as e:
errEvents.append(str(item))
# try:
# pipeline(**parmDict)
# except Exception as e:
# errEvents.append(str(item))
k+=1
if k==1:
if k==2:
break
errfile = os.path.join(parmDict["savepath"], f'error_events.txt')