修改跟踪算法cpu gpu切换错误
This commit is contained in:
@ -122,6 +122,16 @@ def get_product_description(std_img, track_imgs):
|
|||||||
|
|
||||||
return contrast_pair
|
return contrast_pair
|
||||||
|
|
||||||
|
def item_analysis(stream_dict):
|
||||||
|
track_imgs = stream_pipeline(stream_dict)
|
||||||
|
std_img = None
|
||||||
|
if stream_dict['goodsPic'] is not None:
|
||||||
|
response = requests.get(stream_dict['goodsPic'])
|
||||||
|
std_img = Image.open(BytesIO(response.content))
|
||||||
|
description_dict = get_product_description(std_img, track_imgs)
|
||||||
|
|
||||||
|
return description_dict
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
# sample input dict
|
# sample input dict
|
||||||
stream_dict = {
|
stream_dict = {
|
||||||
@ -137,13 +147,8 @@ def main():
|
|||||||
"goodsSpec" : "405g"
|
"goodsSpec" : "405g"
|
||||||
}
|
}
|
||||||
|
|
||||||
track_imgs = stream_pipeline(stream_dict)
|
result = item_analysis(stream_dict)
|
||||||
std_img = None
|
print(result)
|
||||||
if stream_dict['goodsPic'] is not None:
|
|
||||||
response = requests.get(stream_dict['goodsPic'])
|
|
||||||
std_img = Image.open(BytesIO(response.content))
|
|
||||||
description_dict = get_product_description(std_img, track_imgs)
|
|
||||||
print(description_dict)
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
@ -108,7 +108,7 @@ class FeatsInterface:
|
|||||||
|
|
||||||
# patch = patch.to(device=self.device).half()
|
# patch = patch.to(device=self.device).half()
|
||||||
if str(self.device) != "cpu":
|
if str(self.device) != "cpu":
|
||||||
patch = patch.to(device=self.device).half()
|
patch = patch.to(device=self.device)
|
||||||
else:
|
else:
|
||||||
patch = patch.to(device=self.device)
|
patch = patch.to(device=self.device)
|
||||||
|
|
||||||
|
@ -217,7 +217,7 @@ def yolo_resnet_tracker(
|
|||||||
# Rescale boxes from img_size to im0 size
|
# Rescale boxes from img_size to im0 size
|
||||||
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
|
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
|
||||||
|
|
||||||
# det = det.cpu().numpy()
|
det = det.cpu().numpy()
|
||||||
## ================================================================ writed by WQG
|
## ================================================================ writed by WQG
|
||||||
'''tracks: [x1, y1, x2, y2, track_id, score, cls, frame_index, box_index]
|
'''tracks: [x1, y1, x2, y2, track_id, score, cls, frame_index, box_index]
|
||||||
0 1 2 3 4 5 6 7 8
|
0 1 2 3 4 5 6 7 8
|
||||||
|
@ -153,8 +153,8 @@ class doBackTracks(doTracks):
|
|||||||
|
|
||||||
hand_ious = []
|
hand_ious = []
|
||||||
|
|
||||||
hboxes = np.empty(shape=(0, 9), dtype = np.float)
|
hboxes = np.empty(shape=(0, 9), dtype = float)
|
||||||
gboxes = np.empty(shape=(0, 9), dtype = np.float)
|
gboxes = np.empty(shape=(0, 9), dtype = float)
|
||||||
|
|
||||||
|
|
||||||
# start, end 为索引值,需要 start:(end+1)
|
# start, end 为索引值,需要 start:(end+1)
|
||||||
|
Reference in New Issue
Block a user