add network image crop pipeline
@ -61,7 +61,7 @@ class Config:
|
||||
test_val = "D:/比对/cl"
|
||||
# test_val = "./data/test_data_100"
|
||||
|
||||
test_model = "checkpoints/best_resnet18_v12.pth"
|
||||
test_model = "checkpoints/zhanting_res_801.pth"
|
||||
# test_model = "checkpoints/zhanting_res_801.pth"
|
||||
|
||||
|
||||
|
137
stream_pipeline.py
Normal file
@ -0,0 +1,137 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Tuesday Jan 14 2025
|
||||
|
||||
@author: liujiawei
|
||||
|
||||
@description: 读取网络图片,并优化轨迹,截取子图
|
||||
"""
|
||||
import os
|
||||
import sys
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from pipeline import pipeline
|
||||
from tracking import traclus as tr
|
||||
from track_reid import parse_opt
|
||||
from track_reid import yolo_resnet_tracker
|
||||
from tracking.dotrack.dotracks_back import doBackTracks
|
||||
|
||||
def save_event_subimgs(imgs, bboxes):
|
||||
img_list = {}
|
||||
for i, box in enumerate(bboxes):
|
||||
x1, y1, x2, y2, tid, score, cls, fid, bid = box
|
||||
|
||||
img_list[int(fid)] = imgs[fid][int(y1):int(y2), int(x1):int(x2), :]
|
||||
|
||||
return img_list
|
||||
|
||||
|
||||
def get_optimized_bboxes(event_tracks):
|
||||
vts_back = event_tracks
|
||||
points = []
|
||||
labels = []
|
||||
for track in vts_back.Residual:
|
||||
for ele in track.boxes:
|
||||
points.append([int(ele[2]), int(ele[3])])
|
||||
labels.append(int(ele[4])) # track_id
|
||||
points = np.array(points)
|
||||
|
||||
partitions, indices = tr.partition(points, progress_bar=False, w_perpendicular=100, w_angular=10)
|
||||
|
||||
bboxes_opt = []
|
||||
for track in vts_back.Residual:
|
||||
for i in indices:
|
||||
if i >= len(track.boxes): continue
|
||||
if labels[i] == track.boxes[i][4]:
|
||||
bboxes_opt.append(track.boxes[i])
|
||||
|
||||
return bboxes_opt
|
||||
|
||||
def get_tracking_info(
|
||||
vpath,
|
||||
SourceType = "video", # video
|
||||
stdfeat_path = None
|
||||
):
|
||||
optdict = {}
|
||||
|
||||
optdict["weights"] = './tracking/ckpts/best_cls10_0906.pt'
|
||||
optdict["is_save_img"] = False
|
||||
optdict["is_save_video"] = False
|
||||
|
||||
event_tracks = []
|
||||
video_frames = {}
|
||||
|
||||
'''Yolo + Resnet + Tracker'''
|
||||
optdict["source"] = vpath
|
||||
optdict["video_frames"] = video_frames
|
||||
optdict["is_annotate"] = False
|
||||
|
||||
yrtOut = yolo_resnet_tracker(**optdict)
|
||||
|
||||
trackerboxes = np.empty((0, 9), dtype=np.float64)
|
||||
trackefeats = {}
|
||||
for frameDict in yrtOut:
|
||||
tboxes = frameDict["tboxes"]
|
||||
ffeats = frameDict["feats"]
|
||||
|
||||
trackerboxes = np.concatenate((trackerboxes, np.array(tboxes)), axis=0)
|
||||
for i in range(len(tboxes)):
|
||||
fid, bid = int(tboxes[i, 7]), int(tboxes[i, 8])
|
||||
trackefeats.update({f"{fid}_{bid}": ffeats[f"{fid}_{bid}"]})
|
||||
|
||||
|
||||
vts = doBackTracks(trackerboxes, trackefeats)
|
||||
vts.classify()
|
||||
event_tracks.append(("back", vts))
|
||||
|
||||
return event_tracks, video_frames
|
||||
|
||||
def stream_pipeline(stream_dict):
|
||||
parmDict = {}
|
||||
parmDict["vpath"] = stream_dict["video"]
|
||||
|
||||
# parmDict["savepath"] = os.path.join('pipeline_output', info_dict["barcode"])
|
||||
parmDict["SourceType"] = "video" # video, image
|
||||
parmDict["stdfeat_path"] = None
|
||||
|
||||
event_tracks, video_frames = get_tracking_info(**parmDict)
|
||||
bboxes_opt = get_optimized_bboxes(event_tracks[0][1])
|
||||
subimg_list = save_event_subimgs(video_frames, bboxes_opt)
|
||||
|
||||
return subimg_list
|
||||
|
||||
def main():
|
||||
'''
|
||||
sample stream_dict:
|
||||
'''
|
||||
stream_dict = {
|
||||
"goodsName" : "优诺优丝黄桃果粒风味发酵乳",
|
||||
"measureProperty" : 0,
|
||||
"qty" : 1,
|
||||
"price" : 25.9,
|
||||
"weight": 560, # 单位克
|
||||
"barcode": "6931806801024",
|
||||
"video" : "https://ieemoo-ai.obs.cn-east-3.myhuaweicloud.com/videos/20231009/04/04_20231009-082149_21f2ca35-f2c2-4386-8497-3e7a3b407f03_4901872831197.mp4",
|
||||
"goodsPic" : "https://ieemoo-storage.obs.cn-east-3.myhuaweicloud.com/lhpic/6931806801024.jpg",
|
||||
"measureUnit" : "组",
|
||||
"goodsSpec" : "405g"
|
||||
}
|
||||
subimg_list = stream_pipeline(stream_dict)
|
||||
save_path = os.path.join('subimg', stream_dict["barcode"])
|
||||
|
||||
if not os.path.exists(save_path):
|
||||
os.makedirs(save_path)
|
||||
else:
|
||||
for filename in os.listdir(save_path):
|
||||
file_path = os.path.join(save_path, filename)
|
||||
if os.path.isfile(file_path):
|
||||
os.unlink(file_path)
|
||||
|
||||
for fid, img in subimg_list.items():
|
||||
cv2.imwrite(f'{save_path}/frame_{fid}.jpg', img)
|
||||
|
||||
print(f'Finish crop subimages {stream_dict["barcode"]}.')
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -143,6 +143,7 @@ def yolo_resnet_tracker(
|
||||
save_dir = '',
|
||||
is_save_img = True,
|
||||
is_save_video = True,
|
||||
is_annotate = True,
|
||||
|
||||
tracker_yaml = "./tracking/trackers/cfg/botsort.yaml",
|
||||
imgsz=(640, 640), # inference size (height, width)
|
||||
@ -162,6 +163,7 @@ def yolo_resnet_tracker(
|
||||
dnn=False, # use OpenCV DNN for ONNX inference
|
||||
vid_stride=1, # video frame-rate stride
|
||||
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
||||
video_frames = None
|
||||
):
|
||||
# source = str(source)
|
||||
# Load model
|
||||
@ -260,7 +262,8 @@ def yolo_resnet_tracker(
|
||||
|
||||
'''====== Save results (image and video) ======'''
|
||||
# save_path = str(save_dir / Path(path).name) # 带有后缀名
|
||||
im0 = annotator.result()
|
||||
if is_annotate:
|
||||
im0 = annotator.result()
|
||||
if is_save_img:
|
||||
save_path_img = str(save_dir / Path(path).stem)
|
||||
if dataset.mode == 'image':
|
||||
@ -268,6 +271,8 @@ def yolo_resnet_tracker(
|
||||
else:
|
||||
imgpath = save_path_img + f"_{frameId}.png"
|
||||
cv2.imwrite(Path(imgpath), im0)
|
||||
if video_frames is not None:
|
||||
video_frames.update({frameId: im0})
|
||||
|
||||
# if dataset.mode == 'video' and is_save_video:
|
||||
|
||||
|
BIN
tracking/ckpts/best_cls10_0906.pt
Executable file
BIN
tracking/ckpts/yolov5s.pt
Normal file
BIN
tracking/shopcart/cart_tempt/board_ftmp.png
Normal file
After Width: | Height: | Size: 5.9 KiB |
BIN
tracking/shopcart/cart_tempt/board_ftmp_iCart4.png
Normal file
After Width: | Height: | Size: 16 KiB |
BIN
tracking/shopcart/cart_tempt/board_ftmp_line.png
Normal file
After Width: | Height: | Size: 7.4 KiB |
BIN
tracking/shopcart/cart_tempt/board_ftmp_line_iCart4.png
Normal file
After Width: | Height: | Size: 7.7 KiB |
BIN
tracking/shopcart/cart_tempt/cartboard_iCart4.png
Normal file
After Width: | Height: | Size: 26 KiB |
BIN
tracking/shopcart/cart_tempt/cartboarder.png
Normal file
After Width: | Height: | Size: 13 KiB |
BIN
tracking/shopcart/cart_tempt/cartedge.png
Normal file
After Width: | Height: | Size: 11 KiB |
BIN
tracking/shopcart/cart_tempt/cartedge_iCart4.png
Normal file
After Width: | Height: | Size: 27 KiB |
BIN
tracking/shopcart/cart_tempt/edgeline.png
Normal file
After Width: | Height: | Size: 7.2 KiB |
BIN
tracking/shopcart/cart_tempt/edgeline_iCart4.png
Normal file
After Width: | Height: | Size: 7.8 KiB |
BIN
tracking/shopcart/cart_tempt/incart.png
Normal file
After Width: | Height: | Size: 9.6 KiB |
BIN
tracking/shopcart/cart_tempt/incart_ftmp.png
Normal file
After Width: | Height: | Size: 4.0 KiB |
BIN
tracking/shopcart/cart_tempt/incart_ftmp_iCart4.png
Normal file
After Width: | Height: | Size: 4.2 KiB |
BIN
tracking/shopcart/cart_tempt/incart_iCart4.png
Normal file
After Width: | Height: | Size: 5.2 KiB |
BIN
tracking/shopcart/cart_tempt/outcart.png
Normal file
After Width: | Height: | Size: 9.6 KiB |
BIN
tracking/shopcart/cart_tempt/outcart_ftmp.png
Normal file
After Width: | Height: | Size: 5.9 KiB |
BIN
tracking/shopcart/cart_tempt/outcart_ftmp_iCart4.png
Normal file
After Width: | Height: | Size: 5.8 KiB |
BIN
tracking/shopcart/cart_tempt/outcart_iCart4.png
Normal file
After Width: | Height: | Size: 5.0 KiB |
280
tracking/traclus.py
Normal file
@ -0,0 +1,280 @@
|
||||
"""
|
||||
TRACLUS: A Trajectory Clustering Algorithm (A Partition and Group Framework)
|
||||
Implemented for Python 3
|
||||
|
||||
This is an implementation of the TRACLUS algorithm as described in the paper:
|
||||
"Trajectory Clustering: A Partition-and-Group Framework"
|
||||
by Lee, Han, & Whang (2007) [http://hanj.cs.illinois.edu/pdf/sigmod07_jglee.pdf]
|
||||
|
||||
Implementation Author: Adriel Isaiah V. Amoguis (De La Salle University)
|
||||
Implementation Date: 2023-03-19
|
||||
|
||||
This implementation was done as part of the algorithms required for the implementation author's
|
||||
undergraduate thesis. The implementation is not guaranteed to be bug-free and may not be optimized
|
||||
for certain use-cases. The implementation author is not responsible for any damages caused by the
|
||||
use of this implementation. Use at your own risk. End-users are encouraged to examine the code
|
||||
in the case of any issues. If you find any bugs, please report them to the implementation author
|
||||
via the repository's issues page on GitHub.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import numpy as np
|
||||
from sklearn.cluster import OPTICS
|
||||
from sklearn.metrics.pairwise import cosine_similarity
|
||||
from scipy.spatial.distance import euclidean as d_euclidean
|
||||
|
||||
import pickle
|
||||
import os
|
||||
import warnings
|
||||
|
||||
# UTILITY FUNCTIONS
|
||||
|
||||
def load_trajectories(filepath):
|
||||
"""
|
||||
Load the trajectories from a pickle file.
|
||||
"""
|
||||
if not os.path.exists(filepath):
|
||||
raise FileNotFoundError("File not found at {}".format(filepath))
|
||||
|
||||
with open(filepath, 'rb') as f:
|
||||
trajectories = pickle.load(f)
|
||||
|
||||
return trajectories
|
||||
|
||||
def get_point_projection_on_line(point, line):
|
||||
"""
|
||||
Get the projection of a point on a line.
|
||||
"""
|
||||
|
||||
# Get the slope of the line using the start and end points
|
||||
line_slope = (line[-1, 1] - line[0, 1]) / (line[-1, 0] - line[0, 0]) if line[-1, 0] != line[0, 0] else np.inf
|
||||
|
||||
# In case the slope is infinite, we can directly get the projection
|
||||
if np.isinf(line_slope):
|
||||
return np.array([line[0,0], point[1]])
|
||||
|
||||
# Convert the slope to a rotation matrix
|
||||
R = slope_to_rotation_matrix(line_slope)
|
||||
|
||||
# Rotate the line and point
|
||||
rot_line = np.matmul(line, R.T)
|
||||
rot_point = np.matmul(point, R.T)
|
||||
|
||||
# Get the projection
|
||||
proj = np.array([rot_point[0], rot_line[0,1]])
|
||||
|
||||
# Undo the rotation for the projection
|
||||
R_inverse = np.linalg.inv(R)
|
||||
proj = np.matmul(proj, R_inverse.T)
|
||||
|
||||
return proj
|
||||
|
||||
################# EQUATIONS #################
|
||||
|
||||
# Euclidean Distance : Accepts two points of type np.ndarray([x,y])
|
||||
# DEPRECATED IN FAVOR OF THE SCIPY IMPLEMENTATION OF THE EUCLIDEAN DISTANCE
|
||||
# d_euclidean = lambda p1, p2: np.sqrt((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)
|
||||
|
||||
# Perpendicular Distance
|
||||
def d_perpendicular(l1, l2):
|
||||
"""
|
||||
Calculate the perpendicular distance between two lines.
|
||||
"""
|
||||
# Find the shorter line and assign that as l_shorter
|
||||
l_shorter = l_longer = None
|
||||
l1_len, l2_len = d_euclidean(l1[0], l1[-1]), d_euclidean(l2[0], l2[-1])
|
||||
if l1_len < l2_len:
|
||||
l_shorter = l1
|
||||
l_longer = l2
|
||||
else:
|
||||
l_shorter = l2
|
||||
l_longer = l1
|
||||
|
||||
ps = get_point_projection_on_line(l_shorter[0], l_longer)
|
||||
pe = get_point_projection_on_line(l_shorter[-1], l_longer)
|
||||
|
||||
lehmer_1 = d_euclidean(l_shorter[0], ps)
|
||||
lehmer_2 = d_euclidean(l_shorter[-1], pe)
|
||||
|
||||
if lehmer_1 == 0 and lehmer_2 == 0:
|
||||
return 0
|
||||
return (lehmer_1**2 + lehmer_2**2) / (lehmer_1 + lehmer_2)#, ps, pe, l_shorter[0], l_shorter[-1]
|
||||
|
||||
# Parallel Distance
|
||||
def d_parallel(l1, l2):
|
||||
"""
|
||||
Calculate the parallel distance between two lines.
|
||||
"""
|
||||
# Find the shorter line and assign that as l_shorter
|
||||
l_shorter = l_longer = None
|
||||
l1_len, l2_len = d_euclidean(l1[0], l1[-1]), d_euclidean(l2[0], l2[-1])
|
||||
if l1_len < l2_len:
|
||||
l_shorter = l1
|
||||
l_longer = l2
|
||||
else:
|
||||
l_shorter = l2
|
||||
l_longer = l1
|
||||
|
||||
ps = get_point_projection_on_line(l_shorter[0], l_longer)
|
||||
pe = get_point_projection_on_line(l_shorter[-1], l_longer)
|
||||
|
||||
parallel_1 = min(d_euclidean(l_longer[0], ps), d_euclidean(l_longer[-1], ps))
|
||||
parallel_2 = min(d_euclidean(l_longer[0], pe), d_euclidean(l_longer[-1], pe))
|
||||
|
||||
return min(parallel_1, parallel_2)
|
||||
|
||||
# Angular Distance
|
||||
def d_angular(l1, l2, directional=True):
|
||||
"""
|
||||
Calculate the angular distance between two lines.
|
||||
"""
|
||||
|
||||
# Find the shorter line and assign that as l_shorter
|
||||
l_shorter = l_longer = None
|
||||
l1_len, l2_len = d_euclidean(l1[0], l1[-1]), d_euclidean(l2[0], l2[-1])
|
||||
if l1_len < l2_len:
|
||||
l_shorter = l1
|
||||
l_longer = l2
|
||||
else:
|
||||
l_shorter = l2
|
||||
l_longer = l1
|
||||
|
||||
# Get the minimum intersecting angle between both lines
|
||||
shorter_slope = (l_shorter[-1,1] - l_shorter[0,1]) / (l_shorter[-1,0] - l_shorter[0,0]) if l_shorter[-1,0] - l_shorter[0,0] != 0 else np.inf
|
||||
longer_slope = (l_longer[-1,1] - l_longer[0,1]) / (l_longer[-1,0] - l_longer[0,0]) if l_longer[-1,0] - l_longer[0,0] != 0 else np.inf
|
||||
|
||||
# The case of a vertical line
|
||||
theta = None
|
||||
if np.isinf(shorter_slope):
|
||||
# Get the angle of the longer line with the x-axis and subtract it from 90 degrees
|
||||
tan_theta0 = longer_slope
|
||||
tan_theta1 = tan_theta0 * -1
|
||||
theta0 = np.abs(np.arctan(tan_theta0))
|
||||
theta1 = np.abs(np.arctan(tan_theta1))
|
||||
theta = min(theta0, theta1)
|
||||
elif np.isinf(longer_slope):
|
||||
# Get the angle of the shorter line with the x-axis and subtract it from 90 degrees
|
||||
tan_theta0 = shorter_slope
|
||||
tan_theta1 = tan_theta0 * -1
|
||||
theta0 = np.abs(np.arctan(tan_theta0))
|
||||
theta1 = np.abs(np.arctan(tan_theta1))
|
||||
theta = min(theta0, theta1)
|
||||
else:
|
||||
tan_theta0 = (shorter_slope - longer_slope) / (1 + shorter_slope * longer_slope)
|
||||
tan_theta1 = tan_theta0 * -1
|
||||
|
||||
theta0 = np.abs(np.arctan(tan_theta0))
|
||||
theta1 = np.abs(np.arctan(tan_theta1))
|
||||
|
||||
theta = min(theta0, theta1)
|
||||
|
||||
if directional:
|
||||
return np.sin(theta) * d_euclidean(l_longer[0], l_longer[-1])
|
||||
|
||||
if 0 <= theta < (90 * np.pi / 180):
|
||||
return np.sin(theta) * d_euclidean(l_longer[0], l_longer[-1])
|
||||
elif (90 * np.pi / 180) <= theta <= np.pi:
|
||||
return np.sin(theta)
|
||||
else:
|
||||
raise ValueError("Theta is not in the range of 0 to 180 degrees.")
|
||||
|
||||
# Total Trajectory Distance
|
||||
def distance(l1, l2, directional=True, w_perpendicular=1, w_parallel=1, w_angular=1):
|
||||
"""
|
||||
Get the total trajectory distance using all three distance formulas.
|
||||
"""
|
||||
|
||||
perpendicular_distance = d_perpendicular(l1, l2)
|
||||
parallel_distance = d_parallel(l1, l2)
|
||||
angular_distance = d_angular(l1, l2, directional=directional)
|
||||
|
||||
return (w_perpendicular * perpendicular_distance) + (w_parallel * parallel_distance) + (w_angular * angular_distance)
|
||||
|
||||
# Minimum Description Length
|
||||
def minimum_desription_length(start_idx, curr_idx, trajectory, w_angular=1, w_perpendicular=1, par=True, directional=True):
|
||||
"""
|
||||
Calculate the minimum description length.
|
||||
"""
|
||||
LH = LDH = 0
|
||||
for i in range(start_idx, curr_idx-1):
|
||||
ed = d_euclidean(trajectory[i], trajectory[i+1])
|
||||
# print("ed:", ed)
|
||||
LH += max(0, np.log2(ed, where=ed>0))
|
||||
if par:
|
||||
for j in range(start_idx, i-1):
|
||||
# print()
|
||||
# print(np.array([trajectory[start_idx], trajectory[i]]))
|
||||
# print(np.array([trajectory[j], trajectory[j+1]]))
|
||||
LDH += w_perpendicular * d_perpendicular(np.array([trajectory[start_idx], trajectory[i]]), np.array([trajectory[j], trajectory[j+1]]))
|
||||
LDH += w_angular * d_angular(np.array([trajectory[start_idx], trajectory[i]]), np.array([trajectory[j], trajectory[j+1]]), directional=directional)
|
||||
# print("LDH:", LDH)
|
||||
if par:
|
||||
return LDH + LH
|
||||
return LH
|
||||
|
||||
# Slope to rotation matrix
|
||||
def slope_to_rotation_matrix(slope):
|
||||
"""
|
||||
Convert slope to rotation matrix.
|
||||
"""
|
||||
return np.array([[1, slope], [-slope, 1]])
|
||||
|
||||
#############################################
|
||||
|
||||
def partition(trajectory, directional=True, progress_bar=False, edis=30, w_perpendicular=1, w_angular=1):
|
||||
"""
|
||||
Partition a trajectory into segments.
|
||||
"""
|
||||
# Ensure that the trajectory is a numpy array of shape (n, 2)
|
||||
if not isinstance(trajectory, np.ndarray):
|
||||
raise TypeError("Trajectory must be a numpy array")
|
||||
elif trajectory.shape[1] != 2:
|
||||
raise ValueError("Trajectory must be a numpy array of shape (n, 2)")
|
||||
|
||||
# Initialize the characteristic points, add the first point as a characteristic point
|
||||
cp_indices = []
|
||||
cp_indices.append(0)
|
||||
|
||||
traj_len = trajectory.shape[0]
|
||||
start_idx = 0
|
||||
|
||||
length = 1
|
||||
while start_idx + length < traj_len:
|
||||
if progress_bar:
|
||||
print(f'\r{round(((start_idx + length) / traj_len) * 100, 2)}%', end='')
|
||||
# print(f'Current Index: {start_idx + length}, Trajectory Length: {traj_len}')
|
||||
curr_idx = start_idx + length
|
||||
# print(start_idx, curr_idx)
|
||||
# print(f"Current Index: {curr_idx}, Current point: {trajectory[curr_idx]}")
|
||||
cost_par = minimum_desription_length(start_idx, curr_idx, trajectory, w_angular=w_angular, w_perpendicular=w_perpendicular, directional=directional)
|
||||
cost_nopar = minimum_desription_length(start_idx, curr_idx, trajectory, par=False, directional=directional)
|
||||
# cost_par += 0 if 1 - cos == 0 else w_feats / (1 - cos)
|
||||
# print(f'Cost with partition: {cost_par}, Cost without partition: {cost_nopar}')
|
||||
if cost_par > cost_nopar and d_euclidean(trajectory[start_idx], trajectory[curr_idx]) > edis:
|
||||
# print('edp:', d_euclidean(trajectory[start_idx], trajectory[curr_idx]))
|
||||
# print(f"Added characteristic point: {trajectory[curr_idx-1]} with index {curr_idx-1}")
|
||||
cp_indices.append(curr_idx-1)
|
||||
start_idx = curr_idx-1
|
||||
length = 1
|
||||
else:
|
||||
length += 1
|
||||
|
||||
# Add last point to characteristic points
|
||||
cp_indices.append(len(trajectory) - 1)
|
||||
# print(cp_indices)
|
||||
|
||||
return np.array([trajectory[i] for i in cp_indices]), cp_indices
|
||||
|
||||
# Create the script version that takes in a file path for inputs
|
||||
if __name__ == "__main__":
|
||||
# Parse the arguments
|
||||
parser = argparse.ArgumentParser(description="Trajectory Clustering Algorithm")
|
||||
parser.add_argument("input_file", help="The input file path (pickle format)")
|
||||
parser.add_argument("-p", "--progress_bar", help="Show the progress bar", action="store_true")
|
||||
args = parser.parse_args()
|
||||
|
||||
# Load the trajectories
|
||||
trajectories = load_trajectories(args.input_file)
|
||||
|
||||
# Run the partition algorithm
|
||||
partitions, indices = tr.partition(points, progress_bar=args.progress_bar, w_perpendicular=100, w_angular=10)
|
@ -243,6 +243,9 @@ class LoadImages:
|
||||
path = Path(path).read_text().rsplit()
|
||||
files = []
|
||||
for p in sorted(path) if isinstance(path, (list, tuple)) else [path]:
|
||||
if p.startswith('http'):
|
||||
files.append(p)
|
||||
continue
|
||||
p = str(Path(p).resolve())
|
||||
if '*' in p:
|
||||
files.extend(sorted(glob.glob(p, recursive=True))) # glob
|
||||
|