add network image crop pipeline

This commit is contained in:
2025-01-14 13:38:17 +08:00
parent 744fb7b7b2
commit a16235a593
25 changed files with 427 additions and 2 deletions

137
stream_pipeline.py Normal file
View File

@ -0,0 +1,137 @@
# -*- coding: utf-8 -*-
"""
Created on Tuesday Jan 14 2025
@author: liujiawei
@description: 读取网络图片,并优化轨迹,截取子图
"""
import os
import sys
import cv2
import numpy as np
from pipeline import pipeline
from tracking import traclus as tr
from track_reid import parse_opt
from track_reid import yolo_resnet_tracker
from tracking.dotrack.dotracks_back import doBackTracks
def save_event_subimgs(imgs, bboxes):
img_list = {}
for i, box in enumerate(bboxes):
x1, y1, x2, y2, tid, score, cls, fid, bid = box
img_list[int(fid)] = imgs[fid][int(y1):int(y2), int(x1):int(x2), :]
return img_list
def get_optimized_bboxes(event_tracks):
vts_back = event_tracks
points = []
labels = []
for track in vts_back.Residual:
for ele in track.boxes:
points.append([int(ele[2]), int(ele[3])])
labels.append(int(ele[4])) # track_id
points = np.array(points)
partitions, indices = tr.partition(points, progress_bar=False, w_perpendicular=100, w_angular=10)
bboxes_opt = []
for track in vts_back.Residual:
for i in indices:
if i >= len(track.boxes): continue
if labels[i] == track.boxes[i][4]:
bboxes_opt.append(track.boxes[i])
return bboxes_opt
def get_tracking_info(
vpath,
SourceType = "video", # video
stdfeat_path = None
):
optdict = {}
optdict["weights"] = './tracking/ckpts/best_cls10_0906.pt'
optdict["is_save_img"] = False
optdict["is_save_video"] = False
event_tracks = []
video_frames = {}
'''Yolo + Resnet + Tracker'''
optdict["source"] = vpath
optdict["video_frames"] = video_frames
optdict["is_annotate"] = False
yrtOut = yolo_resnet_tracker(**optdict)
trackerboxes = np.empty((0, 9), dtype=np.float64)
trackefeats = {}
for frameDict in yrtOut:
tboxes = frameDict["tboxes"]
ffeats = frameDict["feats"]
trackerboxes = np.concatenate((trackerboxes, np.array(tboxes)), axis=0)
for i in range(len(tboxes)):
fid, bid = int(tboxes[i, 7]), int(tboxes[i, 8])
trackefeats.update({f"{fid}_{bid}": ffeats[f"{fid}_{bid}"]})
vts = doBackTracks(trackerboxes, trackefeats)
vts.classify()
event_tracks.append(("back", vts))
return event_tracks, video_frames
def stream_pipeline(stream_dict):
parmDict = {}
parmDict["vpath"] = stream_dict["video"]
# parmDict["savepath"] = os.path.join('pipeline_output', info_dict["barcode"])
parmDict["SourceType"] = "video" # video, image
parmDict["stdfeat_path"] = None
event_tracks, video_frames = get_tracking_info(**parmDict)
bboxes_opt = get_optimized_bboxes(event_tracks[0][1])
subimg_list = save_event_subimgs(video_frames, bboxes_opt)
return subimg_list
def main():
'''
sample stream_dict:
'''
stream_dict = {
"goodsName" : "优诺优丝黄桃果粒风味发酵乳",
"measureProperty" : 0,
"qty" : 1,
"price" : 25.9,
"weight": 560, # 单位克
"barcode": "6931806801024",
"video" : "https://ieemoo-ai.obs.cn-east-3.myhuaweicloud.com/videos/20231009/04/04_20231009-082149_21f2ca35-f2c2-4386-8497-3e7a3b407f03_4901872831197.mp4",
"goodsPic" : "https://ieemoo-storage.obs.cn-east-3.myhuaweicloud.com/lhpic/6931806801024.jpg",
"measureUnit" : "",
"goodsSpec" : "405g"
}
subimg_list = stream_pipeline(stream_dict)
save_path = os.path.join('subimg', stream_dict["barcode"])
if not os.path.exists(save_path):
os.makedirs(save_path)
else:
for filename in os.listdir(save_path):
file_path = os.path.join(save_path, filename)
if os.path.isfile(file_path):
os.unlink(file_path)
for fid, img in subimg_list.items():
cv2.imwrite(f'{save_path}/frame_{fid}.jpg', img)
print(f'Finish crop subimages {stream_dict["barcode"]}.')
if __name__ == "__main__":
main()