From 9b5b135fa3d322fd59edfc25d8df1bfcca4ee51a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E7=8E=8B=E5=BA=86=E5=88=9A?= Date: Thu, 13 Mar 2025 15:36:29 +0800 Subject: [PATCH] 20250313 --- __pycache__/track_reid.cpython-39.pyc | Bin 16272 -> 16206 bytes contrast/__pycache__/genfeats.cpython-39.pyc | Bin 4405 -> 4641 bytes .../__pycache__/one2n_contrast.cpython-39.pyc | Bin 11615 -> 6645 bytes contrast/feat_infer.py | 5 - contrast/genfeats.py | 11 +- contrast/one2n_contrast.py | 54 ++-- contrast/one2one_contrast.py | 218 +++++++++----- contrast/onsite_contrast_pr.py | 162 ++++++---- .../utils/__pycache__/event.cpython-39.pyc | Bin 12650 -> 12837 bytes contrast/utils/event.py | 6 +- dataset/multi-trajs.py | 72 +++++ pipeline.py | 8 +- practice/6924743915817.txt | 78 +++++ practice/data_.bin | Bin 0 -> 39958 bytes practice/json_to_data.py | 90 ++++++ realtime/draw_traj.py | 86 ------ realtime/tracker_test.py | 281 ++++++++++++++++++ track_reid.py | 6 +- tracking/module_analysis.py | 8 + .../__pycache__/read_data.cpython-39.pyc | Bin 16023 -> 16121 bytes tracking/utils/read_data.py | 10 +- 21 files changed, 837 insertions(+), 258 deletions(-) create mode 100644 dataset/multi-trajs.py create mode 100644 practice/6924743915817.txt create mode 100644 practice/data_.bin create mode 100644 practice/json_to_data.py delete mode 100644 realtime/draw_traj.py create mode 100644 realtime/tracker_test.py diff --git a/__pycache__/track_reid.cpython-39.pyc b/__pycache__/track_reid.cpython-39.pyc index 91b4a0640b1d93e82f19a7e0372a26217ffb4f90..d9e0026dde176163652ae5fee30e8efe5368f216 100644 GIT binary patch delta 1854 zcmaLXTX0iF7zgmPx!MFM(AHiOrKQj`y`*VK?-#J8TpTP9@}RXdG0h2WlQc;;hjMXC z(7>q3rOZAkw#5WdDWeEP5C#}TRK%jgFgjvp(BT0bdGJAekq34Er|395n3??M`@Y>h z`<-((8H<0jb&hxTY?CBDlRr=QAKG<%PJTAI&&#q;lV$0jvI`0MjsG#XldMa(%^M|T z9X~t&vKUX~+Rh+<(H#leabBv50K z5@fWK6$SF-;-E&1?qr>ENxn3?JUmxKIjn44l1nDFs3^{4t>WNkaxL+1AHIgXP|WBG zmn)WkuACrAmzk=}Zp0F01$TfbxYztw$(biW(`>}iwlmR=i zfglKhArJ-;K5hGj4DplYH_0~6?W+u9DDUC7>;)Y+5EcL(_)l|4X9FXkAO_694NAcd z-cn(WzlJal6tDq|fHtrUsE=e5qRn6n$N^iys32qP_bXmSp|l94Jn$m0f|o!7YzHp@ z240aQheTf$VaDu>gneGc9~NKwG6r`73)lsAgG=00X(fAkeWk7F4HWi+HvxXFbR10Z zfy$opNrVRk8Do@20)C%DFQHToR)Zu+@w=5zIu0Uy8>|6O0kzj_hz@~wz`I~0@2l!? zyoK;R@X(WYpmrEcfg@moU#~h4e;?ro;3((---8dqad1MAAyJw}qCTUKP|<{CdJ?5m z;A3zMc)%HOR?uScouXQw=e?;g4x6&hy#e^8s6E%5Svx$h38O%zba}^N7Ow2P&++wGx;3#a(sXN4<*~Mqk1xM6f>r% zm&W`aFYS-byw1&>H%yQM?rhvS?;d98HhM!r`W%-1&ZirD%z9kR0Ce2h)JBTa;ik1D zUL$5KZ|=RlscmpO8=GofjqZjfmt!dE-hgxY zKWpe;*j4N_a|CI*h`Q}2nvF^}Iw%0SpcBoiZD#a?F?o>EVw8=7jA1agelX;>8)!aK zV;cRGn&=;9mXvO{jBcgvPVdH? zcPm%{VZeqbCc=2MAR<0^)fs#tA_}Nk{Kr?-pvDa`kp%znk!a%i-VXnuNk92LZqMWP z+&eWg9!_(orltt|b7=bq-I~4U(z4UZudF2f0;!JQNY5eUC-(RJ7SbATS};sVD|;v7 zD(^=!XC4{X^gS+@M=N8(ut`>rYw1DBD66C@xgbJ%%tj$XhFj#^o-8rHSH-(Sa*J4y zEeyB%=kq92E}0O-g2QT5q-D`+sft}+XbfMucMP$RU(x0-lZ$!mzMR|A}Zb~Naj&{Odx_>#4C@&% z$*bk|jjEUi(=`gSlP;G{F+zlK()XFv7;Td8pAe)Bxhz8XGOmd^ewD~8@)A*g6`p(Pwj|!%;b*D55ofxlJWFgFx-Ao>cznpC(@u|gLLi(8_H(%%H z|0)fz^|@8#KzuY;P4o$ESHKsbj2XMgW%j3WzbZ}3_T<^f_4uW{f)p~vek>UxL(Ey) zX)zJ{AqMCMCBOtqffw|EUf=_p*>9z{NH6=U?0Yi8CQYk1>_vH$lhAnvy&)--&<3g3 zFVPG%z66Vb2DE|XiV>v(JqUt6U;uVd1R`vGd0u!I!eKx`2uPp_JP7*10N4TsK_-yF zQ=Ejp+atLpiPBt@vOpN*fvsR0cp5wjhQJO%*dWlIJWLq60{$+yZ{4R=KzSFl*dK*lFcfotgd>0YE51imKz!~nC8*&eLTtT zr={L%w$wVz7PHmi3~h2#k8|evvom{7JE!*@ojy5wH#s|YbJwY9wrw{5<>ZcA$M!oN z*4i3-eO;}++TyZSTkRIB#a3mp+w3)Uu8lO{mt1a9Tonk2t{QutqpRLsW9#hnxa`#~ zOSrDCI{C4fHwW$g`F!oI4bJJi6HRYF@$<#Wnd4h$CP$sr6YBR#^k3WyzLDe!r)4}^ zXG)>zsH9?pi$Dgztw=saT5m}7Qo00HEhnM#hBkVAOFbqX%|fmZ1SRG8@b|rt(DI%q zlpwuS!zPxul4AD5@1(7*4)@&_#C0Kn34F-#xX)J cvg{S*`TT`2`-ZxX2n$KBR#{gu+pyyHe?GVgUH||9 diff --git a/contrast/__pycache__/genfeats.cpython-39.pyc b/contrast/__pycache__/genfeats.cpython-39.pyc index fea7d7dc45be8ed417c92e662f1cbb90f2d55422..274b6534c5c42b9539d95d8df03dbb3a9811094b 100644 GIT binary patch delta 487 zcmX|*!A{#i5QcYbud@mE;-m-?DF;M3VD*4N+!v9sE$bzxwNfcL z^oslf_8U-D@B~%QJ@n*z4|$4qmPpKMzM1{!A8GD)id`Q0evM$9{`@t1wtdUnu(*Bk z{`s2l7UW$Ze8I8S(mH4}D=ZHV{?A&RX??;(=}!@%ENH#G{s$!9R?pIruDG%g()xSxJ*GpTBgJVRw9#7+m>U_SD!}vT>AIi#LC{D(SDl73+O`@x~ zqytmrfw9{t%3ZVVK7pG-cE>lH4eSVYfI|Q^*n_}g;MubK<2Qc^(9OIc-1~!;BrryB l9-oI+Ok4I*D_O616^$poUe*t0ZWkrl&;AC-E^9E(;6L)LZ$#Mk(ZZ?0SMkkEJ=SXH<3?GO+M47X@$L&u`7h7(Ds6 zfTs3opkT28NQ#jK40#y27=f6%C=4ieiz7ZhH!(9WK3Vg_M^T_!QUuzjXp6S+ zpY}UNb{a~*}Bhr^SgLD-)FG7{^o$u$9JvD z`9V?JZ49n5`?kTFd#J=DqjyTt+G?n3OkeYB91gCHx)Os%BEy5 z>cvD|btNFOr@1nhG4Ge$7+20R>!pP>5EaNb1zp6|R+;rpfkuFy-GZJ48f`{-bd`B= zC+5bN8IR3J>L0jqt_?~}ZB?p&KseRV7N3uJx~to_7SiDum>az*as53RBk2ewcc8z& zUPv$HoVbh8Ez4fQ(cKQ-u`FNP>vcLE&4in9J6B~Uy(001Dyh=4!lYWyDCTSHBiIr8 zzlzW4bR)~yr&pwfv?@8t6?S2oNgmF|(ot7!cG293ih~a0NV>_J(tB#a@hW6{$!{eW z(m_5VjX;W%a@jJQ>*ig1B(KZSogTLfGs79;Jy(=#N4-v0JtdtT$(HnV>7Pu8x!zj5i(#?9|wx;r`)LM<%6HvSX84bpd3j0og&)48SCij-huts6Lzbnw$TQtn}WtWVb25f+ux zEUCy$X9+fhFNM-jB+1fDW7b!|Q=)Ux{%I)0@d@qgqF_oMd#rcQ%zCoWW{N8dtqZN} zs+`R$*3d#S)O`}#WN7Dz8{yD$*LHhRC)$j;q)lVc70_#;W=oAqHs7i#+?dN;<+!wv zbQyGpk_%6rHJ#Ngnx@r5NiQX7N_J7Qo02_9e6><9a*!UP3T+oHkFU{s(~em%*OGO# z-AJ2b(Ygsz(i~zlg5=ADCvhKmu+SWmehHXOBaoQNlC+d^5=(l7>54^dB|4w&A6*){ zRAMRr0|l5LHZR+$&@ipI3RhrwMqFu5!ZI?X5tNx1MHx$lb~0BJo9$TC&2~k!li_Lr zlLdd!t_c31J&N{~&GtZk&`$DY7&SNs4ov18%!w$mphQSH7zyPu&_qG;Psn4GbLK?d zD49Q)SEM|?tPDt==ERyB86PiRQ@P~D-8i;U&u!2dvuH(pd2|%th%b+f87%)kY)eSI3YBWwuD0=EW8bf+lerc@hs+ptKoFV`Br zS~ZHbtZqFEARn!d)##SSu=|c-)%*zEbiEBhsL6~efa+8lCl@=nw(+-EFr7RdKui-2_z*_UG3j9D3AuG zN!eF%uFBzmMx9bUncO2UvJHbnJ1 zDX-h>@p>KRcFoCf0qD%06g4HNS>IYX2`4~xljHyp6&!AdI8BjN$?J!lU7?geU%2Y_2Tm6Hh**D%T8vyS9s^gu%eaQq`Oj_-dg>EBk)tKU z6~g`CI+d)+OVSJzuCLaf)iU!2(8~aN(dHG<3@u!BG`Gtg;0&jgx&6zkH|P%XP9fnX zjDmU)Zm*kas+WaZ<8}kvC3@{esh>)q?3z>D?z0S1ueu$;#R@E(tikzf*U)!rnIY|7 zW-7Kz^zv7z_w1O3&}BHhXa2_9<954yFoPaS zv7>vveePZw5qcmkvd`TemZBKTJ~4K=J*wJ`EwodDRsq+P8{4E+Hfd`iEm2(Fq`mBF zo3xQl+LK#oKieF`XW>fWj9H(#@l8H;lTUXO?J``*e_S{jp3^71{b4EN9Uzw&;f%(+ zRu%7{dl2jJf%l|Cu5yyhiTmU{^p_k!BA=nj5D2KZs{BNW@he?;(WJNSX_ z;3s5&XTh&+<3B3+V>|eP?%*e6fIkC%Sig4v?R9Zg*tns^zlUZPj&^8R#@nuZW^_E$ zu<9klwueP{LV?MxPg*~HhXRwEcOKrq-}>}}P3p1n%v$p-S!7tz2Gv_ipR{wMVyB*Kb|_qTnwfzPbF-`u9Hkf?$Yz^wSR? zJ-8bP6JgK$t&6u?x0e5Vk-}&To9f4=ix%8`IJaa8D@FMBG{Vo>kVT=qux7&gTPIQ7 z=5UfdBfCZ}olTxuS#qT_2XVrfC%ddEU53NR*+p0uSOyB{RabsnUZ6EsavNRX5CfsN zh8eTQvx+YdkNB!^_lD5=5z9wvqDGFkCEPmwIK?33C!BZ(;J@ILmi7jIcEcJzUa7;F z+b2+HljYWL{0{y8^1%iNarw$W{G|EsKl|i_&#a~Ngk_XW+bB%b?eWay#IutVrzhym zqf(qUDn6TD>ivcRft9TUIiHmubLNaPICIZV=1x!ethC9n1<#d(5#0Ud$tC&NG02Zo z0D(BAVl1Uc$7`8z7@4OtL3c|XB5uj#7OUf#tQ_nYIbs{fkpL(l6MKVzrUJhTYo|_| zHQSF^#ah`w=)=oKsa~mDOX}prV;SU}EUBjhgepQbXmWx^AR!GQ`}_#vt*RY3X%Vr^ z)+Dj*M?#^NWj3r=3FxPU93Wq*7SCIARQ)V1`NRlMk_`c zktBS-+4?zOou!AYXAs#2(S>c1)0fwrhKTa)yfy>>l7eBx9h;aFV)>}kpgWR}&eVe3 z3GV;P*oFF{(^zzZ;70hkali#S^L9Q##qfHD zweXJGc|k@O)y5T}_$JtuU!zt3Rhm=`zA~a8Cok^x*!eZ416DTZ3<|L8rzSPhkL~ z!{MV_@Q~E{_KgUJHt7( zS~P3_3VJ(9N5`h{jQ-_gUpn?& zVQi7s>HkBl1N(rtB%uZB({py=927hDflgeO;ekHbn7w|iP~i1ap%6T>1aB#&I-Z&$ zH9W6f2$V2|%(E49I#~E_gv6w90pLwasNQIhTXawTKD%T#E(}9!J7%#mOz;22S}6?6 zI~ENK5KR^xu?ZZ9pUSA|813=zjqRDuc)X literal 11615 zcmcIqS#TW3d7f)`XHP6{@DQ~WsbeV!!qSvPp;!zp(bf?gRzgLUOdxF*m;tcF9zf54 zB3UyoD&T2R)L}_hiIQqjWyz8qk&5HU5=BW>d2r<=FD{o$HBYXX3y`T)oK*6pha}(M zJ-gTiK^B$RKy6PSfB*e=_uv23T}UQl68_%*kD;lr{jntdmI|$ZDhhk>v;Pf=DH)O} zn@UMG6#i8Wm47uO#J}Nk#L#5{6E&i!Q%kXO+=vHt2_s=8_9ts8Q(KgIU8vMiP8;cR zr_ssF;Zj$*+vqO$7(L})qqp2=^zr%#;QEdJ@_;eG%X(>DdA+f|yusK|-e_z@UDS*n zm5iIrxS7CrlbJMA_}*-Gm}z`7W~bSO?`E^x?7{aIv)AmycZ=C?4&b}hy474aqp*Lm zwk$}%rtFil>*s%tNyi>!R>85%Otq5PS8y_q&X+RVwqVle)g^9GbidNk1xIT!t%S%)-OE&yNjon zUOS(e1lqi9m8=P8X!cNM`SqjA=Z@4*zq)+tBp`tC(x=ClUOvBc`kDG?KVCj_{_?rS z<#RtkQ~l!)FMsy^`iTomM?OKXS+;ccr^^>UkHz*B=AG#(8_66h$F6{MX*4VQ+G7Q0 z`f%sok+Hp&gRvfGg^8JBWh$%q(XUr3Rj1%onIE30ma5FoYJS2x=m5mYn+2!f4`A|U z-UO9cf(Ht0qH0?C$zsX!dw2_h61IGG-kF_u{9azmEN7lo9;#MNn*(F4Zj%+B&Nsow zs|PLHk55@xg8A`cdCJbJzHU!fpMJP#JARsSd1g%%N~QcPzW%^OwTuC**2;CcDz2yjObiHBWV<{Yp)B)kS$s@iZ^w zYBkN27iBN(gxv4~*d1)K$qkt*|AtL%o#cewuo+q>Ey#-GMLeD3h`184C|=ajYf(1} z3^6xihSBTwlTt0_#)#!z89ANjB4&gzo}?PlrZn2-HeqaeL1zE##A^xsk}fC$#`pl>r-Tft626C*?_E?fCq^VuiqCnM|>QWgX#J zUc^?+f@6Mn@%78+-@g3w^Yzb;Ui#>L@LB!rXZ3~WFMV|3FTg6`#HGJ`1+~P9$KDog z;LUq?3?IBFx1FOCECEDq$n(RfslRY$>BRse9f#V-OV6FlOtM1Rdc@3J{`~Ca#nYEA z9A7%~63$C|_Z)RU_1ukj&+z`foWG)B&WE+3{j*bynC8m=;Ln$beL2_0L<-snv>QLW z2g#J=N>3&{ET1c{lU`Kjw0+Wh5~KF_6kizvh9XW{nAkW!%O;ju3f7=Z~kQWa;y-i=J7!&j%BQz#OeUX%2k zs2e~XTZiOND6^g*Qod5P{RoX|7MZURhv2x*mWmFFUkDWvNgSR8&o@yAp7XSdW`;e@jEt#X$P0TBSE)e| zEXp;-gs6e&(!D4NI|!th7Y}j?FX^Z?jf4k;-4|ZUP1Qowi@iE`+)?+3YZ0F6uI#23 zAvV~#x#NIQ2*&FG9UYu*mHh(s9YkewytLQprd@qTf#_L}Hc;+DL{iC#x}6I$(&&Ob zBk}eaL|clBy?8Aq+Ifj%V8=0%260DY5FQOPKi-Z7ZHXq1WGfELL~>(X1isu9fpIPZ zyWE)DWyaP?Si$b*OuHeZ!|0RXeg3i8CmHlfH2d^4`}CmC%33KXg!DV8nUNCA*z64fnb-tOy!gU+~tQ%ltN8t~-|4G43L4yF-XL2D%2(6vZ3 zakR;>Xb9LmVYcUh!QO*Jk~28Kx}3nF*3_8NqtL-lp*%oerAyhyzk_tZH9F)8CDr(b zQYw20INA<;4i!=S_<{d5R0kQuN9jP*kygo0@Km110YY8_^N~OZfz3yFeVEsWaL6NG z2(1tc?1CfH7e^b%-BI?_K~`}vanzfoC`wUS06K@m!ABm44t?n8!%D%yP`ng!5wN?0 zBOM9q(#VOrPL53{3&`uj*f@wdvU@N(a=_H>^#tQ-eDvOCiAL|kh`k)H-y1-_kLTBU z>oI1x+mA6fAlKurLvAC+6m>TtC+arQVe6Ly8ni{ZU*c4RI2FGD707{#o4rghE(tKj z+uSS>6}MpI%^Yrvw-xzYc>Y%JHjI6fX7C6|(=`A$tvZSalm9UI#(tpm$e5*PUk49XuG3_Y%SkRs2c#ENw!`dR$-B3& zfvM*@n11Enu||*HYxYp*!oj+U)$YS;-yN*>-B@kaeu}R)@>uOOaPNR39Q1~p>wUK= z)}r4X=BpmMYSq=bakq2Lo?=a|*YgecrZsztJ-%MgU%Q*u>?!v8+C8*qh_O?Ke`S1lu%OP{}4fB!XdY|oxss-0MR^#pm-OZy$d4!${y!!L%VS z4W|k|n+XXDzfBEHnXR5iewquDMfhhN9zK(+Vc%6*n%g_K$tBgSjtcEc3O5@T`jZr< zP^Vmz!lta4TybVYM#MVckiKBM0c1q216IZ1T1iI(*Cgyt>fYT71(_=)V-A4LkU?7hx>+Cun0eEi2U`# zeYrL3zm)IvLwwJS7^hO?b)is)^YDshD^o^L&gG4$(DwP^m258W#~*=}{ta#v47V0? z+*J5B*$LEx>;_SwKEl7}12S3?KebPI{0&6y<=kjs_i)3yWy82-Lv}SIUCStLCF~gP z7=*2Z@CIyOFBfJk7+yBpN&xT&o@Q`TeCe%5hBQb>;`U_T~cS85U1oNy}1 z(uC~^>yv&7q*vFHO}a*{+J)X|flCUj^s02AwJv~7$r}NCbvn>e#|%)~CXdPe2;;{s z+Cj+9);Jo;V^4(ymiEGyd6Hsg2>-%0loll~jJy)$Bc^Irw5K{6tS_8 z39A?SXpa{+BOER+Tv`s9aHEj_2{XD5IzW~jmE1Km28-EnW4t9UTILM2!Tn=DGZP$3 zjQ3AgQV0Rl=uuI2lQj*NVRC`uXen2BQ*a79+zuB}IM}-snNzq!2b}^NL#-(dXlRoG zxZAwd?U;m}jCO5Ry9_&Cb+t)^hO((qKfKSH+Y3i4vR8yo+g7&`VB*@YHNXTKu!bVQ z#98eekA9^+8Loj`lNYg#tpqBFyp*a1httWP0{mJe4mC*pQXUjat*Oth8e9bq zzB0swd~n^9-PS?H2-h0xp2k?ecg*)SFvF0bZDAQoxSzclIX?tD!aC@y<-);i+Se&| z%|leti7I14u;`FKBG*Ngh{xww_Q59~xwRa&1%j{$Cir2ov!wQTB;NKrR(iwVEzcry z-rUywBtygz;RCAi729S7qSqo)JGd)unGIim)u#E$Hcr}#iQ9wdCm|e0@+Tp8sr02F zSwc=zKuk%gDIOj}*i1>wX_d_bzHJZsP(ccucG&(Ia9&5MoW7P+IR%fJpX(K=f+%}X z6KTj9#K?u@f&Ad-za=;Z$%Bv(mplnv7ZF?nk|#kyGRUYTmoG^(*_1qx8DUJ8<@lb3}gqM#c|o)ninkT)*+duca)QsR>5jzIG0 zR6i-C52Q__2T30u_3r{s9bPPaeNJbm*$vyc%j@P|O~&hSQ*IA}XWcUzH$h}_F()g{?jZ@5}A0iQuZ$i5Djk3SQ2C^|E zZQFa}VvRjX2(ER2N5L6Fp5e}oBIV*bX)STa{^}1!#CIA*_#tjE|3PN@SaT4~IW%kW z^Lf=kH!h6X`1O|c&l-aL`j*FDiS}; z8IuC6;2oRIQo|f2j1rrY0wpBynS%s(Gv+}=ip_)2P)3CG0y4fl(+JpdgkqY9s1tW> z6Rn5vVNBY70Bz6&WTTQMp#N)XgDz-;K3Ru`NWl>ncCV)Npq3p0mI*@D_@kXb^i)`# zL@>O5T*Z5MMt}%_=BZP-2obSUL`g+tP^0K5E20#JZl`sleUZydS&&NG)kSXh4f zUEHwNPkai1`TH^C*jVoV?L)bHcMj!-w(lIXrwhy)6AudV^vYoP-m&|J?;pFGvU%e7 z8|(e$=Ih)`GRvMXIggLRya@v%SKvI_&21b65E$uQ$)0bN8eW%T<|k(wI2zLAwMQu+Q$%g@uS>J6xnZ(OGsJnwy(BPx*W@P z@-U~I>Bb9%L&TnRMKbX$bc!!9$Uq`^Fv=5 z1$zcvT0&M7tpY3QRC|OHetETta$6`NuQQu85@O`lytEd_7<$8!X2%J`2}&rU!;VpM zk`gYYo08h^Y+({H&<}`5G60nXhw$56orD;2bhpa|8n}gh4=`bSWkR|a^HQsYn$oRp?yPlgEwkrMG81AiIdN(s_Zzjiz2&vk}U96w`II}&o{G;bGT-ftqwUFR=akA=kG_G~c7X85SOp-Jj$p~pLUeDke z*wV>Yo562-z;*0HJgKRlK30F>C-on`e(9qhw+y)|hTeGHC1U9Uqj=Hs6%P5%eEn}< zsh>Hv^zLH)t!EGH93B=^zflzJDrc-%D$V0g8sdG`^DFWINRHC+v-cw5M%XTL-)n&Z zHlva8g%b7=FCs$rc3y(pK_#X+GCjwlmo|$^V4`V=PGd{BWbsq&wD|FsoyltKVGO!T z&cHkq!IR1NWCSZ{gH~B`7f2!y-DIR}{O`k?xXj>Y&st8$D0`MhK_`iwM&gGa$1A$h znuab}VfK0?ctO-f>tNz70=)!z0z5mX@OOrI_(p1!djN!al#|zt`HZg?Y0+I%R>e9v z%Xa?~Gzd@WrZq`!!2RDzV=sarK1)Frdx^^JGM2rJx?eR(Nn?F2yx%LCgPGC!@<`@z z1W)+re&KL5KaC(gWwRSrb_sD48$oOStby$!{C|qX50z(7>#N{2MvUcawqupW4%23F z#o~wOXAv8=U<@C0@FF63F@cDG8BttBV1yBKgy2cbvjh@9e6Um)w@M;jK3SX+`Y29K z8ofNsb_jDOO8Y_#V;ee7`nTwY!3d92PzTs&F;NPN_#s{+9Etrj$P6DuJYU3%3uFwH zkZ7|d2QM0sZWn8KhM>8X9b4JJbHt9M!6h9A3}VOY)dVbP%2CXin3N(d_)+u))^!?D z8U9n!h$r{R1F*(*nY~R^=y|-~C|2_M>}`G|pEs)$`Me*g+C%&tkVf{y_Vm1i2vG?B z$m}8hWW?`8d}y{*bxOr?yicQ?9}d1M$PX@82nQg<_NewDo4-X7)?$C-t>+LS$9TZu z;H4-d<;lp*_Xk#i@b_30>1X802^*B+MZ$z=-uf6ljh7t(YNuK)*^IW2Z?D+s9aMaX z60$Q|*nq4*uG*UmL_S_V-@?@^=7YYgTs7xQ)^6fJ9s<+icsxRu0+v|((s($6fH3w diff --git a/contrast/feat_infer.py b/contrast/feat_infer.py index 6fef3c6..988e34b 100644 --- a/contrast/feat_infer.py +++ b/contrast/feat_infer.py @@ -16,11 +16,6 @@ from feat_extract.inference import FeatsInterface #, inference_image Encoder = FeatsInterface(conf) - - - - - def main(): imgpaths = r"D:\全实时\202502\result\Yolos_Tracking\20250228-160049-188_6921168558018_6921168558018\a" featDict = {} diff --git a/contrast/genfeats.py b/contrast/genfeats.py index e11bd6c..2ef0802 100644 --- a/contrast/genfeats.py +++ b/contrast/genfeats.py @@ -191,10 +191,19 @@ def stdfeat_infer(imgPath, featPath, bcdSet=None): return -def gen_bcd_features(imgpath, bcdpath, featpath, bcdSet=None): +def gen_bcd_features(imgpath, bcdpath, featpath, eventSourcePath): ''' 生成标准特征集 ''' '''1. 提取 imgpath 中样本地址,生成字典{barcode: [imgpath1, imgpath1, ...]} 并存储于: bcdpath, 格式为 barcode.pickle''' + + bcdList = [] + for evtname in os.listdir(eventSourcePath): + bname, ext = os.path.splitext(evtname) + evt = bname.split('_') + if len(evt)>=2 and evt[-1].isdigit() and len(evt[-1])>=10: + bcdList.append(evt[-1]) + + bcdSet = set(bcdList) get_std_barcodeDict(imgpath, bcdpath, bcdSet) '''2. 特征提取,并保存至文件夹 featpath 中,也根据 bcdSet 交集执行''' diff --git a/contrast/one2n_contrast.py b/contrast/one2n_contrast.py index 003c0af..fa1739c 100644 --- a/contrast/one2n_contrast.py +++ b/contrast/one2n_contrast.py @@ -14,49 +14,47 @@ from scipy.spatial.distance import cdist from utils.event import ShoppingEvent -def init_eventdict(sourcePath, stype="data"): +def init_eventDict(sourcePath, eventDataPath, stype="data"): '''stype: str, 'source': 由 videos 或 images 生成的 pickle 文件 'data': 从 data 文件中读取的现场运行数据 "realtime": 全实时数据,从 data 文件中读取的现场运行数据 - ''' + + sourcePath:事件文件夹,事件类型包含2种: + (1) pipeline生成的 pickle 文件 + (2) 直接采集的事件文件夹 + ''' k, errEvents = 0, [] - for bname in os.listdir(sourcePath): - # bname = r"20241126-135911-bdf91cf9-3e9a-426d-94e8-ddf92238e175_6923555210479" + for evtname in os.listdir(sourcePath): + bname, ext = os.path.splitext(evtname) + source_path = os.path.join(sourcePath, evtname) - source_path = os.path.join(sourcePath, bname) - if stype=="source" and not os.path.isfile(source_path): continue + if stype=="source" and ext not in ['.pkl', '.pickle']: continue if stype=="data" and os.path.isfile(source_path): continue if stype=="realtime" and os.path.isfile(source_path): continue - - if os.path.isdir(source_path): - pickpath = os.path.join(eventDataPath, f"{bname}.pickle") - else: - pickpath = os.path.join(eventDataPath, bname) - if os.path.isfile(pickpath): - continue + evt = bname.split('_') + condt = len(evt)>=2 and evt[-1].isdigit() and len(evt[-1])>=10 + if not condt: continue - evt = os.path.splitext(os.path.split(pickpath)[-1])[0].split('_') - cont = len(evt)>=2 and evt[-1].isdigit() and len(evt[-1])>=10 - if not cont: - continue + pickpath = os.path.join(eventDataPath, f"{bname}.pickle") + if os.path.isfile(pickpath): continue # event = ShoppingEvent(source_path, stype) try: event = ShoppingEvent(source_path, stype) with open(pickpath, 'wb') as f: pickle.dump(event, f) - print(bname) + print(evtname) except Exception as e: errEvents.append(source_path) - print(f"Error: {bname}, {e}") + print(f"Error: {evtname}, {e}") # k += 1 # if k==1: # break - - errfile = os.path.join(resultPath, 'error_events.txt') - with open(errfile, 'a', encoding='utf-8') as f: + + errfile = Path(eventDataPath).parent / 'error_events.txt' + with open(str(errfile), 'a', encoding='utf-8') as f: for line in errEvents: f.write(line + '\n') @@ -185,7 +183,7 @@ def one2n_pr(evtDicts, pattern=1): elif bcd!=event.barcode and simi!=maxsim: tnsimi.append(simi) tnevents.append(evtname) - elif bcd!=event.barcode and simi==maxsim: + elif bcd!=event.barcode and simi==maxsim and event.barcode in evt_barcodes: fpsimi.append(simi) fpevents.append(evtname) else: @@ -216,7 +214,11 @@ def one2n_pr(evtDicts, pattern=1): ax.plot(Thresh, NRecall, 'c', label='Recall_Neg: TN/TNFN') ax.set_xlim([0, 1]) ax.set_ylim([0, 1]) - ax.grid(True) + + ax.set_xticks(np.arange(0, 1, 0.1)) + ax.set_yticks(np.arange(0, 1, 0.1)) + ax.grid(True, linestyle='--') + ax.set_title('1:n Precise & Recall') ax.set_xlabel(f"Event Num: {len(one2nFile)}") ax.legend() @@ -241,7 +243,7 @@ def one2n_pr(evtDicts, pattern=1): def main(): '''1. 生成事件字典并保存至 eventDataPath, 只需运行一次 ''' - init_eventdict(eventSourcePath, stype="realtime") # 'source', 'data', 'realtime' + init_eventDict(eventSourcePath, eventDataPath, stype="realtime") # 'source', 'data', 'realtime' # for pfile in os.listdir(eventDataPath): # evt = os.path.splitext(pfile)[0].split('_') @@ -264,7 +266,7 @@ def main(): if __name__ == '__main__': - eventSourcePath = r"\\192.168.1.28\share\测试视频数据以及日志\全实时测试\V12\2025-2-27" + eventSourcePath = r"\\192.168.1.28\share\测试视频数据以及日志\全实时测试\V12\2025-3-4_2" resultPath = r"\\192.168.1.28\share\测试视频数据以及日志\全实时测试\testing" eventDataPath = os.path.join(resultPath, "evtobjs_wang") diff --git a/contrast/one2one_contrast.py b/contrast/one2one_contrast.py index b90b8b8..fdce5f1 100644 --- a/contrast/one2one_contrast.py +++ b/contrast/one2one_contrast.py @@ -58,6 +58,7 @@ from feat_extract.inference import FeatsInterface from utils.event import ShoppingEvent, save_data from genfeats import gen_bcd_features from event_test import calc_simil +from one2n_contrast import init_eventDict @@ -271,8 +272,12 @@ def build_std_evt_dict(): evtDict = {} for evtname, barcode in evtList: evtpath = os.path.join(eventDataPath, evtname+'.pickle') - with open(evtpath, 'rb') as f: - evtdata = pickle.load(f) + try: + with open(evtpath, 'rb') as f: + evtdata = pickle.load(f) + except Exception as e: + print(evtname) + evtDict[evtname] = evtdata return evtList, evtDict, stdDict @@ -300,7 +305,8 @@ def one2SN_pr(evtList, evtDict, stdDict): event = evtDict[evtname] ## 无轨迹判断 if len(event.front_feats)+len(event.back_feats)==0: - print(evtname) + errorFile_one2SN.append(evtname) + print(f"No trajectory: {evtname}") continue barcodes, similars = [], [] @@ -351,10 +357,10 @@ def one2SN_pr(evtList, evtDict, stdDict): FNX = sum(np.array(fn_simi) < th) TNX = sum(np.array(tn_simi) < th) PPreciseX.append(TPX/(TPX+FPX+1e-6)) - PRecallX.append(TPX/(len(tp_simi)+len(fn_simi)+1e-6)) + PRecallX.append(TPX/(TPX+FNX+1e-6)) NPreciseX.append(TNX/(TNX+FNX+1e-6)) - NRecallX.append(TNX/(len(tn_simi)+len(fp_simi)+1e-6)) + NRecallX.append(TNX/(TNX+FPX+1e-6)) fig, ax = plt.subplots() ax.plot(Thresh, PPreciseX, 'r', label='Precise_Pos: TP/TPFP') @@ -363,9 +369,11 @@ def one2SN_pr(evtList, evtDict, stdDict): ax.plot(Thresh, NRecallX, 'c', label='Recall_Neg: TN/TNFN') ax.set_xlim([0, 1]) ax.set_ylim([0, 1]) - ax.grid(True) + ax.set_xticks(np.arange(0, 1, 0.1)) + ax.set_yticks(np.arange(0, 1, 0.1)) + ax.grid(True, linestyle='--') ax.set_title('1:SN Precise & Recall') - ax.set_xlabel(f"Event Num: {len(evtList)}") + ax.set_xlabel(f"Event Num: {len(tp_events) + len(fn_events)}") ax.legend() plt.show() ## ============================= 1:N 展厅 直方图''' @@ -403,10 +411,14 @@ def one2one_simi(evtList, evtDict, stdDict): '''======2 计算事件、标准特征集相似度 ==================''' rltdata = [] + errorFile_one2one = [] for i in range(len(mergePairs)): evtname, stdbcd, label = mergePairs[i] event = evtDict[evtname] - if len(event.feats_compose)==0: continue + if len(event.feats_compose)==0: + errorFile_one2one.append(evtname) + + continue stdfeat = stdDict[stdbcd] # float32 @@ -418,11 +430,16 @@ def one2one_simi(evtList, evtDict, stdDict): '''================ float32、16、int8 精度比较与存储 =============''' # data_precision_compare(stdfeat, evtfeat, mergePairs[i], save=True) - - return rltdata + + errorFile_one2one = list(set(errorFile_one2one)) + + return rltdata, errorFile_one2one -def one2one_pr(rltdata): +def one2one_pr(evtList, evtDict, stdDict): + + rltdata, errorFile_one2one = one2one_simi(evtList, evtDict, stdDict) + Same, Cross = [], [] for label, stdbcd, evtname, simi_mean, simi_max, simi_mft in rltdata: if label == "same": @@ -451,27 +468,41 @@ def one2one_pr(rltdata): Correct = [] Thresh = np.linspace(-0.2, 1, 100) for th in Thresh: - TP = np.sum(Same > th) - FN = TPFN - TP + TP = np.sum(Same >= th) + FN = np.sum(Same < th) + # FN = TPFN - TP + TN = np.sum(Cross < th) - FP = TNFP - TN + FP = np.sum(Cross >= th) + # FP = TNFP - TN - Recall_Pos.append(TP/TPFN) - Recall_Neg.append(TN/TNFP) + Precision_Pos.append(TP/(TP+FP+1e-6)) Precision_Neg.append(TN/(TN+FN+1e-6)) + Recall_Pos.append(TP/(TP+FN+1e-6)) + Recall_Neg.append(TN/(TN+FP+1e-6)) + + # Recall_Pos.append(TP/TPFN) + # Recall_Neg.append(TN/TNFP) + + Correct.append((TN+TP)/(TPFN+TNFP)) fig, ax = plt.subplots() - ax.plot(Thresh, Correct, 'r', label='Correct: (TN+TP)/(TPFN+TNFP)') + + ax.plot(Thresh, Precision_Pos, 'r', label='Precision_Pos: TP/(TP+FP)') ax.plot(Thresh, Recall_Pos, 'b', label='Recall_Pos: TP/TPFN') ax.plot(Thresh, Recall_Neg, 'g', label='Recall_Neg: TN/TNFP') - ax.plot(Thresh, Precision_Pos, 'c', label='Precision_Pos: TP/(TP+FP)') + ax.plot(Thresh, Correct, 'c', label='Correct: (TN+TP)/(TPFN+TNFP)') ax.plot(Thresh, Precision_Neg, 'm', label='Precision_Neg: TN/(TN+FN)') ax.set_xlim([0, 1]) ax.set_ylim([0, 1]) - ax.grid(True) + + ax.set_xticks(np.arange(0, 1, 0.1)) + ax.set_yticks(np.arange(0, 1, 0.1)) + ax.grid(True, linestyle='--') + ax.set_title('PrecisePos & PreciseNeg') ax.set_xlabel(f"Same Num: {TPFN}, Cross Num: {TNFP}") ax.legend() @@ -506,23 +537,17 @@ def gen_eventdict(sourcePath, saveimg=True): ## 兼容事件的两种情况:文件夹 和 Yolo-Resnet-Tracker 的输出 if os.path.isfile(source_path): bname, ext = os.path.splitext(bname) - evt = bname.split("_") + # evt = bname.split("_") evt = bname.split('_') condt = len(evt)>=2 and evt[-1].isdigit() and len(evt[-1])>=10 if not condt: continue - # bname = r"20241126-135911-bdf91cf9-3e9a-426d-94e8-ddf92238e175_6923555210479" - # source_path = os.path.join(evtpath, bname) - + # 如果已完成事件生成,则不执行 pickpath = os.path.join(eventDataPath, f"{bname}.pickle") if os.path.isfile(pickpath): continue - # event = ShoppingEvent(source_path, stype=source_type) - # with open(pickpath, 'wb') as f: - # pickle.dump(event, f) - try: event = ShoppingEvent(source_path, stype=source_type) # save_data(event, resultPath) @@ -538,16 +563,44 @@ def gen_eventdict(sourcePath, saveimg=True): # if k==1: # break - errfile = os.path.join(resultPath, 'error_events.txt') # with open(errfile, 'w', encoding='utf-8') as f: # for line in errEvents: # f.write(line + '\n') -def init_std_evt_dict(): - '''==== 0. 生成事件列表和对应的 Barcodes列表 ===========''' - bcdList, event_spath = [], [] +# def init_std_evt_dict(): +# '''==== 0. 生成事件列表和对应的 Barcodes列表 ===========''' +# bcdList, event_spath = [], [] +# for evtname in os.listdir(eventSourcePath): +# bname, ext = os.path.splitext(evtname) + +# ## 处理事件的两种情况:文件夹 和 Yolo-Resnet-Tracker 的输出 +# fpath = os.path.join(eventSourcePath, evtname) +# if os.path.isfile(fpath) and (ext==".pkl" or ext==".pickle"): +# evt = bname.split('_') +# elif os.path.isdir(fpath): +# evt = evtname.split('_') +# else: +# continue + +# if len(evt)>=2 and evt[-1].isdigit() and len(evt[-1])>=10: +# bcdList.append(evt[-1]) +# event_spath.append(fpath) + +# '''==== 1. 生成标准特征集, 只需运行一次, 在 genfeats.py 中实现 ===========''' +# bcdSet = set(bcdList) +# gen_bcd_features(stdSamplePath, stdBarcodePath, stdFeaturePath, bcdSet) +# print("stdFeats have generated and saved!") + +# '''==== 2. 生成事件字典, 只需运行一次 ===============''' +# gen_eventdict(event_spath) +# print("eventList have generated and saved!") + +def get_evtList(): + + '''==== 0. 生成事件列表和对应的 Barcodes 集合 ===========''' + bcdList, evtpaths = [], [] for evtname in os.listdir(eventSourcePath): bname, ext = os.path.splitext(evtname) @@ -562,46 +615,73 @@ def init_std_evt_dict(): if len(evt)>=2 and evt[-1].isdigit() and len(evt[-1])>=10: bcdList.append(evt[-1]) - event_spath.append(fpath) - - '''==== 1. 生成标准特征集, 只需运行一次, 在 genfeats.py 中实现 ===========''' - bcdSet = set(bcdList) - gen_bcd_features(stdSamplePath, stdBarcodePath, stdFeaturePath, bcdSet) - print("stdFeats have generated and saved!") - - '''==== 2. 生成事件字典, 只需运行一次 ===============''' - gen_eventdict(event_spath) - print("eventList have generated and saved!") + evtpaths.append(fpath) + bcdSet = set(bcdList) + + return evtpaths, bcdSet -def test_one2one(): +# def init_stdDict(): +# evtpaths, bcdSet = get_evtList() +# gen_bcd_features(stdSamplePath, stdBarcodePath, stdFeaturePath, bcdSet) +# print("stdFeats have generated and saved!") + + +# def init_evtDict(): +# '''==== 0. 生成事件列表和对应的 Barcodes列表 ===========''' +# bcdList, event_spath = [], [] +# for evtname in os.listdir(eventSourcePath): +# bname, ext = os.path.splitext(evtname) + +# ## 处理事件的两种情况:文件夹 和 Yolo-Resnet-Tracker 的输出 +# fpath = os.path.join(eventSourcePath, evtname) +# if os.path.isfile(fpath) and (ext==".pkl" or ext==".pickle"): +# evt = bname.split('_') +# elif os.path.isdir(fpath): +# evt = evtname.split('_') +# else: +# continue + +# if len(evt)>=2 and evt[-1].isdigit() and len(evt[-1])>=10: +# bcdList.append(evt[-1]) +# event_spath.append(fpath) + +# '''==== 2. 生成事件字典, 只需运行一次 ===============''' +# gen_eventdict(event_spath) +# print("eventList have generated and saved!") + + + + + +def test_one2one_one2SN(): '''1:1性能评估''' - # 1. 只需运行一次,生成事件字典和相应的标准特征库字典 - # init_std_evt_dict() + # evtpaths, bcdSet = get_evtList() - # 2. 基于事件barcode集和标准库barcode交集构造事件集合 - evtList, evtDict, stdDict = build_std_evt_dict() + '''=== 1. 只需运行一次,生成事件对应的标准特征库字典,如已生成,无需运行 ====''' + # gen_bcd_features(stdSamplePath, stdBarcodePath, stdFeaturePath, eventSourcePath) - rltdata = one2one_simi(evtList, evtDict, stdDict) + '''==== 2. 生成事件字典, 只需运行一次 ====================''' - one2one_pr(rltdata) + # date_ = ['2025-3-4_1', '2025-3-5_1', '2025-3-5_2'] + # for dt in date_: + # evtpaths = os.path.join(eventSourcePath, dt) + # init_eventDict(evtpaths, eventDataPath, source_type) + init_eventDict(eventSourcePath, eventDataPath, source_type) + + -def test_one2SN(): - '''1:SN性能评估''' - - # 1. 只需运行一次,生成事件字典和相应的标准特征库字典 - # init_std_evt_dict() - - # 2. 事件barcode集和标准库barcode求交集 + '''==== 2. 基于事件barcode集和标准库barcode交集构造事件集合 =========''' evtList, evtDict, stdDict = build_std_evt_dict() - - one2SN_pr(evtList, evtDict, stdDict) + one2one_pr(evtList, evtDict, stdDict) + one2SN_pr(evtList, evtDict, stdDict) + if __name__ == '__main__': ''' 共7个地址: @@ -627,32 +707,30 @@ if __name__ == '__main__': stdSamplePath = r"\\192.168.1.28\share\数据\已完成数据\比对数据\barcode\all_totalBarocde\totalBarcode" stdBarcodePath = r"\\192.168.1.28\share\测试视频数据以及日志\全实时测试\testing\bcdpath" - stdFeaturePath = r"\\192.168.1.28\share\测试视频数据以及日志\全实时测试\testing\stdfeats" + stdFeaturePath = r"\\192.168.1.28\share\数据\已完成数据\比对数据\barcode\all_totalBarocde\features_json\v11_barcode_0304" if not os.path.exists(stdBarcodePath): os.makedirs(stdBarcodePath) if not os.path.exists(stdFeaturePath): os.makedirs(stdFeaturePath) + '''source_type: + "source": eventSourcePath 为 Yolo-Resnet-Tracker 输出的 pickle 文件 + "data": 基于事件切分的原 data 文件版本 + "realtime": 全实时生成的 data 文件 ''' - source_type: - "source": eventSourcePath 为 Yolo-Resnet-Tracker 输出的 pickle 文件 - "data": eventSourcePath 为 包含 data 文件的文件夹 - ''' - source_type = 'realtime' # 'source', 'data', 'realtime' - eventSourcePath = r"\\192.168.1.28\share\测试视频数据以及日志\全实时测试\V12\2025-2-21\比对\video" - + source_type = 'realtime' # 'source', 'data', 'realtime' + eventSourcePath = r"\\192.168.1.28\share\测试视频数据以及日志\全实时测试\V12\基准数据集\2025-3-4_1" resultPath = r"\\192.168.1.28\share\测试视频数据以及日志\全实时测试\testing" - eventDataPath = os.path.join(resultPath, "evtobjs_data") - similPath = os.path.join(resultPath, "simidata_data") + + eventDataPath = os.path.join(resultPath, "evtobjs_0304_1") + similPath = os.path.join(resultPath, "simidata_0304_1") if not os.path.exists(eventDataPath): os.makedirs(eventDataPath) if not os.path.exists(similPath): os.makedirs(similPath) - test_one2one() - - test_one2SN() + test_one2one_one2SN() diff --git a/contrast/onsite_contrast_pr.py b/contrast/onsite_contrast_pr.py index 691a5ee..e228bf6 100644 --- a/contrast/onsite_contrast_pr.py +++ b/contrast/onsite_contrast_pr.py @@ -109,24 +109,31 @@ def test_compare(): plot_pr_curve(simiList) -def contrast_pr(paths): +def contrast_pr(evtPaths): ''' 1:1 - ''' - paths = Path(paths) - + ''' evtpaths = [] - for p in paths.iterdir(): + # date_ = ['2025-3-4_1', '2025-3-5_1', '2025-3-5_2'] + # for dt in date_: + # paths = Path(evtPaths) / dt + abc = [] + for p in Path(evtPaths).iterdir(): condt1 = p.is_dir() condt2 = len(p.name.split('_'))>=2 - condt3 = len(p.name.split('_')[-1])>8 + condt3 = len(p.name.split('_')[-1])>=8 condt4 = p.name.split('_')[-1].isdigit() if condt1 and condt2 and condt3 and condt4: evtpaths.append(p) + elif p.is_dir(): + abc.append(p.stem) + # evtpaths = [p for p in paths.iterdir() if p.is_dir() and len(p.name.split('_'))>=2 and len(p.name.split('_')[-1])>8] # evtpaths = [p for p in paths.iterdir() if p.is_dir()] + alg_times = [] + events, similars = [], [] ##===================================== 扫A放A, 扫A放B场景() one2oneAA, one2oneAB = [], [] @@ -157,7 +164,7 @@ def contrast_pr(paths): barcode = path.stem.split('_')[-1] datapath = path.joinpath('process.data') - if not barcode.isdigit() or len(barcode)<10: continue + if not barcode.isdigit() or len(barcode)<8: continue if not datapath.is_file(): continue bcdList.append(barcode) @@ -175,10 +182,15 @@ def contrast_pr(paths): if len(one2one)+len(one2SN)+len(one2n) == 0: errorFile.append(path.stem) + + dtime = SimiDict["algroStartToEnd"] + if dtime >= 0: + alg_times.append((dtime, path.stem)) '''================== 0. 1:1 ===================''' barcodes, similars = [], [] + barcodes_ = [] for dt in one2one: one2onePath.append((path.stem)) if dt['similar']==0: @@ -186,6 +198,12 @@ def contrast_pr(paths): continue barcodes.append(dt['barcode']) similars.append(dt['similar']) + + + barcodes_.append(path.stem) + + + if len(barcodes)==len(similars) and len(barcodes)!=0: @@ -216,6 +234,8 @@ def contrast_pr(paths): _fp_events.append(path.stem) else: errorFile_one2one.append(path.stem) + elif len(one2SN)+len(one2n) == 0: + errorFile_one2one.append(path.stem) '''================== 2. 取出场景下的 1 : Small N ===================''' @@ -223,6 +243,7 @@ def contrast_pr(paths): for dt in one2SN: barcodes.append(dt['barcode']) similars.append(dt['similar']) + if len(barcodes)==len(similars) and len(barcodes)!=0: ## 扫A放A, 扫A放B场景 @@ -231,11 +252,11 @@ def contrast_pr(paths): one2SNAA.extend(simAA) one2SNAB.extend(simAB) + one2SNPath.append(path.stem) if len(simAA)==0: - one2SNPath1.append(path.stem) - - + errorFile_one2SN.append(path.stem) + ## 相似度排序,barcode相等且排名第一为TP,适用于多的barcode相似度比较 max_idx = similars.index(max(similars)) max_sim = similars[max_idx] @@ -256,6 +277,7 @@ def contrast_pr(paths): fp_events.append(path.stem) else: errorFile_one2SN.append(path.stem) + @@ -266,10 +288,17 @@ def contrast_pr(paths): evt_barcodes.append(dt["barcode"]) evt_similars.append(dt["similar"]) evt_types.append(dt["type"]) - - if len(events)==len(evt_barcodes) and len(evt_barcodes)==len(evt_similars) \ - and len(evt_similars)==len(evt_types) and len(events)>0: + + + if len(events)==len(evt_barcodes)==len(evt_similars)==len(evt_types) and len(events)>0: + if not barcode in evt_barcodes: + errorFile_one2n.append(path.stem) + continue + + if len(barcodes_): + print("do") + one2nPath.append(path.stem) maxsim = evt_similars[evt_similars.index(max(evt_similars))] for i in range(len(one2n)): @@ -324,9 +353,9 @@ def contrast_pr(paths): _TN = sum(np.array(one2oneAB) < th) _PPrecise.append(_TP/(_TP+_FP+1e-6)) - _PRecall.append(_TP/(len(one2oneAA)+1e-6)) + _PRecall.append(_TP/(_TP+_FN+1e-6)) _NPrecise.append(_TN/(_TN+_FN+1e-6)) - _NRecall.append(_TN/(len(one2oneAB)+1e-6)) + _NRecall.append(_TN/(_TN+_FP+1e-6)) '''===================================== 1:SN 均值''' TP_ = sum(np.array(one2SNAA) >= th) @@ -346,10 +375,10 @@ def contrast_pr(paths): FNX = sum(np.array(fn_simi) < th) TNX = sum(np.array(tn_simi) < th) PPreciseX.append(TPX/(TPX+FPX+1e-6)) - PRecallX.append(TPX/(len(tp_simi)+len(fn_simi)+1e-6)) + PRecallX.append(TPX/(TPX+FNX+1e-6)) NPreciseX.append(TNX/(TNX+FNX+1e-6)) - NRecallX.append(TNX/(len(tn_simi)+len(fp_simi)+1e-6)) + NRecallX.append(TNX/(TNX+FPX+1e-6)) '''===================================== 1:n''' @@ -359,13 +388,19 @@ def contrast_pr(paths): TN = sum(np.array(tnsimi) < th) PPrecise.append(TP/(TP+FP+1e-6)) - PRecall.append(TP/(len(tpsimi)+len(fnsimi)+1e-6)) + PRecall.append(TP/(TP+FN+1e-6)) NPrecise.append(TN/(TN+FN+1e-6)) - NRecall.append(TN/(len(tnsimi)+len(fpsimi)+1e-6)) + NRecall.append(TN/(TN+FP+1e-6)) + + algtime = [] + for tm, _ in alg_times: + algtime.append(tm) + fig, ax = plt.subplots() + ax.hist(np.array(algtime), bins=100, edgecolor='black') + ax.set_title('Algorthm Spend Time') + ax.set_xlabel(f"Event Num: {len(alg_times)}") + plt.show() - - - '''1. ============================= 1:1 最大值方案 曲线''' fig, ax = plt.subplots() ax.plot(Thresh, _PPrecise, 'r', label='Precise_Pos: TP/TPFP') @@ -374,7 +409,9 @@ def contrast_pr(paths): ax.plot(Thresh, _NRecall, 'c', label='Recall_Neg: TN/TNFN') ax.set_xlim([0, 1]) ax.set_ylim([0, 1]) - ax.grid(True) + ax.set_xticks(np.arange(0, 1, 0.1)) + ax.set_yticks(np.arange(0, 1, 0.1)) + ax.grid(True, linestyle='--') ax.set_title('1:1 Precise & Recall') ax.set_xlabel(f"Event Num: {len(one2oneAA)+len(one2oneAB)}") ax.legend() @@ -393,30 +430,30 @@ def contrast_pr(paths): '''2. ============================= 1:1 均值方案 曲线''' - fig, ax = plt.subplots() - ax.plot(Thresh, PPrecise_, 'r', label='Precise_Pos: TP/TPFP') - ax.plot(Thresh, PRecall_, 'b', label='Recall_Pos: TP/TPFN') - ax.plot(Thresh, NPrecise_, 'g', label='Precise_Neg: TN/TNFP') - ax.plot(Thresh, NRecall_, 'c', label='Recall_Neg: TN/TNFN') - ax.set_xlim([0, 1]) - ax.set_ylim([0, 1]) - ax.grid(True) - ax.set_title('1:1 Precise & Recall') - ax.set_xlabel(f"Event Num: {len(one2SNAA)}") - ax.legend() - plt.show() - ## ============================= 1:1 均值方案 直方图''' - fig, axes = plt.subplots(2, 1) - axes[0].hist(np.array(one2SNAA), bins=60, edgecolor='black') - axes[0].set_xlim([-0.2, 1]) - axes[0].set_title('AA') - axes[0].set_xlabel(f"Event Num: {len(one2SNAA)}") + # fig, ax = plt.subplots() + # ax.plot(Thresh, PPrecise_, 'r', label='Precise_Pos: TP/TPFP') + # ax.plot(Thresh, PRecall_, 'b', label='Recall_Pos: TP/TPFN') + # ax.plot(Thresh, NPrecise_, 'g', label='Precise_Neg: TN/TNFP') + # ax.plot(Thresh, NRecall_, 'c', label='Recall_Neg: TN/TNFN') + # ax.set_xlim([0, 1]) + # ax.set_ylim([0, 1]) + # ax.grid(True) + # ax.set_title('1:1 Precise & Recall') + # ax.set_xlabel(f"Event Num: {len(one2SNAA)}") + # ax.legend() + # plt.show() + # ## ============================= 1:1 均值方案 直方图''' + # fig, axes = plt.subplots(2, 1) + # axes[0].hist(np.array(one2SNAA), bins=60, edgecolor='black') + # axes[0].set_xlim([-0.2, 1]) + # axes[0].set_title('AA') + # axes[0].set_xlabel(f"Event Num: {len(one2SNAA)}") - axes[1].hist(np.array(one2SNAB), bins=60, edgecolor='black') - axes[1].set_xlim([-0.2, 1]) - axes[1].set_title('BB') - axes[1].set_xlabel(f"Event Num: {len(one2SNAB)}") - plt.show() + # axes[1].hist(np.array(one2SNAB), bins=60, edgecolor='black') + # axes[1].set_xlim([-0.2, 1]) + # axes[1].set_title('BB') + # axes[1].set_xlabel(f"Event Num: {len(one2SNAB)}") + # plt.show() ''''3. ============================= 1:SN 曲线''' fig, ax = plt.subplots() @@ -426,7 +463,9 @@ def contrast_pr(paths): ax.plot(Thresh, NRecallX, 'c', label='Recall_Neg: TN/TNFN') ax.set_xlim([0, 1]) ax.set_ylim([0, 1]) - ax.grid(True) + ax.set_xticks(np.arange(0, 1, 0.1)) + ax.set_yticks(np.arange(0, 1, 0.1)) + ax.grid(True, linestyle='--') ax.set_title('1:SN Precise & Recall') ax.set_xlabel(f"Event Num: {len(one2SNAA)}") ax.legend() @@ -456,7 +495,9 @@ def contrast_pr(paths): ax.plot(Thresh, NRecall, 'c', label='Recall_Neg: TN/TNFN') ax.set_xlim([0, 1]) ax.set_ylim([0, 1]) - ax.grid(True) + ax.set_xticks(np.arange(0, 1, 0.1)) + ax.set_yticks(np.arange(0, 1, 0.1)) + ax.grid(True, linestyle='--') ax.set_title('1:n Precise & Recall') ax.set_xlabel(f"Event Num: {len(tpsimi)+len(fnsimi)}") ax.legend() @@ -473,11 +514,11 @@ def contrast_pr(paths): axes[1, 0].set_xlim([-0.2, 1]) axes[1, 0].set_title(f'TN({len(tnsimi)})') axes[1, 1].hist(fnsimi, bins=60, edgecolor='black') + axes[1, 1].set_xlim([-0.2, 1]) axes[1, 1].set_title(f'FN({len(fnsimi)})') plt.show() - # fpsnErrFile = str(paths.joinpath("one2SN_Error.txt")) # with open(fpsnErrFile, "w") as file: # for item in fp_events: @@ -487,27 +528,24 @@ def contrast_pr(paths): # with open(fpErrFile, "w") as file: # for item in fpevents: # file.write(item + "\n") - - - + # bcdSet = set(bcdList) - # one2nErrFile = str(paths.joinpath("one_2_Small_n_Error.txt")) - # with open(one2nErrFile, "w") as file: - # for item in fnevents: - # file.write(item + "\n") + one2nErrFile = os.path.join(evtPaths, "one_2_Small_n_Error.txt") + with open(one2nErrFile, "w") as file: + for item in fnevents: + file.write(item + "\n") - # one2NErrFile = str(paths.joinpath("one_2_Big_N_Error.txt")) - # with open(one2NErrFile, "w") as file: - # for item in fn_events: - # file.write(item + "\n") + one2NErrFile = os.path.join(evtPaths, "one_2_Big_N_Error.txt") + with open(one2NErrFile, "w") as file: + for item in fn_events: + file.write(item + "\n") print('Done!') - if __name__ == "__main__": - evtpaths = r"\\192.168.1.28\share\测试视频数据以及日志\全实时测试\V12\2025-2-26_2" + evtpaths = r"\\192.168.1.28\share\测试视频数据以及日志\全实时测试\V12\2025-3-3" contrast_pr(evtpaths) diff --git a/contrast/utils/__pycache__/event.cpython-39.pyc b/contrast/utils/__pycache__/event.cpython-39.pyc index f5d9da14afb54b5ac93021622a4c6e14d663762f..9ab95b60cd1bea818e22c0ab0bd03056cd01f104 100644 GIT binary patch delta 3333 zcma);e{fXQ7037OkL=scl0Zz|01jQo1bGo+5Q$C((N;u4AqoVjFJOGxeVaV8zk1$F zn!w0*R3OxX&}X%^j)Vx2tI814?Gc|SU^wili)8`)l>&qu*&Y!z_`N>qtDw#Q} zV5Y7X6Vbtin-z* z(=M1!4;kqpljs(VuW|Z|qo(aevZmqKvNA6kHbyO5Vv-)R3Ikd#X_)B&U^md_mg~0P zG=Lcrdk2f95?gJx(vBWY8+q(Vk6}TXTX#RIOL7j>)VG%PC0R1^CQNr)wxh@9nlyxY z2{T4G1JXl!WC-5X8>Gea_Z5eoK7YoAI)CfKJXDXe4MzDn;wK8GRQZDo86)HvXDi>Y z|4`YY$IKD4;5>j_^u=!87u}0Z>;w*Dy4Z-7F^ghUo26pGxd%pu?!LV&rQGEHdD*A; zBMQ_A$k?@zWPe9HZulpZcmqX`7YNqX;Amv>Gdg3!GzK$Q*UNn50_| z>i-FJMQ2Y%-5=YP8P(kj%kL@sm7MkK;ES-tA&MgRRioJS7(@Tm{9-E2)zg2e{c(t= z7Nn;z{2b5%Jk0nL|J&n?fRa!ugDc(&mXC9TkWq93I0=*in9(WV%K#2H`U-Fw_!_X# z*+-W2&2Hb%il^B`Yw?Th8JHs#=<7f=4a&#^`UX%BJPSMzNFG$HF$moR@B*L$3)iP_ zLH8UG1FB{Ec{Cpcq+qI5doXaAm50!y1HHgQKp#VEs3riNhxTRQMc~`OE5J*@B=9Qm z9pE(p5vA7wKalR}RjrNHT9cp{+}%-mf7N=$yc?D{^nF+7S?cDaM1!V!f{PEaIVu6N z^$bf|$lohuFN{1`e1K%R$8is(UcIF{NBY_vn&J;%v^|si%axARj|7dIVJZbGJ8DI9 zJ%CcxqH-9|4ZJN1E5J zkjU*oTcX(oNjA~szS-Q_i?vBI13}SlkdN?G+ZZwNC?QNtDTap&j;{dQtMLW0p~Z6s zhBj5u3}v~j!`L%jaCf&{UvrkVw8_o4Y-qj&gYf9s=$Ia|^6iU1VFh=esJz>xZohhiwoX@V%)Iu{~;-8sMp!l6Au$(Ehu!@y|1mcV8Qk%&<{Ke z;6x$RI++0SlHf_g9P=iYCB)CSbH`r(w;LI%65kxZQC+7VP`9YHYE<2%Y6OdPz-?EX z+<&xvn4R6jAZw3AjJ6WLG{a)!uhGPMTF%fy9|B({{Ru;T^B-*m2^-b^;+ZNjr98$FUPo0Ea?|;*vNJyQD1&liA%_d+@$= zW)kc~VWsf+R9aQHL8{7!@M>|(D{NatOC_LETUs?~zf|q5+D4)Ur4K0m1bhI_|6C{Q zSXkPh&%O8D*LmG}I{&ZiGOw*I6XU-N!>>+FOrBjtAzQj6VsJym9=&Uxk#sTUI{1B%~&>Dne{_$lOGm* zFA6p6f*nl1dcD1`rrQeSm3&Oz7le^+zT70jPRFrFO6KX*Ox}w;-6<{J(XAYfT(j1d zeX<*!#MCtFV3x7CF+2KgK1Mn3B_i+Z^-{-qYg9M;$NX}12Rv)UaXuH_jzb&-s+iV% zEXey6QEDkrr5xP~B~Pp4o!3}f)OS1AT@Qay7a(&7AjtyzA&mnEfIEOk0COOpE@oJwM^$JO`XS2e7dxv|Jj%T-F%(GQf>UEF81 zFl(OSSmtzNoG1$+kD=!nA3}JZ@lk7)Dmgz42gFTxqF>B4pREs7qN6~oDF_Qe(WfR%Zn$j!BA2Bx^jUsev&e60|CkANTfDL-$m=v5 z#{z9sgT1}o-@|t4%VkE?#`3dTdA+yxZI`nYOo*RC<5E_ct_N|3htRLi^{yJ$U5m4& z$_ZoC;3y|f@H;&V^aBOPU+SyZycw^ZK^u`kj{{Etj{;8uPXSK@C{px&;2GdW;7ZFK zZ*v#&-njTIt2i4?io67MNs&6FhEHp7D*XuP0DcU-0*F(Mo6w8{KLvgU*ua(h)2rxv z89*_muK-^K?g3mN1AGm*8_33LOi8{YXiGvi(y+7PPWm~ybk;dcmwz~@FwsZ z;I{yrM!y3ZzFNN6ODJjT@Vc&*jcgL{O!1s;^@rDOvHU%lehVP>k60S#>VPm`RHntS zC>%5k$bIf*$w`3r^hLa`PVQjZgT_yK zqCnzS0zhn&#hPN93y_R~ApH$!2Raz2+@W8_{Uu3ZJ)NpjP>$sNaTaRYTbKZ=(LaEH z#yEA1y{s&~jjqdPpns$JAK<^hyTE(E|A6;_cYyx`Fe+UHS{b@oTrr7n3p)x*{-jr` znv199lVNN(T?^&DSf`NDk9IfX<@#v#s-!m=d@D~ zdc`CX7ZO_%Rw)ep9XJ9=(GZKn#QaoEdwj%XF(~`Swn!jeuY}Qzd5HZy0wpicHDptW zu)0oikPQj935SIv@*L#6Xh>UowRPxHa~nrpv3NA3&-2`+!L*k9E~xo|JMB@HIBBaY zKG;{TK=ly-55JUrLS-T3Jk0`F I-ELc-0)%52a{vGU diff --git a/contrast/utils/event.py b/contrast/utils/event.py index 34c83a0..e65ff1d 100644 --- a/contrast/utils/event.py +++ b/contrast/utils/event.py @@ -82,7 +82,11 @@ def array2list(bboxes): class ShoppingEvent: def __init__(self, eventpath, stype="data"): - '''stype: str, 'source', 'data', 'realtime', 共三种 ''' + '''stype: str, 'source', 'data', 'realtime', 共三种 + source: 前后摄视频经 pipeline 生成的文件 + data: 基于事件切分的原 data 文件版本 + realtime: 全实时生成的 data 文件 + ''' self.eventpath = eventpath self.evtname = str(Path(eventpath).stem) diff --git a/dataset/multi-trajs.py b/dataset/multi-trajs.py new file mode 100644 index 0000000..107f408 --- /dev/null +++ b/dataset/multi-trajs.py @@ -0,0 +1,72 @@ +# -*- coding: utf-8 -*- +""" +Created on Mon Mar 10 09:33:35 2025 +基准数据集筛选,选取tracking输出多个轨迹的事件 + +@author: ym +""" +import os +import numpy as np + +import sys +sys.path.append(r"D:\DetectTracking") +from tracking.utils.read_data import extract_data, read_tracking_output_realtime + + +def get_multitraj_file(spath, pattern): + multi_traj_events = [] + n = 0 + for evtname in os.listdir(spath): + name, ext = os.path.splitext(evtname) + eventpath = os.path.join(spath, evtname) + + evt = name.split('_') + condt = len(evt)>=2 and evt[-1].isdigit() and len(evt[-1])>=8 + if not condt: continue + if not os.path.isdir(eventpath): continue + + trackingboxes = [] + for dataname in os.listdir(eventpath): + if os.path.splitext(dataname)[-1] in [".jpg", ".png"]: + continue + + datapath = os.path.join(eventpath, dataname) + if not os.path.isfile(datapath): continue + CamerType = dataname.split('_')[0] + + if pattern=="realtime" and dataname.find("_tracking_output.data")>0: + trackingboxes, trackingfeats, tracking_outboxes, tracking_outfeats = read_tracking_output_realtime(datapath) + if pattern=="evtsplit" and dataname.find("_track.data")>0: + bboxes, ffeats, trackerboxes, trackerfeats, trackingboxes, trackingfeats = extract_data(datapath) + + if len(trackingboxes)>=2: + multi_traj_events.append(evtname) + n += 1 + print(f"{n}: {evtname}") + break + + + multi_traj_file = os.path.join(spath, "multi_traj_file.txt") + with open(multi_traj_file, "w") as file: + for item in multi_traj_events: + file.write(item + "\n") + +def main(): + spaths = [r"\\192.168.1.28\share\测试视频数据以及日志\各模块测试记录\比对测试\1212", + r"\\192.168.1.28\share\测试视频数据以及日志\各模块测试记录\比对测试\1216", + r"\\192.168.1.28\share\测试视频数据以及日志\各模块测试记录\比对测试\1218", + r"\\192.168.1.28\share\测试视频数据以及日志\各模块测试记录\比对测试\202412" + ] + + pattern = "evtsplit" # realtime # 全实时版、事件切分版数据读取方式 + for spath in spaths: + get_multitraj_file(spath, pattern) + + + + + + + +if __name__ == '__main__': + main() \ No newline at end of file diff --git a/pipeline.py b/pipeline.py index 99acf22..df0fb3e 100644 --- a/pipeline.py +++ b/pipeline.py @@ -166,12 +166,15 @@ def pipeline( '''================= 4. tracking =================''' '''(1) 生成用于 tracking 模块的 boxes、feats''' + bboxes = np.empty((0, 6), dtype=np.float64) trackerboxes = np.empty((0, 9), dtype=np.float64) trackefeats = {} for frameDict in yrtOut: tboxes = frameDict["tboxes"] ffeats = frameDict["feats"] + boxes = frameDict["bboxes"] + bboxes = np.concatenate((bboxes, np.array(boxes)), axis=0) trackerboxes = np.concatenate((trackerboxes, np.array(tboxes)), axis=0) for i in range(len(tboxes)): fid, bid = int(tboxes[i, 7]), int(tboxes[i, 8]) @@ -266,7 +269,7 @@ def main(): 函数:pipeline(),遍历事件文件夹,选择类型 image 或 video, ''' parmDict = {} - evtdir = r"D:\全实时\202502" + evtdir = r"\\192.168.1.28\share\测试视频数据以及日志\全实时测试\V12\2025-3-3" parmDict["SourceType"] = "video" # video, image parmDict["savepath"] = r"D:\全实时\202502\result" parmDict["weights"] = r'D:\DetectTracking\ckpts\best_cls10_0906.pt' @@ -275,10 +278,9 @@ def main(): k, errEvents = 0, [] for item in evtdir.iterdir(): if item.is_dir(): - item = evtdir/Path("20250228-160049-188_6921168558018_6921168558018") + item = evtdir/Path("20250303-103058-074_6914973604223_6914973604223") parmDict["eventpath"] = item # pipeline(**parmDict) - try: pipeline(**parmDict) except Exception as e: diff --git a/practice/6924743915817.txt b/practice/6924743915817.txt new file mode 100644 index 0000000..e937507 --- /dev/null +++ b/practice/6924743915817.txt @@ -0,0 +1,78 @@ +-0.012108 -0.005081 0.040924 0.003206 0.048553 0.078918 -0.036774 -0.049957 -0.034515 -0.037689 -0.058533 -0.006462 -0.106995 0.023758 0.038818 -0.146240 0.001214 -0.077209 0.063110 0.023376 -0.085205 -0.067322 0.021179 -0.015556 0.073242 0.065247 0.014977 0.067261 0.139893 0.000464 0.109802 -0.064697 -0.071045 -0.029648 -0.111511 -0.142334 -0.067627 -0.025436 0.029633 0.066040 0.053192 0.057281 0.001234 -0.017181 -0.051910 0.037964 0.043549 -0.078247 -0.048981 -0.016296 0.035248 -0.083862 -0.072876 0.003597 0.028336 -0.002398 0.107483 0.006378 0.085327 -0.035217 -0.029861 0.000131 -0.062988 0.006710 -0.008194 0.023758 -0.032501 -0.020172 0.024170 0.025360 0.094116 -0.040558 0.105408 -0.062042 0.068726 -0.050781 -0.114441 0.040497 0.053406 0.029068 -0.078308 -0.042084 -0.049103 -0.064392 -0.070618 -0.080261 0.031403 0.029037 -0.032562 -0.031403 0.043365 0.098938 0.028519 -0.054016 -0.072083 -0.052643 0.085449 -0.047882 -0.015900 0.060547 -0.052704 -0.138916 -0.129517 -0.039856 -0.011246 -0.023804 -0.018372 -0.032410 -0.050903 -0.034393 -0.084961 0.021057 0.021820 0.017853 0.013176 -0.117126 -0.067688 0.056610 0.046783 -0.013290 0.103577 -0.041260 0.044434 -0.007912 0.085876 -0.070862 0.111511 -0.028915 0.057495 0.027283 0.020248 0.067871 -0.046204 0.054626 0.028427 -0.036469 -0.026749 -0.139526 0.009445 -0.054443 -0.028671 -0.056305 0.041260 -0.093201 -0.018829 0.037628 -0.005714 -0.018143 0.051910 0.042603 0.027008 -0.056427 0.070496 -0.029129 -0.063782 -0.089355 -0.046783 0.084656 -0.038849 0.090698 0.008919 -0.104309 -0.061005 0.014610 0.047913 -0.006104 -0.095459 -0.017731 0.019455 -0.004402 0.053284 -0.088501 0.057251 -0.054047 -0.017914 0.089661 0.008621 -0.014305 0.015915 0.037170 0.038727 -0.130249 0.015274 0.054504 -0.030716 0.023438 -0.041504 -0.003704 0.158325 0.067566 0.030365 -0.024719 -0.059082 -0.025925 0.050476 -0.016632 0.097839 -0.123474 0.064148 -0.004620 -0.088013 -0.036896 0.013901 0.084900 0.010056 0.102600 -0.083862 -0.117065 -0.007828 0.041779 -0.047638 0.051605 0.071167 -0.017288 -0.054962 -0.060852 0.016983 0.039307 -0.098389 -0.041931 -0.033112 0.116821 0.057831 -0.002653 0.012817 0.169678 0.053131 0.060333 -0.107605 -0.009209 0.014893 0.039185 0.021896 -0.046570 0.000801 -0.055817 0.138062 -0.038574 -0.163208 0.069702 0.098083 -0.007362 0.064392 -0.075867 0.073425 -0.058075 -0.101746 -0.039917 -0.010178 -0.008743 -0.017105 0.078308 0.149292 0.011856 0.003960 -0.000674 +-0.063477 -0.007069 -0.005245 0.043976 0.038483 0.101135 -0.004757 -0.054932 -0.051422 -0.036133 -0.048309 0.027176 -0.103699 -0.004608 0.084229 -0.182983 0.023010 -0.036285 0.033508 0.021790 -0.074341 -0.011391 -0.040161 -0.069519 0.094604 0.004799 -0.030457 0.060059 0.128906 0.026169 0.113586 -0.018616 -0.033478 -0.038574 -0.102966 -0.098999 -0.054718 0.003244 0.031738 0.131714 0.053589 0.042694 0.039795 -0.032562 -0.111450 0.017044 0.081055 -0.019135 -0.044891 -0.014748 0.060181 -0.151001 -0.130371 -0.011879 0.079102 0.053833 0.088257 0.000039 0.068909 -0.086487 -0.038635 0.045715 -0.073547 0.018677 -0.019897 0.001243 -0.059570 0.007343 0.019928 0.029938 0.123413 -0.050232 0.097961 -0.030304 0.034943 -0.046692 -0.151978 0.010780 0.073181 -0.010277 -0.048309 -0.025406 -0.028961 0.009995 -0.071777 -0.092896 -0.025650 0.069519 -0.050781 -0.034546 0.014282 0.098694 0.007473 -0.018600 -0.077515 0.020584 0.070129 -0.044800 -0.061768 0.088379 0.033112 -0.132690 -0.062408 0.024338 -0.002018 0.040039 -0.039001 -0.032806 -0.101868 -0.029999 -0.045227 0.028305 -0.005219 -0.003819 0.008522 -0.106812 -0.018646 0.089233 0.054169 -0.016068 0.053772 -0.081543 -0.048126 -0.014633 0.053986 -0.079407 0.055664 -0.039307 0.091797 0.008270 0.032928 0.002785 -0.072266 0.042084 0.021957 -0.082275 -0.010719 -0.054108 0.020813 -0.013069 -0.023575 -0.006931 0.003746 -0.063049 0.038239 0.017975 0.008720 0.039062 0.032166 0.006096 0.000866 -0.040741 0.063049 -0.025879 -0.061676 -0.102600 -0.004028 0.120789 -0.018600 0.109070 0.042145 -0.088501 -0.085327 0.067139 0.030060 0.057587 -0.105774 -0.033752 -0.003479 -0.071960 0.054749 -0.076416 0.059082 -0.061615 -0.074402 0.011024 0.036255 0.008629 0.022537 0.035675 0.038055 -0.098755 0.017593 0.083496 -0.071899 0.078064 -0.056641 -0.000371 0.142578 0.022171 0.017471 -0.028198 -0.018631 -0.034729 -0.004997 -0.010086 0.029083 -0.144043 0.048889 0.027649 -0.043732 -0.013733 0.032166 0.059937 0.065247 0.086365 -0.082214 -0.118225 0.016159 0.026978 -0.108765 0.075317 0.073730 -0.002377 -0.029755 -0.092407 0.007515 0.040344 -0.076843 -0.001449 -0.085571 0.139893 0.066040 0.032013 0.055267 0.190674 -0.031403 0.079285 -0.110779 -0.014015 0.053802 -0.021652 0.025146 -0.032776 -0.013557 -0.074951 0.108276 -0.014259 -0.162109 0.045227 0.068787 -0.029633 0.033112 -0.031174 0.089355 -0.045166 -0.028091 -0.011375 0.008003 0.033997 -0.005348 -0.004387 0.096558 -0.032715 -0.002901 -0.027359 +-0.077576 -0.053558 0.011093 -0.053497 0.116943 -0.086792 0.075867 -0.045746 -0.000218 -0.057861 -0.091492 0.010445 -0.062073 -0.062866 -0.031174 -0.150024 0.004971 -0.061249 0.024353 0.016251 -0.026306 0.090149 -0.075073 -0.025162 0.028854 -0.065552 0.041901 0.062683 -0.053772 0.017639 0.095154 -0.059906 0.041077 0.026886 -0.126099 -0.036194 -0.080444 -0.029373 -0.018250 0.068970 0.050110 0.062134 0.103149 -0.002596 -0.033783 0.024185 0.058624 0.058197 -0.106445 -0.039825 0.000286 -0.018631 -0.162476 0.019836 0.084473 -0.012520 0.028641 -0.012932 0.034882 -0.086609 0.089172 0.019257 -0.126099 -0.003334 -0.017380 0.016800 -0.025055 -0.046173 -0.045258 -0.032166 0.094666 0.063904 0.086304 -0.051453 0.015327 -0.037659 -0.069519 0.038483 0.021698 0.001744 0.003468 0.001429 0.038605 -0.032288 -0.028336 -0.085144 0.035767 0.028961 -0.001388 -0.052643 0.046967 0.049225 0.057220 -0.093018 -0.072083 0.013733 0.040741 -0.012871 -0.076965 0.140503 0.066833 -0.099792 0.046936 -0.073730 -0.021301 0.040710 -0.017029 -0.049927 -0.005035 0.020096 0.000294 -0.059784 -0.037323 0.005112 0.043823 -0.012642 0.035919 0.067261 0.013954 -0.066895 0.121582 -0.094360 0.035980 -0.079346 0.015457 0.031250 0.072083 0.038910 -0.011421 -0.055542 -0.067932 -0.012093 -0.023499 0.056702 -0.010284 0.040283 0.030228 -0.025574 0.068359 0.013748 -0.087952 0.062195 0.037903 -0.098389 -0.057770 0.079529 -0.028214 -0.088684 -0.014153 0.002840 0.044678 -0.008965 -0.038696 0.114807 -0.026810 0.000520 -0.017410 0.119385 -0.047760 0.092590 0.002943 -0.060791 -0.084351 0.116455 0.001213 -0.007164 -0.016769 -0.080750 -0.012779 -0.105835 -0.004128 0.012833 -0.084106 -0.078552 0.003675 -0.036682 0.045868 0.074219 -0.055664 0.066711 0.042511 -0.059845 -0.023758 0.004200 -0.011436 0.053497 -0.083374 -0.007359 0.106873 -0.058624 -0.051270 -0.001504 0.010979 0.106140 -0.083496 -0.005470 0.084595 -0.136353 0.100037 -0.094055 -0.118530 0.006615 0.097168 0.061401 0.171265 0.074707 -0.022614 -0.033234 0.000768 0.073120 -0.024551 0.022461 0.069702 0.018723 0.005615 0.111572 -0.059998 0.078064 -0.063538 -0.042786 -0.008965 0.087280 0.095154 -0.046509 0.111267 -0.000310 -0.076599 -0.038605 -0.029648 -0.001067 0.084473 0.078613 -0.070251 -0.036621 0.132446 -0.080200 0.064331 -0.073547 -0.057404 -0.019928 -0.001274 -0.003666 0.029327 -0.064880 0.073303 0.033936 -0.085388 -0.101685 -0.072693 -0.088257 0.097290 -0.092285 0.058624 0.083618 -0.001839 0.002214 +0.012100 -0.017914 0.123718 0.020386 -0.031204 0.059601 0.004745 0.045532 -0.051910 0.050903 0.007015 -0.060272 -0.079895 0.067261 0.002798 -0.033691 -0.031464 -0.037476 0.046875 0.075256 -0.049957 -0.001346 -0.024292 0.040894 0.024094 -0.016800 0.035187 0.005093 0.132446 0.115784 0.070129 -0.119995 -0.085449 0.072144 -0.098999 0.043274 0.019623 -0.004848 -0.014832 0.077026 -0.052277 0.055237 0.002892 -0.105774 -0.069458 0.001369 0.058685 -0.028275 -0.055389 -0.015480 0.059052 -0.043640 -0.101868 -0.080688 -0.044342 -0.009109 -0.008865 -0.032959 0.068481 -0.051117 -0.019348 -0.023499 -0.138916 -0.102295 0.007652 -0.011314 -0.051575 -0.036560 0.055298 0.083862 0.101929 0.020950 -0.076294 -0.081787 0.109741 -0.050842 -0.087097 0.006187 0.051941 0.015976 -0.036163 -0.016998 0.029587 0.005726 0.023697 -0.046326 0.079651 0.065063 -0.151611 -0.052094 0.015587 0.095337 0.028885 -0.048798 -0.069641 -0.021301 0.038574 -0.046875 -0.023972 0.031952 -0.006630 -0.082153 -0.101685 0.034210 -0.035095 -0.043854 -0.058197 -0.015915 -0.063721 0.001738 -0.031174 -0.096436 -0.054840 -0.061920 -0.020172 -0.116699 -0.075928 0.029449 0.013954 -0.015602 -0.052979 -0.040497 0.046326 -0.042999 0.162231 -0.049103 0.120300 0.082947 0.103027 -0.014366 0.013855 0.009415 -0.058807 -0.036926 0.044830 0.072815 0.063416 -0.096802 -0.051117 -0.023209 0.076111 -0.051239 0.023956 -0.019775 -0.054108 0.034821 0.028000 0.080566 0.043732 -0.072937 -0.033112 -0.046692 -0.014893 0.013672 -0.068909 -0.118652 -0.046570 0.131836 0.126099 -0.055908 0.015121 -0.140625 -0.007050 0.114441 0.035614 -0.032074 0.054077 -0.035492 -0.003038 -0.006641 0.076782 0.022751 0.037689 -0.002945 0.016556 0.042419 -0.043335 0.028900 0.008049 -0.008308 0.033813 -0.103271 -0.049774 0.082336 -0.068909 -0.073853 -0.021469 -0.044891 0.103394 -0.012192 -0.007942 -0.004391 -0.047180 0.046204 0.131348 -0.021164 0.028107 -0.176880 -0.047241 -0.043976 -0.020782 -0.029831 -0.015900 0.046417 -0.032288 0.097290 -0.137573 -0.046753 -0.063232 0.026077 -0.061981 0.081360 0.011398 0.047455 -0.064758 -0.020905 0.150879 -0.044434 -0.077393 0.055450 -0.063232 0.017776 -0.021881 -0.032196 0.060120 0.076904 0.106079 0.037750 -0.004227 -0.052765 0.031433 -0.076721 -0.005886 -0.052094 0.068359 -0.024261 -0.073181 0.022461 -0.062378 0.032654 -0.013062 0.041748 0.039551 -0.132202 0.002626 -0.028564 -0.096252 0.089661 0.047974 -0.086060 0.008492 0.124695 0.033081 -0.086304 -0.009720 -0.081665 +-0.047424 -0.007607 0.101318 -0.001976 0.117554 -0.018417 -0.014389 0.046661 -0.090576 0.022034 -0.069885 0.004242 -0.119812 -0.069824 0.049042 -0.122742 -0.041412 -0.004848 0.093201 0.120239 -0.058502 0.025162 0.052124 0.064453 0.097229 -0.044189 0.048157 0.035828 0.075500 0.000914 0.000320 -0.031403 -0.004795 0.046814 -0.080994 0.005798 -0.108215 -0.048065 0.012489 0.035736 0.035797 0.002916 0.044556 -0.121277 -0.045837 0.017776 0.095032 -0.018875 -0.017914 -0.092041 -0.031128 0.007225 -0.136108 -0.054810 -0.021439 0.026840 0.051239 -0.031143 0.043793 -0.054443 0.000263 0.015640 -0.146729 -0.053741 -0.033508 -0.018036 -0.056580 -0.063049 -0.085327 0.058502 0.128418 -0.005367 -0.028336 -0.058533 0.126953 -0.028580 -0.074524 0.010513 -0.000984 -0.013832 -0.037323 -0.052795 0.062561 0.056244 0.045380 -0.060303 0.072327 0.044373 -0.099365 -0.080688 0.006454 0.073425 0.060059 -0.069641 -0.092529 -0.048492 0.040070 -0.031586 -0.052032 0.122314 0.001475 -0.107239 -0.066772 -0.017578 -0.058289 -0.086060 -0.102051 -0.068176 -0.052246 -0.002888 -0.000543 -0.078979 -0.070312 -0.022812 0.013718 -0.046539 0.008728 0.011978 0.046112 -0.102539 0.097656 -0.035278 -0.015976 -0.021149 0.111084 0.031128 0.071472 0.076477 0.116333 0.020111 0.001237 -0.041321 -0.054260 0.032471 0.013832 0.005772 -0.059143 -0.116150 -0.047028 -0.039948 -0.041046 -0.007965 0.050507 -0.047516 -0.091125 0.056183 0.013191 -0.006599 -0.020508 -0.024155 -0.065186 -0.068298 -0.074097 0.071960 -0.031082 -0.051300 -0.016998 0.166260 0.100281 -0.021439 0.037872 -0.106567 -0.074341 0.155029 0.023499 -0.009918 -0.002010 0.001662 0.003571 -0.032410 0.074219 -0.019592 -0.067932 -0.036682 0.086426 -0.022354 -0.009445 0.034882 0.007618 -0.028656 0.071655 -0.062195 -0.054230 0.027359 -0.072388 0.016510 -0.014427 -0.024414 0.086121 -0.058350 -0.033936 -0.034302 -0.066101 0.041412 -0.014771 -0.071777 0.081604 -0.134766 0.040802 -0.061432 -0.054962 0.000031 0.010544 0.136475 0.034454 0.123169 -0.086731 -0.038086 -0.058899 0.034698 -0.050049 0.136597 0.031250 -0.026001 -0.096130 0.055176 0.048889 0.003933 -0.036957 0.037384 -0.055939 0.008324 0.055511 -0.054718 0.070557 -0.027756 -0.020584 0.037140 -0.009178 -0.025391 0.077515 -0.107971 -0.034210 0.005085 0.105469 -0.051422 0.022552 -0.028137 -0.075195 0.039276 0.014618 -0.017273 0.039917 -0.107483 0.052277 0.133789 -0.097595 -0.032867 0.043335 -0.053894 0.072083 0.019470 0.102600 -0.076660 -0.050629 -0.030777 +-0.080505 -0.058533 0.011864 -0.001678 0.079285 0.052399 0.012238 -0.104187 -0.009560 -0.064209 -0.072510 0.008438 -0.029907 -0.007111 0.039764 -0.173584 -0.030594 -0.077271 0.026703 0.029831 -0.011559 0.024887 -0.073792 -0.068542 0.084167 -0.060059 -0.056061 0.052063 0.119446 0.026688 0.128418 -0.056915 0.004204 -0.008247 -0.118225 -0.097595 -0.073425 -0.028030 0.060822 0.055725 0.039764 0.027710 0.043304 0.047302 -0.119995 0.019379 0.059143 0.031372 -0.091125 -0.022583 0.038727 -0.126709 -0.134766 0.025482 0.057831 0.068298 0.091980 0.017868 0.033936 -0.018311 -0.019501 0.026367 -0.061829 -0.030289 -0.009972 0.040405 -0.038208 -0.072815 0.049377 0.000505 0.077209 0.013344 0.128540 -0.053497 0.014687 -0.017090 -0.114319 0.016968 0.017120 0.004723 -0.030945 0.010918 0.053375 -0.049744 -0.081604 -0.075989 -0.019226 -0.011200 0.028000 -0.058167 0.043457 0.146606 -0.003473 -0.056763 -0.102661 0.016907 0.088684 -0.003975 -0.008484 0.077271 0.042816 -0.167725 -0.013969 -0.057343 -0.042023 0.051605 -0.007206 -0.023544 -0.055237 0.021118 -0.016296 0.016174 -0.014778 -0.008080 -0.006760 -0.090637 -0.021362 0.085754 -0.004410 -0.043518 0.083923 -0.045410 0.011360 -0.059631 0.055786 -0.065857 0.099609 -0.043365 0.049103 -0.030960 0.079834 0.015091 -0.074524 0.062378 -0.002151 -0.066467 0.008186 -0.060364 0.020996 -0.007622 -0.054474 0.066833 -0.020447 -0.104797 -0.008919 0.059814 0.016541 -0.058502 0.013443 0.067383 0.023605 -0.026932 0.067322 0.038788 -0.054443 -0.084351 -0.013206 0.074707 -0.032166 0.133423 0.013458 -0.081909 -0.090515 0.097107 0.016434 0.008110 -0.103821 -0.057556 0.016388 -0.100098 0.010689 0.008179 0.022156 -0.106812 -0.065125 0.040619 0.076172 -0.019806 0.020126 0.027634 -0.010498 -0.066589 0.001569 0.063721 -0.032288 0.061005 -0.068542 -0.005470 0.133057 -0.012459 0.023788 -0.021194 -0.045990 0.018005 -0.070679 0.002216 0.103149 -0.174072 -0.004009 -0.003956 -0.104187 -0.059967 0.057373 0.048096 0.091614 0.068298 -0.032013 -0.034943 0.038177 0.028671 -0.078003 0.023148 0.051880 -0.016373 0.016083 -0.047852 -0.015106 0.066223 -0.092773 -0.055389 -0.086304 0.176636 0.107788 0.035675 0.112488 0.119019 -0.050842 0.010208 -0.061218 -0.034546 0.059967 0.055756 -0.014908 -0.075439 0.011406 -0.082825 0.138062 -0.003338 -0.110535 -0.005970 0.036713 -0.006996 0.014854 -0.056152 0.054932 -0.083191 -0.064209 -0.054962 -0.034332 -0.010269 0.063171 -0.007107 0.118225 0.044556 0.010048 0.008392 +-0.088867 -0.006584 0.000978 -0.067993 -0.011299 -0.011009 0.091919 -0.084351 0.036530 0.041901 -0.063721 0.012001 -0.107483 -0.014297 0.022476 -0.124573 -0.000116 0.007137 0.017776 0.024994 -0.057831 0.114929 -0.107422 -0.119629 -0.018082 -0.069275 0.029831 0.094910 0.056702 -0.032684 0.101807 -0.029968 0.044250 0.023315 -0.123718 -0.056610 -0.087891 0.049530 0.052582 0.073425 0.061127 0.052246 0.073853 -0.075256 -0.054871 -0.029602 0.077087 0.030472 -0.099854 -0.053833 0.060120 -0.036194 -0.047211 -0.041534 0.003668 -0.029114 -0.004723 -0.045898 0.031342 -0.009613 0.081970 -0.072693 -0.171143 -0.003609 -0.090698 0.020935 0.047028 -0.035736 -0.081055 0.010208 0.024048 0.042877 0.055054 0.009933 0.062866 -0.047363 -0.098572 0.023849 0.138062 -0.007332 -0.095215 0.039154 0.014587 0.045807 -0.023285 -0.072815 0.035950 0.037231 0.002653 -0.076355 -0.052460 0.058777 0.019226 -0.062866 -0.105591 -0.016220 0.041504 -0.006542 -0.126709 0.115234 0.001443 -0.079651 0.064026 0.026627 -0.059448 -0.067078 -0.014763 -0.122192 0.006821 -0.051758 -0.047516 -0.003002 0.004425 -0.054260 0.105713 0.033173 0.099060 0.131104 -0.018097 -0.003410 0.096863 -0.079224 0.019470 -0.086975 0.011299 -0.082825 -0.012100 0.051422 0.013115 -0.035492 -0.059937 0.013115 -0.090332 0.058960 -0.000882 0.038757 -0.038513 -0.004532 0.039673 0.050629 -0.046509 0.003023 0.005344 -0.030563 0.005035 0.064209 -0.028778 0.006279 -0.058899 -0.027649 -0.041077 -0.041351 0.038971 0.049591 -0.023636 -0.045074 0.016525 0.075378 -0.061920 0.112122 0.071411 -0.064880 0.001765 0.072754 -0.046661 0.015541 -0.068176 -0.064514 -0.015358 -0.117432 0.036407 -0.033478 -0.051208 -0.092712 -0.028748 -0.026962 -0.001900 0.014030 0.014725 -0.016388 0.010849 -0.077393 -0.085083 0.049713 -0.052704 0.121094 -0.021759 0.010422 0.097412 -0.024109 -0.140137 -0.008949 0.007927 0.109985 -0.011124 0.024353 0.025482 -0.073242 0.142456 -0.091553 -0.069580 -0.096069 -0.021774 0.060730 0.179810 0.038910 -0.021454 -0.039490 0.057007 0.083679 -0.016129 0.107361 0.080017 0.051025 -0.075317 -0.001435 0.018921 0.044800 -0.044952 0.049469 -0.032196 0.056976 -0.014854 -0.031738 0.077393 0.057098 -0.050568 -0.046539 -0.075928 0.036743 0.049103 0.010155 -0.061493 -0.110291 0.090332 -0.087036 0.046295 -0.108765 -0.011192 -0.040070 -0.048828 -0.023224 0.097900 -0.065552 0.062012 -0.000584 -0.027878 -0.002588 -0.065125 -0.078735 0.083740 -0.138062 0.030319 0.025879 -0.024490 -0.048431 +-0.051300 -0.020859 0.057617 -0.010582 0.022110 0.026962 0.007942 -0.035187 -0.054657 -0.036774 0.011246 0.010773 -0.097595 0.114441 -0.003645 -0.121460 0.017792 -0.015625 0.022110 0.024277 -0.058838 0.069641 -0.045593 -0.020126 0.021149 -0.000751 0.026108 0.135010 0.179443 0.020554 0.078430 -0.009842 -0.005142 -0.000080 -0.073425 0.045380 -0.057129 0.017334 -0.059448 0.048676 -0.035065 0.106262 -0.013092 -0.042725 -0.022888 -0.006790 0.006367 -0.058716 -0.158691 0.033722 0.045197 -0.109619 -0.162354 -0.041290 0.016754 -0.032745 -0.010735 -0.013229 0.205811 -0.041870 0.038025 -0.139648 -0.080872 -0.005981 0.028381 0.085510 -0.015297 -0.015747 0.072754 0.020264 0.124390 -0.015617 0.117004 0.014503 0.050568 -0.003368 -0.117371 0.021469 0.078003 0.013817 -0.025665 0.012680 0.013062 -0.035400 -0.067871 -0.055511 0.106873 0.010971 -0.038879 -0.060150 0.008034 0.161377 -0.002237 0.018600 -0.084839 -0.050323 0.088440 -0.079224 -0.017303 0.040192 -0.023834 -0.163452 -0.040710 -0.018036 -0.100952 -0.044556 0.026993 -0.034271 -0.017792 -0.024857 -0.037750 -0.036255 -0.058258 0.010239 0.001386 -0.077209 -0.012238 0.027695 0.031555 -0.043091 0.095520 -0.041351 0.097778 -0.072327 0.081299 -0.061371 0.050049 0.008827 0.008125 -0.054688 -0.034363 0.035400 -0.059387 0.062622 0.090576 0.055542 0.026047 -0.053192 0.032074 -0.041473 -0.055969 -0.104797 0.082214 -0.038300 0.007065 0.084412 -0.032654 0.013519 0.014771 0.082581 0.032806 -0.030441 -0.031189 0.025406 -0.115051 -0.102478 -0.099670 0.149780 0.008041 0.028137 -0.004635 -0.121460 0.013329 0.004730 0.034149 0.053131 -0.068359 -0.078430 -0.028198 -0.091736 0.034668 -0.002895 -0.025543 -0.116272 -0.095520 -0.004330 0.019272 -0.042755 -0.054260 0.022736 0.036102 -0.087097 -0.008148 0.045898 -0.009041 0.071472 -0.077393 0.042511 0.094360 0.028442 -0.039612 -0.008659 -0.105896 0.052887 0.026489 0.017365 0.109253 -0.134766 0.006134 -0.018097 -0.112793 -0.055603 0.104248 0.024277 0.072449 0.057098 -0.103638 -0.006733 -0.025574 0.020660 -0.076965 0.069153 0.072571 -0.009232 -0.036774 -0.026672 0.037659 0.038025 -0.043610 -0.036255 -0.011955 0.078003 0.078003 0.013298 0.081665 0.115784 -0.032104 -0.024979 -0.013283 -0.042999 0.012604 0.030807 -0.041779 -0.076538 0.077942 -0.095276 0.068420 -0.015778 -0.063171 0.052673 0.025345 0.030396 0.063721 -0.054932 0.001950 -0.026535 -0.125000 -0.000515 -0.070312 -0.020355 0.033813 0.021286 0.008537 0.036682 0.021210 0.006847 +-0.104370 -0.044647 0.030746 0.011848 0.057526 -0.008278 -0.012321 -0.084900 0.013306 -0.008041 -0.011665 0.005608 -0.072449 0.045380 0.052704 -0.225464 -0.021851 -0.055786 -0.028534 -0.033325 0.019592 0.009315 -0.058075 -0.051392 -0.008530 -0.081909 -0.034363 0.078918 0.180542 0.026077 0.092468 -0.055908 0.032135 0.035034 -0.091492 0.007263 -0.044739 0.077881 0.005806 0.027908 0.028259 0.095764 0.095459 -0.047455 -0.086365 0.040619 -0.034576 -0.012230 -0.138672 0.018646 0.058807 -0.078613 -0.145264 0.000744 0.044678 -0.019974 0.025620 0.016449 0.094116 -0.023499 0.011063 -0.116821 -0.093018 -0.079163 -0.033478 0.082214 0.039917 0.005947 -0.034454 0.014687 0.105103 -0.019745 0.149780 -0.017502 0.051941 -0.025269 -0.117737 0.011627 0.097473 -0.019928 -0.035065 -0.002720 -0.009933 -0.001321 -0.135010 -0.019958 0.007996 -0.021515 0.041016 -0.052032 -0.032013 0.105347 -0.003544 -0.019012 -0.118347 -0.036865 0.089050 -0.061798 -0.030060 0.013054 0.009315 -0.126099 0.021194 -0.010216 -0.059998 0.024414 0.025497 -0.119080 -0.012901 -0.043610 -0.049835 0.018463 -0.039795 -0.019989 0.012512 -0.047516 0.040344 0.077881 0.021484 -0.038879 0.143066 0.057037 0.014130 0.008705 0.130249 -0.043915 0.043121 0.047485 0.037292 -0.067200 -0.014229 0.058319 -0.182983 -0.004654 0.027222 -0.017700 -0.024933 -0.033600 -0.003723 -0.018814 -0.044159 -0.006718 0.004150 0.000915 0.005909 0.134277 -0.049316 0.011063 0.017792 0.025909 -0.031799 -0.111511 0.068176 -0.003735 -0.091797 -0.067139 -0.008560 0.115662 -0.003941 0.027985 -0.008255 -0.088806 0.019333 0.007500 0.017883 -0.011841 -0.027328 -0.056152 0.012512 -0.087036 0.081848 -0.014626 0.033234 -0.166748 -0.066833 0.013641 0.020279 -0.022552 -0.005245 0.001663 0.064636 -0.072571 -0.064026 0.027115 0.056152 0.074036 -0.078918 0.010727 0.105347 0.009193 -0.043793 -0.000097 -0.082092 0.019379 0.000548 -0.050171 0.065491 -0.145508 0.002535 -0.064819 -0.101562 -0.062927 0.045013 0.076782 0.113831 0.007042 -0.057007 -0.105835 0.028839 0.020554 -0.074341 0.041046 0.109985 0.019470 -0.026596 -0.069031 -0.014359 0.044800 -0.088257 -0.047028 -0.020508 0.104370 0.013618 0.026505 0.075867 0.107117 0.017227 -0.016815 -0.076355 -0.040466 0.036407 0.053955 0.004261 -0.093384 0.009308 -0.064148 0.042664 -0.062561 -0.035828 0.031494 0.018021 -0.015701 0.112122 -0.114502 -0.024033 -0.028336 -0.092224 0.048737 -0.041534 0.017349 0.008881 -0.074219 0.060486 -0.008347 0.015701 -0.026077 +-0.095947 -0.026047 0.027344 0.035980 0.046448 0.129883 0.020172 -0.056915 -0.045105 -0.038330 0.002014 -0.001935 -0.052185 0.093811 0.022064 -0.136475 -0.049225 0.034637 0.027710 0.038269 -0.049103 0.065002 -0.056946 -0.018112 0.022873 -0.011200 -0.018280 0.084290 0.112793 0.050781 0.059906 -0.030075 -0.001304 0.010452 -0.104248 -0.053345 -0.052673 0.027328 -0.015274 0.077393 -0.003262 0.068054 -0.045074 -0.025360 -0.071289 -0.043030 -0.010139 -0.065796 -0.183838 0.016144 0.036407 -0.138428 -0.114563 -0.108643 -0.009026 0.075745 0.027328 -0.024994 0.111206 -0.014946 -0.013901 -0.061493 -0.060516 0.010551 0.020248 0.074402 -0.028351 -0.078735 0.064270 0.009270 0.059753 -0.037079 0.136719 -0.040497 0.054657 -0.041199 -0.086243 0.060822 0.043182 0.034088 -0.019073 -0.002989 0.005116 -0.018738 -0.123657 -0.032898 0.056366 -0.018906 -0.016174 -0.148438 0.008858 0.132080 0.000813 -0.030853 -0.075317 -0.041046 0.058655 -0.033173 -0.097412 -0.000504 0.018845 -0.106689 -0.062500 0.046875 -0.074463 -0.012138 -0.039978 0.011513 -0.044495 -0.003536 -0.087463 -0.005974 0.012825 -0.054260 -0.017090 -0.107056 -0.083679 0.091797 0.049774 -0.015488 0.029510 -0.032745 0.059174 -0.015213 0.060028 -0.031708 0.087830 -0.000510 0.075195 -0.002844 0.027679 0.042603 -0.133789 0.011833 0.014648 0.020721 -0.047333 -0.118591 -0.008018 -0.050934 -0.000528 -0.060425 0.021545 -0.027740 -0.044586 0.042236 0.034637 -0.058441 0.029419 0.087158 0.060242 -0.032928 0.019379 0.023987 -0.103943 -0.120422 -0.056488 0.115967 0.009727 0.068237 0.020325 -0.129395 0.023407 -0.028778 0.032104 0.056335 -0.065979 -0.075500 -0.028442 -0.086548 0.046143 -0.020660 0.043610 -0.103821 -0.116394 0.068848 0.035919 -0.042480 0.003454 -0.035797 0.048584 -0.114685 0.018066 0.036469 -0.016190 0.095520 -0.009865 0.003464 0.073303 0.039154 0.017899 0.001660 -0.117126 -0.000117 0.054840 0.018219 0.060059 -0.134888 0.041962 -0.028046 -0.152588 -0.041443 0.073730 0.073669 0.061707 0.005127 -0.073181 -0.070007 0.041382 0.110779 -0.088989 0.044067 0.070740 0.012276 -0.035217 -0.096069 0.041901 0.034180 -0.131836 -0.004078 -0.048676 0.093506 0.034943 0.005501 0.058685 0.138672 -0.032196 -0.012367 -0.079590 -0.051605 -0.022095 -0.006977 -0.022263 -0.045441 0.021606 -0.081055 0.053467 0.050232 -0.106323 0.090332 0.005291 -0.009361 0.095703 -0.062988 0.004513 -0.064026 -0.104309 -0.050568 -0.033447 0.005470 0.018951 0.052032 0.073486 -0.012283 0.053772 -0.016800 +-0.031860 -0.047791 0.045197 0.023346 -0.000677 0.045898 0.044037 -0.059296 0.020233 -0.066833 -0.062378 0.015701 -0.057922 0.002020 0.056183 -0.177124 0.024643 -0.071167 0.024078 -0.004017 -0.037689 0.069519 -0.084045 -0.090637 0.013695 -0.056885 0.058044 0.072632 0.085571 0.000285 0.122864 -0.086060 -0.027588 -0.043732 -0.105286 -0.093201 -0.031494 -0.006031 0.039429 0.132812 0.056274 0.099060 0.059418 0.065918 -0.132812 0.068237 0.053192 0.010849 -0.078552 -0.004890 0.047455 -0.099365 -0.153442 -0.001022 0.065186 0.010406 0.017441 0.028320 0.068726 -0.101501 0.025269 0.028992 -0.111511 0.006336 -0.025513 0.007652 -0.020035 -0.049316 -0.016266 -0.004486 -0.014359 0.002268 0.110901 -0.034729 0.017639 -0.023376 -0.133301 0.058838 0.112732 0.009926 -0.045715 0.039032 0.001749 0.038666 -0.130127 -0.144043 0.025848 0.013779 0.018265 -0.029999 0.019424 0.112671 0.006294 -0.083313 -0.065002 0.063232 0.036804 -0.062286 -0.025299 0.074951 0.022781 -0.107117 -0.007671 -0.015015 -0.022781 0.074280 -0.002148 -0.049530 -0.007183 -0.048492 0.006523 -0.021179 0.011612 -0.051544 0.030670 -0.066711 0.070435 0.138672 0.015541 -0.001809 0.083923 -0.100586 -0.007534 -0.070190 0.023270 -0.098145 0.098999 -0.040863 0.059418 -0.044952 0.044586 -0.029282 -0.040985 0.036926 0.012825 0.007034 0.058899 0.013443 0.089233 0.012009 -0.056122 0.049194 -0.005688 -0.097107 0.055145 0.041931 0.011375 -0.001695 -0.015747 0.017181 -0.011345 0.021896 0.044098 -0.006321 -0.000619 -0.109619 -0.029160 0.065674 -0.084229 0.110352 0.005646 -0.083008 -0.113037 0.089966 -0.007980 0.033417 -0.092468 -0.076599 -0.082458 -0.099304 0.025986 -0.080566 0.012039 -0.091736 -0.044342 0.057068 0.040894 -0.100281 0.048981 0.008934 0.035309 -0.088318 -0.042877 0.106079 -0.063416 0.087158 -0.100586 -0.012009 0.112671 -0.004330 -0.014503 -0.033600 0.013237 0.049011 -0.042175 0.007294 0.011345 -0.081055 -0.012764 0.035797 -0.070190 -0.064209 0.099792 0.044342 0.123291 0.077209 -0.048737 -0.036560 -0.088684 0.009758 -0.058044 0.030762 0.060059 -0.017120 -0.048798 -0.057678 -0.025833 0.068970 -0.080811 -0.019363 -0.053497 0.152832 0.071655 0.039093 0.078247 0.127808 -0.023605 -0.035706 -0.061646 -0.066833 0.071777 0.066040 0.020416 -0.059540 -0.007286 -0.087646 0.105530 -0.063293 -0.086548 0.008354 0.029022 0.042572 -0.040436 -0.026779 0.085449 -0.018326 -0.041077 0.017593 -0.042358 -0.046509 0.051147 -0.068542 0.035919 -0.012260 -0.020218 -0.042023 +0.003683 -0.040375 0.045959 -0.005531 0.034393 0.093811 -0.006748 -0.084595 -0.018311 -0.050476 -0.037109 -0.000509 -0.107544 0.006592 0.010948 -0.151733 -0.011551 -0.022964 0.017471 -0.054138 -0.090027 0.007271 0.001972 -0.029480 0.037720 -0.039764 -0.020172 0.074707 0.123474 -0.020996 0.105835 -0.110840 -0.066650 -0.001163 -0.163330 -0.081970 -0.060699 -0.004177 0.023972 0.104736 0.014053 0.032562 0.054413 -0.027374 -0.081543 0.055695 0.035553 -0.090393 -0.110718 -0.011971 0.050842 -0.066406 -0.144409 -0.045166 0.014626 -0.015854 0.058319 0.002174 0.066650 -0.032898 -0.000545 -0.039581 -0.051880 0.024918 -0.039703 0.013618 -0.010017 -0.045837 0.015236 0.000289 0.067017 -0.081421 0.123657 -0.064880 0.057220 -0.080811 -0.088074 0.060547 0.020935 0.019089 -0.040527 -0.057343 -0.026947 0.006191 -0.102722 -0.084045 0.053253 -0.001462 0.008995 -0.062012 0.022095 0.089722 0.039093 -0.095642 -0.113892 -0.015511 0.002720 -0.040955 -0.004417 0.086426 -0.006630 -0.164673 -0.049438 -0.011353 -0.059814 -0.010315 -0.002935 -0.074890 -0.081055 -0.048187 -0.083313 0.012222 0.022583 -0.016068 0.018982 -0.089783 -0.008865 0.079407 0.025314 -0.023987 0.124451 0.000825 0.004566 -0.015068 0.083069 -0.042816 0.095459 -0.010513 0.045746 0.025208 -0.006954 0.035187 -0.062866 0.013298 0.003489 -0.012367 -0.036377 -0.117554 0.010460 -0.036713 -0.065308 -0.005878 0.027969 -0.044922 -0.044067 0.074585 0.000278 -0.084778 0.018478 0.016235 0.018280 -0.045197 0.067566 -0.025940 -0.017914 -0.085022 -0.018265 0.091125 -0.028229 0.058105 0.022385 -0.120911 -0.051758 -0.023163 0.038116 -0.019501 -0.106689 -0.082092 -0.000672 -0.041779 0.070740 -0.068542 0.020950 -0.110840 -0.013809 0.109436 0.041931 -0.003056 0.025116 0.025818 0.065063 -0.093262 -0.008324 0.018311 -0.051270 -0.002619 -0.085327 -0.001694 0.185913 0.078735 0.025497 -0.039276 -0.092407 -0.009804 0.034576 -0.052490 0.044220 -0.120300 0.049438 -0.082336 -0.144043 -0.024139 0.058380 0.131104 0.041687 0.079895 -0.053436 -0.098206 -0.077332 0.048676 -0.052917 0.059998 0.126587 -0.048950 -0.097168 -0.057556 0.012932 0.076416 -0.116577 -0.054443 -0.031586 0.076782 0.029480 -0.022781 0.050568 0.139648 -0.027405 0.030762 -0.095764 -0.045197 0.015251 0.022324 -0.013550 -0.063538 0.014343 -0.030212 0.069824 -0.041199 -0.110779 0.071472 0.039948 -0.008553 0.070251 -0.062164 0.014580 0.002865 -0.116455 0.007370 -0.012520 -0.015114 0.030136 0.054596 0.128906 0.009544 -0.042206 -0.046936 +-0.069946 -0.046143 0.061432 0.004459 0.033783 0.003180 0.025803 -0.036499 -0.056671 -0.008926 -0.099365 0.002981 -0.142700 0.011841 0.006725 -0.138428 -0.034302 -0.034760 0.060303 -0.008133 -0.055664 0.098694 -0.001347 -0.013603 0.047852 -0.076965 0.059235 0.093689 0.057343 -0.041016 0.067566 -0.074890 -0.042511 -0.003345 -0.194824 -0.035339 -0.100342 -0.025818 0.030212 0.098694 -0.013924 0.013809 0.027451 -0.049469 -0.071350 0.031677 0.053040 -0.047333 -0.122620 -0.046753 0.028717 0.010033 -0.179443 -0.069946 0.007759 0.001667 0.023926 -0.048462 0.047241 -0.042969 -0.003458 -0.020813 -0.056641 0.020065 -0.019882 -0.009361 -0.029251 -0.073669 -0.047882 0.007587 0.007053 -0.038025 0.064758 -0.030197 0.073242 -0.087036 -0.046600 0.034424 0.050446 0.017227 -0.022079 -0.007904 0.056763 0.065186 -0.024963 -0.100830 0.098389 0.009987 -0.018906 -0.109985 0.020966 0.071289 0.039825 -0.117981 -0.105774 0.024261 -0.026840 -0.029266 -0.041016 0.141724 0.000244 -0.128174 -0.031738 -0.010307 -0.117432 -0.042145 -0.025726 -0.081604 -0.044800 -0.028748 0.027283 -0.021591 0.025879 -0.011787 0.062134 -0.039734 0.084412 0.094055 0.012749 -0.033844 0.104309 -0.041595 -0.025650 -0.006878 -0.016098 -0.015396 0.062866 -0.027115 0.059113 0.028076 -0.020294 -0.014290 -0.054932 0.043884 0.012466 0.006935 -0.042419 -0.126465 0.048370 -0.064148 -0.075745 0.001100 0.005363 -0.040771 -0.074524 0.063843 0.052429 -0.051331 -0.051849 0.013901 0.019287 0.002291 -0.004154 0.033295 0.007633 -0.091431 -0.022736 0.112061 0.009949 0.039276 0.023102 -0.096252 -0.079041 0.056610 -0.000884 -0.043793 -0.092834 -0.053894 -0.056335 -0.072021 0.056274 -0.043488 -0.094910 -0.087036 0.026169 0.044434 0.025894 -0.028778 0.001543 0.002914 0.077454 -0.107727 -0.022949 0.016464 -0.100830 0.040619 -0.058197 -0.012283 0.116455 0.009964 -0.023285 -0.044189 -0.063049 0.018158 -0.001390 -0.042084 0.036926 -0.067444 0.027557 -0.065186 -0.095032 -0.009460 0.094910 0.147827 0.094666 0.082214 -0.046570 -0.033295 -0.125122 0.065063 0.000936 0.103149 0.108276 -0.107422 -0.102356 0.000134 -0.014381 0.089722 -0.092163 -0.008865 -0.045563 0.029297 0.069824 -0.091736 0.092590 0.029999 -0.106079 -0.054596 -0.028366 -0.036041 0.090332 0.007473 -0.018585 -0.041870 0.066406 -0.099304 0.030273 -0.092102 -0.083313 0.085876 0.015884 -0.001809 0.030472 -0.026962 0.064758 0.090515 -0.106140 -0.008682 -0.068970 -0.098450 0.094543 -0.043030 0.090210 -0.006775 -0.076172 -0.055725 +-0.033020 -0.047211 0.086914 -0.024185 0.076660 -0.006481 -0.014580 -0.011963 -0.074890 -0.034943 -0.060944 -0.031891 -0.118347 -0.027725 0.083130 -0.157227 -0.022842 -0.028839 0.057465 0.046783 -0.072998 0.048798 0.025085 -0.038239 0.050293 -0.075684 0.059479 0.032318 0.100098 -0.065857 0.063354 -0.065491 -0.044098 -0.043976 -0.137207 -0.081665 -0.108826 -0.029785 0.005974 0.079651 0.058624 0.082092 0.101929 -0.030731 -0.091675 0.070496 0.101318 -0.028671 -0.048676 -0.070740 -0.003990 0.010506 -0.163086 -0.017197 0.018311 0.022644 0.051880 0.022369 0.065796 -0.059692 0.004829 -0.021500 -0.117310 -0.019989 -0.023132 0.011238 -0.012711 -0.060974 -0.075928 0.011536 0.022598 -0.018982 0.100647 -0.104858 0.085144 -0.053436 -0.076843 0.044434 0.062622 -0.013496 -0.078491 -0.014091 0.009224 0.033447 -0.014969 -0.113464 0.060425 0.016418 -0.033020 -0.047729 0.036133 0.129028 0.037750 -0.067810 -0.113770 -0.007088 -0.012917 -0.056091 0.001848 0.102417 0.007557 -0.169556 -0.052429 -0.035675 -0.063538 -0.010788 -0.037048 -0.109924 -0.037231 -0.043671 -0.027939 -0.072998 -0.017014 -0.015404 0.026749 -0.076538 0.077148 0.071899 0.025253 -0.065247 0.171021 -0.029816 -0.005688 -0.074890 0.071167 -0.013878 0.095581 0.053864 0.068115 0.018066 0.005634 -0.021606 -0.028275 0.048431 0.023254 0.032013 -0.017166 -0.082764 0.047577 -0.040344 -0.090698 0.026398 0.010330 -0.102539 -0.043915 0.129395 -0.018372 -0.005165 -0.007626 -0.006302 0.011475 -0.031830 0.023941 0.018539 -0.001737 -0.084167 -0.034943 0.103455 0.021912 0.028625 0.039764 -0.076111 -0.084961 0.130371 0.020493 0.001660 -0.062561 -0.047272 -0.055084 -0.046509 0.109558 -0.059113 -0.060760 -0.073425 0.052277 0.012611 0.009064 -0.065247 0.054108 0.006470 0.049744 -0.084961 -0.035034 0.051971 -0.068420 0.050354 -0.075928 0.003685 0.096863 -0.031952 -0.038147 -0.061005 -0.044281 0.019791 -0.037262 -0.064697 0.121704 -0.112854 0.005562 -0.054901 -0.079224 -0.031860 0.086914 0.092224 0.058624 0.101501 -0.067810 -0.032806 -0.093506 0.010292 -0.029755 0.084290 0.073853 -0.054535 -0.105957 0.033539 -0.016205 0.030014 -0.076294 0.002235 -0.040894 0.085693 0.078125 0.002449 0.053894 0.066772 -0.006466 0.002022 -0.041443 -0.043030 0.101257 -0.035431 0.014580 -0.012901 0.076660 -0.012085 0.096191 -0.062561 -0.080994 0.021454 0.030838 -0.003508 0.011597 -0.045502 0.090088 0.072754 -0.063293 -0.005390 -0.031891 -0.068604 0.083679 -0.022125 0.128784 -0.043243 -0.031464 -0.039276 +-0.071960 -0.010109 0.026733 -0.013763 0.130493 -0.041962 0.062500 -0.002930 -0.079590 -0.052002 -0.037842 0.011383 -0.030716 -0.006660 0.030945 -0.160889 0.016815 -0.025757 0.045532 0.057983 -0.042511 0.099548 -0.058655 -0.016708 0.018967 -0.054657 0.044464 0.081238 0.000474 0.007267 0.036591 -0.036530 0.032288 -0.002655 -0.101196 -0.041565 -0.096497 0.012512 -0.030487 0.072571 0.074280 0.098450 0.079712 -0.026245 -0.028397 0.027893 0.084534 0.002537 -0.105713 0.004124 0.014107 -0.043701 -0.172852 -0.044708 0.049194 0.014343 0.022217 0.009819 0.068298 -0.068726 0.079163 -0.014992 -0.097473 -0.014992 0.003750 0.049622 -0.022034 -0.037598 0.000240 -0.011543 0.110352 0.038696 0.152588 -0.061890 0.027649 -0.042877 -0.108826 0.028015 0.047943 0.006035 -0.033997 0.021866 0.008965 -0.053253 -0.076416 -0.059814 0.057739 0.030136 -0.031982 -0.096313 0.008018 0.046570 0.033997 -0.038055 -0.091919 -0.035614 0.063538 -0.040527 -0.092346 0.073425 0.072449 -0.078552 -0.025314 -0.066589 0.015541 0.047729 -0.055023 -0.066406 -0.024887 -0.010658 -0.035919 -0.066345 -0.043762 0.017548 0.030121 -0.052368 -0.012619 0.061035 0.046692 -0.072937 0.123413 -0.055573 0.047424 -0.034821 0.055847 0.056335 0.117004 0.028351 0.020523 -0.046356 -0.044189 -0.016846 -0.092712 0.051605 0.010727 0.055115 0.012657 -0.020889 0.059631 -0.028168 -0.059814 -0.006104 0.032379 -0.078674 -0.046173 0.076172 -0.009941 -0.040283 0.036835 0.033295 0.055908 -0.006760 -0.009346 0.047791 -0.070068 -0.043518 -0.052765 0.140137 0.000720 0.084229 0.025421 -0.079163 -0.038544 0.096130 0.025665 0.067749 -0.036835 -0.044525 -0.058380 -0.124207 0.032715 -0.027237 -0.040558 -0.101807 -0.034302 -0.032654 0.030426 0.006027 -0.045929 0.022736 0.055603 -0.090210 0.002617 0.013718 -0.003084 0.105347 -0.062927 0.005928 0.090942 -0.040009 -0.029129 -0.025345 -0.026413 0.088806 -0.029373 -0.044952 0.115784 -0.133179 0.072510 -0.037354 -0.161743 -0.038452 0.137695 0.130127 0.136597 0.055237 -0.061249 -0.076233 0.027115 0.096191 -0.040314 0.000861 0.086853 0.035400 -0.026260 0.065552 -0.055847 0.066956 -0.082214 -0.037384 0.011841 0.119324 0.099182 -0.019150 0.068115 0.088196 -0.035645 -0.027756 -0.089600 -0.013451 0.057526 0.028732 -0.044220 0.003584 0.113953 -0.096924 0.076416 -0.021881 -0.067505 0.032501 0.045441 0.008781 0.059296 -0.077393 0.112061 0.051819 -0.097168 -0.084473 -0.111084 -0.048737 0.083984 -0.067200 0.071899 0.061371 0.027313 0.019577 +-0.079529 0.000504 -0.010086 0.007622 0.010620 0.083191 -0.005043 -0.026443 0.019272 -0.029617 0.002476 0.063049 -0.135132 0.073303 0.025452 -0.096375 0.058258 0.073425 -0.081421 -0.052979 -0.062988 0.112976 -0.107544 -0.098938 0.029129 -0.033569 0.008575 0.137451 0.139771 0.004406 0.090820 -0.025528 -0.007843 0.026276 -0.100159 -0.023163 -0.083191 0.027557 0.025558 0.093018 -0.062286 0.065247 -0.010727 -0.026474 -0.093445 -0.024399 -0.013863 -0.070923 -0.150879 0.059784 0.093872 -0.136719 -0.126465 -0.110535 0.032684 0.000199 -0.010025 -0.012985 0.134644 -0.027863 0.015442 -0.066223 -0.002583 -0.024261 0.026703 0.062225 -0.031311 0.064087 0.066406 0.009659 0.069153 -0.051331 0.079407 0.074646 0.016968 -0.038879 -0.056671 0.028107 0.064514 0.066895 -0.008865 0.008324 -0.074524 0.063293 -0.096558 -0.101440 0.091309 0.027039 -0.041260 -0.075378 -0.093079 0.045380 0.010269 -0.010284 -0.088684 0.061401 0.073975 -0.005135 -0.047791 0.001044 0.013145 -0.063049 -0.016068 0.078247 -0.046387 -0.053253 0.011703 -0.012413 -0.042145 -0.048218 -0.023483 0.030167 -0.036957 -0.074890 0.044128 -0.040802 0.006348 0.071533 0.085449 0.023560 0.007099 -0.056274 0.001731 0.000491 -0.007584 -0.123291 -0.049133 -0.028992 0.071045 0.000670 0.001268 0.048248 -0.107483 -0.026596 0.090576 -0.003971 0.021408 0.043732 0.018066 -0.019775 -0.064209 -0.063293 0.038971 -0.007889 -0.019424 -0.039795 0.049500 -0.001017 -0.026428 0.064087 0.035126 0.006451 0.023315 0.009567 -0.068420 -0.112427 0.005844 0.106079 0.020996 0.064453 0.021561 -0.149536 0.007706 -0.059448 0.004192 0.045441 -0.058319 -0.073242 -0.050903 -0.113770 0.054443 -0.017990 -0.021790 -0.089844 -0.129395 0.031769 -0.023392 -0.046844 -0.031830 0.018188 0.063721 -0.074829 -0.019226 0.037659 -0.042603 0.125977 -0.028961 0.031189 0.091370 0.007309 -0.065796 0.020187 -0.065979 0.034271 0.054321 -0.022812 -0.053345 -0.029343 0.035492 -0.061523 -0.091675 -0.078491 0.069275 0.024918 0.104126 0.015343 -0.101685 -0.045898 -0.000736 0.069458 -0.045593 0.087036 0.055878 -0.055176 -0.096436 -0.076965 0.055359 0.031494 -0.077576 0.050415 -0.040955 0.010254 0.045319 -0.075562 0.029816 0.142822 -0.105530 -0.000152 -0.111267 0.004009 -0.026749 -0.038391 -0.017105 -0.151001 -0.059906 -0.129883 0.036407 -0.089233 -0.052917 0.091064 0.023361 0.003363 0.090637 0.002390 0.010254 -0.041779 -0.137939 0.010147 -0.095520 0.034332 0.058868 -0.011925 -0.022232 -0.026718 -0.022797 -0.006886 +-0.072693 -0.011787 0.100342 0.029190 0.096741 -0.019684 0.018402 0.037231 -0.064331 0.009186 -0.077515 -0.003145 -0.149170 0.004250 0.038330 -0.127319 -0.080322 0.001558 0.156494 0.048126 -0.017059 0.070435 -0.008087 -0.012787 0.066406 -0.074280 0.047668 0.064941 0.083435 -0.022736 0.011276 -0.090149 -0.010353 0.019760 -0.150513 -0.006905 -0.078674 -0.037964 0.036285 0.051544 0.015617 0.030930 0.026199 -0.106262 -0.060455 0.018219 0.044220 -0.033783 -0.121338 -0.094849 0.042358 -0.006203 -0.165649 -0.084229 -0.022522 0.029800 0.033783 0.014145 0.075684 -0.089539 -0.035156 0.019012 -0.122803 -0.063782 0.001392 0.014618 -0.074280 -0.047272 -0.070312 0.039795 0.094666 -0.013855 -0.021057 -0.027512 0.092041 -0.066589 -0.075439 0.019211 -0.010513 0.003649 -0.046082 0.002186 0.051086 0.064331 -0.012848 -0.091431 0.122009 0.034241 -0.076172 -0.113831 0.004368 0.041870 0.080139 -0.067871 -0.110352 0.002583 -0.037354 0.005005 -0.070068 0.104248 -0.016174 -0.111816 -0.064331 0.016663 -0.043671 -0.065491 -0.073608 -0.035492 -0.039215 -0.015137 0.024582 -0.065674 0.000111 -0.018372 0.024048 -0.049591 0.062561 0.103882 0.069397 -0.050171 0.075073 -0.019592 -0.000917 0.012657 0.006210 -0.007477 0.046173 0.083069 0.132812 0.037933 0.013824 0.014709 -0.068970 -0.030670 0.007851 0.022125 -0.054535 -0.118530 0.009766 -0.050751 -0.001475 0.011261 0.024719 -0.009811 -0.078308 0.065979 0.033386 -0.005829 -0.029327 -0.032776 -0.031342 -0.068420 -0.069214 0.087280 -0.032166 -0.089661 -0.018356 0.136597 0.085327 -0.003134 0.019318 -0.119080 -0.030746 0.100891 0.003513 -0.036255 -0.018600 -0.029480 -0.006737 -0.069763 0.092590 -0.022522 -0.085999 -0.026093 0.037994 0.036346 0.022034 -0.048279 -0.045288 -0.054260 0.094971 -0.103271 -0.036591 0.040100 -0.099182 0.089111 -0.009903 -0.037109 0.070801 -0.016495 -0.000906 -0.038086 -0.072266 0.032196 0.007523 -0.042053 0.077698 -0.043976 0.033417 -0.095215 -0.048279 -0.012512 0.067810 0.123413 0.060181 0.102478 -0.058380 -0.033844 -0.083740 0.068726 -0.036957 0.125488 0.066101 -0.080261 -0.090942 0.000573 0.081970 -0.015747 -0.096252 0.084961 -0.094971 -0.005005 0.021103 -0.058350 0.071594 -0.029114 -0.009407 -0.012665 -0.035980 -0.059021 0.083984 -0.117126 0.011208 -0.037720 0.045197 -0.079163 -0.015533 -0.018127 -0.028595 0.071350 -0.029388 -0.018280 0.027435 -0.080078 0.032562 0.068787 -0.091919 0.013695 0.043823 -0.058716 0.068909 0.007935 0.092773 -0.100098 -0.088745 -0.033356 +-0.007950 -0.035278 0.057831 0.018951 0.040009 0.057861 0.019089 -0.045471 -0.026199 -0.070374 -0.049622 0.026291 -0.040771 0.017334 0.051025 -0.182129 0.035431 -0.081543 0.058807 0.024933 -0.081543 -0.023117 -0.014015 -0.016800 0.025299 0.008194 0.049255 0.041229 0.077942 -0.002451 0.075806 -0.046875 -0.031464 -0.036194 -0.083435 -0.114136 -0.031921 -0.006477 0.022888 0.106445 0.088684 0.072388 0.048492 0.033081 -0.062561 0.078125 0.087036 -0.037048 -0.020081 0.003115 0.030258 -0.103699 -0.108215 0.015900 0.071838 -0.020798 0.079834 0.027252 0.057709 -0.074097 0.012047 0.019257 -0.096436 0.052429 -0.038361 0.001329 -0.029434 -0.046631 -0.014618 0.018448 0.030243 -0.025192 0.168335 -0.088379 0.070740 -0.048981 -0.149780 0.061310 0.101685 -0.002300 -0.043243 0.023529 -0.009438 -0.023346 -0.120361 -0.102051 -0.004658 0.038849 0.002380 -0.024338 0.025665 0.083313 0.008865 -0.060730 -0.055817 0.001698 0.070251 -0.080933 -0.059021 0.053436 0.001541 -0.092163 -0.046600 -0.045563 0.021912 0.058350 -0.028763 -0.058990 -0.036987 -0.063110 -0.061829 -0.027832 -0.005993 0.017380 0.051575 -0.074219 0.005005 0.106628 0.034149 -0.003845 0.116394 -0.068970 -0.014847 -0.035675 0.072754 -0.024902 0.165527 -0.046539 0.062378 -0.013908 0.005917 0.012070 -0.065552 0.059052 0.009010 -0.031052 -0.008057 -0.077026 0.074341 -0.026443 -0.026672 0.000296 0.014328 -0.067383 0.042511 0.028366 -0.027802 -0.002668 0.038971 0.016785 0.016724 -0.013802 0.059692 -0.043030 -0.026474 -0.107239 -0.049988 0.070251 -0.075562 0.099121 0.016769 -0.078369 -0.092834 0.070801 0.035034 0.045410 -0.121155 -0.035400 -0.053223 -0.070068 0.042480 -0.121887 0.055878 -0.075256 -0.000730 0.051697 0.044586 -0.066711 0.017456 0.035095 0.060059 -0.083984 0.011459 0.074646 -0.027832 0.057739 -0.101990 0.004593 0.145142 0.048706 0.018356 -0.048096 -0.018906 -0.001160 -0.027893 -0.030029 0.060669 -0.124695 0.011932 0.069763 -0.093628 -0.042114 0.092407 0.108276 0.072388 0.098572 -0.062408 -0.101440 -0.021042 -0.002533 -0.066101 -0.004780 0.072632 0.016357 -0.023376 -0.052094 -0.019653 0.076721 -0.082336 -0.079590 0.002762 0.137329 0.065735 0.061859 0.024612 0.165894 0.051178 0.026550 -0.091614 -0.044220 0.049561 0.079407 0.036133 0.005314 0.029495 -0.054199 0.127075 -0.020203 -0.164551 0.056854 0.099121 0.046295 0.000232 -0.062988 0.109070 -0.013542 -0.044708 -0.030670 -0.028122 -0.019379 -0.002829 -0.028305 0.127441 -0.012024 0.033508 -0.031250 +-0.036774 0.059906 0.007812 -0.027405 0.027802 0.058563 0.031708 0.019852 -0.058899 -0.040771 0.007118 0.050018 -0.026794 0.039337 0.068176 -0.093628 0.042572 -0.022766 0.023041 0.085815 -0.047882 0.048462 -0.079529 0.003159 0.106384 -0.030624 0.020584 0.071350 0.121277 0.048492 0.021729 -0.000547 -0.001014 0.022263 -0.071899 0.004353 -0.090027 0.009987 0.076843 0.120850 -0.011574 0.002878 -0.028198 -0.043274 -0.122681 -0.010452 0.116882 0.026321 -0.035095 0.026276 0.066223 -0.142700 -0.110718 -0.129028 0.036743 0.092468 0.028946 -0.010063 0.063965 -0.007389 -0.013794 0.029633 -0.019318 -0.097107 0.023788 0.051880 -0.008713 -0.061493 0.045105 0.064148 0.145508 0.015343 0.068848 -0.005005 0.058746 -0.035828 -0.150146 -0.018845 0.108154 0.046631 0.027893 0.075745 0.043640 0.040955 -0.051086 0.006142 0.046204 0.030777 -0.055878 -0.074158 -0.081116 0.028915 0.019135 -0.018143 -0.058716 0.038940 0.121460 -0.087952 -0.074036 0.054962 0.019257 -0.021271 -0.029343 -0.034821 -0.027847 -0.009468 -0.084961 -0.006275 -0.073181 -0.059784 -0.019318 -0.027313 -0.113342 -0.012100 -0.010414 -0.043915 -0.035858 0.075134 0.069458 -0.047394 -0.017044 -0.113342 -0.009277 -0.026855 0.100525 0.005264 0.043335 -0.015671 0.069763 0.025787 0.086182 -0.049744 -0.112976 0.041992 0.081055 -0.014153 -0.055817 -0.042053 -0.008095 -0.052765 -0.008560 0.017288 0.012192 -0.024124 -0.022476 0.016113 0.037781 0.070068 0.021454 -0.025894 0.007637 0.015060 0.012817 0.013016 -0.087769 -0.166626 -0.027710 0.138794 0.077454 0.073425 0.107544 -0.079773 -0.051636 0.136597 -0.005013 0.110535 -0.018265 0.076843 -0.085510 -0.106934 0.052887 -0.015778 0.037201 -0.051636 -0.060486 -0.053040 0.035309 -0.004551 0.028625 -0.018753 0.050964 -0.001712 0.038269 0.086243 -0.074036 0.088501 -0.030411 0.055084 0.105713 -0.083496 -0.026337 -0.014778 -0.037781 0.039856 0.002731 -0.019775 0.012169 -0.116150 -0.026581 0.089050 -0.126953 -0.074463 0.057404 0.060913 0.113647 0.126343 -0.177490 -0.016098 0.121338 0.025635 -0.034912 0.037933 0.054993 0.002819 -0.044312 -0.017319 -0.002031 0.054047 0.002380 0.025864 -0.065430 0.120789 0.033661 0.065063 0.037476 0.164795 0.007702 0.021988 -0.102295 -0.028351 0.027954 -0.056335 -0.024338 -0.043091 -0.024368 -0.092346 0.027893 -0.004936 -0.091309 0.057648 0.029129 0.064697 0.062347 -0.014366 0.105286 -0.029861 -0.035004 -0.012291 -0.043488 -0.002838 0.077637 -0.021118 0.067261 -0.046326 -0.028198 0.019073 +-0.019547 0.017227 0.079468 0.050995 -0.020905 0.054535 0.063477 0.010490 -0.075073 -0.027695 -0.036591 0.005089 -0.050415 -0.009796 0.065369 -0.159302 0.028259 -0.103210 0.031952 0.041595 -0.074524 0.036835 0.003414 0.004292 0.091736 -0.019775 0.019318 0.123596 0.091431 0.084656 0.047760 -0.075256 -0.080139 0.047638 -0.089172 -0.030365 -0.032898 -0.005299 0.034027 0.136230 -0.006153 0.004593 -0.020660 -0.057709 -0.154297 0.028580 0.072815 -0.027557 -0.080261 -0.006535 0.044159 -0.076477 -0.194458 -0.118530 0.001003 0.013329 -0.002794 -0.037262 0.078369 -0.052185 -0.019104 0.067749 -0.052307 -0.044281 -0.019089 -0.037018 -0.019043 -0.112366 -0.004452 0.027481 0.078003 -0.022705 0.033630 -0.048706 0.076233 -0.039429 -0.141479 0.001478 0.106079 0.027679 0.019119 -0.010971 0.076660 0.070923 -0.070129 0.007637 0.054382 0.018478 -0.065247 -0.059662 0.035461 0.056519 0.016312 -0.109497 -0.091309 0.016678 0.058228 -0.058716 -0.019608 0.047974 0.008888 -0.077820 -0.052521 -0.039948 -0.047821 0.062927 -0.074585 -0.025009 -0.042480 -0.041351 0.006721 -0.080444 -0.102600 -0.011734 -0.024414 -0.074036 -0.013779 0.098022 0.035858 -0.045227 0.036591 -0.086182 -0.032288 -0.010651 0.117126 0.044708 0.133179 -0.000095 0.007702 -0.000188 0.034454 -0.052490 -0.103088 0.054626 0.019211 0.024567 0.032745 -0.086304 -0.001982 -0.085938 -0.013824 0.042572 0.031250 -0.121704 -0.041443 0.066345 0.049042 0.030045 -0.000487 -0.053009 -0.018280 0.011147 -0.004734 0.001528 -0.063721 -0.177979 -0.077087 0.121643 0.034363 0.026962 0.038391 -0.059692 -0.070862 0.133667 0.021194 0.040527 0.000845 0.043121 -0.090576 -0.050781 0.028046 -0.032043 0.029404 -0.055267 -0.020523 0.029922 0.021484 -0.019424 0.043457 -0.000768 0.095520 -0.065491 0.007076 0.061493 -0.083496 0.017975 -0.070068 -0.006790 0.103516 -0.037903 0.011345 -0.002974 -0.061798 0.018494 0.024857 -0.005688 0.017654 -0.091797 -0.030640 0.061340 -0.094360 0.028656 0.068726 0.114441 0.042694 0.123596 -0.102112 -0.067688 -0.051117 -0.021927 -0.054047 0.016983 0.085022 -0.055756 -0.088867 -0.021667 0.001245 0.129517 -0.000105 -0.028290 -0.089905 0.091797 0.070679 0.044403 0.107361 0.118713 -0.009193 0.001342 -0.065735 -0.090759 0.062744 -0.050201 -0.011253 -0.028641 -0.019089 -0.081360 0.038177 -0.005924 -0.100769 0.075806 -0.002293 0.025299 0.014084 -0.096252 0.108765 0.042755 -0.044373 0.031555 -0.020432 -0.063660 0.049377 0.059967 0.079712 -0.019913 -0.069519 -0.024734 +-0.099182 -0.005066 0.021225 0.041534 0.022964 0.086365 0.043854 -0.005367 -0.035828 -0.026932 0.039917 0.029739 -0.040344 0.031403 0.073242 -0.131226 0.041107 -0.035278 0.069397 -0.028214 -0.099670 0.088501 -0.085144 -0.116577 0.074890 -0.016815 -0.033081 0.002676 0.087585 0.018158 0.060028 -0.052917 -0.057190 -0.071045 -0.073059 -0.187256 -0.090088 -0.025604 0.024994 0.117737 0.022842 0.034973 -0.064453 -0.025558 -0.175415 0.025665 0.054901 -0.015671 -0.116333 -0.014664 0.101135 -0.145142 -0.055359 -0.048553 0.041168 0.063782 0.061981 0.016357 0.051331 -0.074158 0.000396 0.041718 -0.044952 -0.043640 0.034119 0.048859 0.000998 0.001293 0.014595 0.047272 0.068970 0.003481 0.036926 -0.000822 -0.002008 -0.007492 -0.104431 -0.055817 0.108215 0.069031 -0.047333 0.022583 -0.067383 0.033600 -0.064941 -0.058563 0.044800 0.029953 -0.033630 -0.083862 -0.016327 0.044037 -0.032349 -0.035828 -0.058197 0.022308 0.098083 -0.023361 -0.011063 0.042847 -0.014885 -0.066040 -0.039337 0.057129 -0.029373 -0.044922 0.020065 0.000145 0.013512 -0.030045 -0.062744 0.014297 -0.052612 -0.045868 -0.033386 -0.074707 -0.004780 0.133057 0.078918 -0.004128 0.010666 -0.044159 0.005611 0.006313 0.010712 -0.095337 0.013992 0.051422 0.012039 0.062927 0.044006 -0.047089 -0.063660 0.002865 0.010681 0.040802 -0.003397 0.039734 0.026505 -0.023529 -0.039856 -0.022858 0.052826 -0.099487 -0.001122 0.035339 0.073364 0.030167 -0.028961 0.042938 0.081665 0.006699 0.060913 -0.011246 -0.012276 -0.092712 -0.021683 0.015945 -0.004311 0.099121 0.032410 -0.060486 0.008461 0.063416 -0.004272 0.095154 -0.043365 0.020187 0.018539 -0.083435 0.078674 -0.111816 0.058105 -0.037048 -0.075562 0.071411 -0.007881 -0.094727 0.003986 0.010460 -0.018463 -0.040161 0.013809 0.112366 -0.119629 0.163940 0.004501 0.022598 0.109497 -0.067810 -0.032806 0.011215 -0.023804 0.021713 0.069763 -0.030396 0.063782 -0.068726 0.049561 0.045929 0.006653 -0.064209 -0.001053 -0.026169 0.076294 0.067444 -0.079590 -0.050201 0.036072 0.091858 -0.073486 0.091614 0.091553 -0.017975 -0.025253 -0.041229 -0.034149 -0.005013 -0.031921 0.080383 -0.113281 0.138306 0.010628 -0.000715 0.087891 0.230347 0.031067 0.060028 -0.186768 -0.050842 0.009583 -0.094971 0.042694 -0.068420 -0.054352 -0.093201 0.130371 -0.096924 -0.046082 0.024399 0.033966 -0.073059 0.068176 -0.030472 0.085205 -0.066650 -0.018066 -0.007835 -0.076233 -0.012787 0.037811 -0.001780 0.080505 -0.025040 0.006687 0.001554 +-0.002672 0.004059 0.026733 0.010757 0.015106 0.086914 0.065796 -0.050537 -0.040924 -0.048615 0.022690 0.055389 -0.011513 0.045227 0.033173 -0.125732 0.079285 -0.035553 -0.069458 -0.001429 -0.090271 0.070923 -0.080750 -0.076172 0.032318 -0.036713 -0.007397 0.093140 0.125244 0.035828 0.122253 -0.069458 -0.008095 0.041077 -0.101562 0.009193 -0.057312 0.009148 0.008636 0.118774 -0.010574 0.071045 0.069946 -0.021774 -0.111633 0.034119 0.096008 -0.027496 -0.103882 0.057892 0.067505 -0.157715 -0.170532 -0.086731 0.047028 -0.013161 0.005875 0.026962 0.098511 -0.056976 0.056030 -0.040436 -0.045837 -0.006550 -0.013000 0.021942 0.004185 -0.050049 0.054352 -0.001036 0.066711 -0.023544 0.143799 -0.037781 0.002804 -0.054565 -0.118469 0.071777 0.097595 0.006382 -0.001653 0.035065 -0.008743 -0.016754 -0.103516 -0.054108 0.050659 0.013130 -0.025101 -0.030762 -0.003277 0.105652 -0.010101 -0.058441 -0.089661 0.018799 0.079163 -0.045532 -0.021484 0.046417 0.048798 -0.106201 -0.002993 -0.044739 -0.018768 0.088440 -0.031174 -0.044067 -0.074158 -0.052063 -0.064575 -0.041046 -0.092102 -0.040955 0.045959 -0.056305 -0.005505 0.094849 0.033752 0.009224 0.042328 -0.089050 0.023071 -0.056366 0.105957 -0.021790 0.109131 0.007389 0.033264 -0.050262 -0.002802 0.002913 -0.065247 0.039398 0.060150 0.015266 0.048676 -0.018097 0.017242 -0.038422 -0.031677 0.015205 0.021362 -0.086975 -0.015106 0.045349 -0.014008 0.016617 0.021271 0.014214 -0.007179 0.000177 0.051727 -0.010948 -0.080811 -0.132080 -0.056763 0.114258 -0.016556 0.067444 0.043976 -0.097473 -0.050110 0.037781 0.044250 0.073608 -0.092468 -0.046295 -0.076172 -0.115295 0.041016 -0.032104 0.046783 -0.104492 -0.117310 0.002762 0.021545 -0.027527 0.015839 0.030273 0.060760 -0.074524 0.025879 0.048279 0.001818 0.040070 -0.119873 0.030243 0.137207 0.011017 -0.027191 -0.044159 -0.044098 0.067688 0.014481 -0.005348 -0.002609 -0.142456 0.010223 0.002949 -0.171997 -0.035400 0.100769 0.081604 0.081970 0.059143 -0.123291 -0.072754 -0.009857 0.011314 -0.049072 -0.004211 0.082336 0.008682 -0.069885 -0.027573 0.000644 0.088989 -0.042786 -0.016357 -0.022034 0.107605 0.057037 0.054565 0.092285 0.171631 -0.045654 -0.001109 -0.085327 -0.042786 0.014229 0.013802 -0.041016 -0.080200 0.034760 -0.088806 0.052002 -0.017181 -0.106201 0.052856 0.030502 0.021698 0.059326 -0.036957 0.097900 -0.040710 -0.097534 0.022766 -0.035065 -0.043304 0.049133 0.008873 0.037415 0.034973 -0.000811 -0.023911 +-0.033356 -0.034546 -0.002728 -0.010056 0.047394 0.056671 0.029099 -0.058655 -0.011841 -0.065125 -0.045746 0.014122 -0.076660 -0.031021 0.024994 -0.169678 0.030624 -0.044495 -0.001725 -0.036255 -0.101257 0.080139 -0.048157 -0.075623 0.039581 -0.062866 0.001045 0.083923 0.044678 -0.019852 0.106628 -0.089905 -0.023071 -0.026917 -0.182129 -0.073608 -0.077209 -0.002439 0.049744 0.131470 0.022186 0.041656 0.075195 -0.002686 -0.084961 0.042877 0.093628 -0.039886 -0.089966 0.005455 0.045105 -0.053894 -0.172852 -0.057800 0.061707 0.005562 0.041077 0.003012 0.045776 -0.064636 0.011955 -0.010483 -0.055603 0.030624 -0.040955 -0.002554 -0.006348 -0.032593 -0.009300 -0.040100 0.045074 -0.042480 0.140015 -0.053650 0.026001 -0.093994 -0.088379 0.059540 0.052246 -0.005692 -0.018097 0.005764 -0.009865 -0.022491 -0.081421 -0.091553 0.035004 0.014458 -0.016434 -0.054993 0.022873 0.091614 0.036102 -0.076050 -0.091797 0.046722 0.009140 -0.052368 -0.044617 0.126587 0.048370 -0.133057 -0.008705 -0.047302 -0.049835 0.045441 -0.021759 -0.079041 -0.095947 -0.056152 -0.045135 -0.001440 -0.000105 0.001273 0.044281 -0.042694 0.036774 0.108521 0.006268 -0.019897 0.098999 -0.052521 -0.018921 -0.036499 0.017334 -0.034393 0.091980 -0.027481 0.028458 -0.001714 -0.017715 -0.019150 -0.042480 0.030685 0.010597 -0.005608 -0.005108 -0.054871 0.061890 -0.028534 -0.086487 0.041534 0.016510 -0.054535 -0.017990 0.066528 -0.003099 -0.050201 -0.029160 0.005199 0.038422 0.025894 0.066162 -0.002695 -0.018707 -0.069336 -0.027725 0.089233 -0.053650 0.092407 0.040314 -0.085083 -0.075317 0.048584 0.026321 0.045410 -0.115051 -0.083374 -0.040924 -0.103516 0.055267 -0.074280 -0.021698 -0.116638 -0.051788 0.030289 0.049744 0.005131 -0.006432 0.023773 0.052612 -0.105286 -0.009377 0.040436 -0.077515 0.061005 -0.105042 0.013550 0.160889 0.029907 -0.029160 -0.053619 -0.014496 0.007076 -0.007786 -0.039001 0.028610 -0.123962 0.070007 -0.055634 -0.137451 -0.039246 0.110840 0.134766 0.123657 0.061676 -0.064392 -0.060852 -0.029709 0.063049 -0.045807 0.026840 0.109619 -0.006126 -0.074280 0.000083 -0.064453 0.094727 -0.112854 -0.029205 -0.023346 0.117798 0.074585 -0.022858 0.062134 0.143433 -0.079590 0.000958 -0.085815 -0.018127 0.053772 0.046356 -0.032806 -0.054596 0.056396 -0.064941 0.058990 -0.066284 -0.106201 0.040741 0.034576 -0.010460 0.062805 -0.015701 0.069458 0.016159 -0.072998 -0.021057 -0.067200 -0.071716 0.063721 -0.050934 0.106812 0.044342 -0.018616 -0.041840 +-0.002821 0.025803 0.044159 -0.007591 -0.024857 0.100464 0.018265 -0.035095 -0.049591 -0.051483 0.053223 0.046173 -0.100525 0.140991 0.019089 -0.059235 0.053009 0.067810 0.021881 0.004410 -0.064148 0.106201 -0.068420 -0.088318 -0.002048 0.011604 0.072021 0.107178 0.106323 -0.033020 0.077148 -0.049347 -0.022018 0.043884 -0.082520 -0.040894 -0.057526 0.048553 0.011414 0.103027 -0.017990 0.108459 -0.035797 -0.016418 -0.051697 0.023163 0.007095 -0.065979 -0.154297 0.067993 0.091003 -0.135864 -0.106628 -0.130615 -0.037048 -0.020493 -0.021149 -0.003214 0.139038 -0.022232 0.056915 -0.089417 0.001871 0.043243 0.046478 0.065369 0.028397 -0.019608 0.087036 0.010872 0.025284 -0.052429 0.152222 0.034760 0.020905 -0.041595 -0.078308 0.075989 0.096252 0.080444 -0.035065 0.052490 -0.054169 0.023605 -0.102539 -0.073547 0.130005 -0.001807 0.007305 -0.077881 -0.066772 0.059479 0.007988 -0.028412 -0.092896 -0.011925 0.027695 -0.005627 -0.034302 0.000691 -0.004726 -0.073181 -0.055084 0.019928 -0.072266 -0.013229 0.012375 -0.010880 -0.020554 -0.072815 -0.058380 -0.015511 -0.014206 -0.043518 0.066040 -0.064392 -0.000247 0.099304 0.052490 0.055054 0.046112 -0.056427 0.085571 -0.024567 -0.008087 -0.085571 0.037323 -0.014427 0.026825 -0.016541 0.011932 0.040955 -0.093994 0.043274 0.098633 0.071960 0.004017 -0.027695 0.053528 -0.031250 -0.008774 -0.073975 0.043427 -0.053040 -0.031952 -0.015961 0.043121 -0.045288 -0.002979 0.093811 0.058044 0.015060 0.017899 -0.038239 -0.063110 -0.134277 -0.084229 0.096497 -0.025116 0.036163 0.024384 -0.130493 0.025482 -0.093994 0.017410 0.059753 -0.103088 -0.052063 -0.083374 -0.091187 0.051514 -0.075562 0.025864 -0.063293 -0.094788 0.089661 0.011978 -0.108154 0.006912 0.005478 0.068909 -0.083801 0.034546 0.054291 -0.032684 0.099304 -0.043427 0.046051 0.089722 0.046509 -0.021622 -0.017944 -0.077271 0.085449 0.083252 -0.005154 -0.003345 0.003571 0.014122 -0.010872 -0.154053 -0.054291 0.108093 0.058777 0.062164 0.033569 -0.105652 -0.056183 -0.039368 0.063660 -0.009010 0.036804 0.081543 -0.072205 -0.087402 -0.086365 0.053528 0.036438 -0.058533 0.001586 0.004669 0.008781 0.012077 0.014732 0.028824 0.194580 -0.026169 -0.044373 -0.102966 -0.045837 -0.014503 -0.018097 -0.004013 -0.075745 -0.009956 -0.122498 0.033783 -0.042450 -0.033264 0.083496 0.011345 0.036377 0.034454 -0.009483 0.047577 -0.016571 -0.102356 0.020218 -0.106445 -0.011894 0.062073 0.010345 -0.014198 -0.018204 -0.013016 -0.013954 +-0.051422 -0.053284 0.033264 -0.019348 0.068909 0.092041 -0.007626 -0.049500 -0.018585 -0.018509 -0.024490 0.023331 -0.092041 -0.051697 0.052521 -0.158569 -0.001888 0.013802 -0.018372 0.056274 -0.113647 0.049927 -0.018723 -0.039642 0.066772 -0.038025 0.009285 0.036957 0.110291 -0.014015 0.099365 -0.024445 0.010544 0.026718 -0.131836 -0.059906 -0.123230 -0.000493 0.050476 0.082458 0.036774 0.028610 0.064758 -0.040253 -0.095154 0.006378 0.111267 -0.037750 -0.070679 -0.021194 -0.011139 -0.085022 -0.119202 -0.054291 -0.006268 0.027054 0.079224 -0.026031 0.058014 -0.014084 0.014961 -0.047241 -0.129150 0.021713 -0.073364 -0.006302 -0.001666 -0.072205 -0.045105 0.010315 0.056580 -0.057861 0.106812 -0.061462 0.089111 -0.050049 -0.067810 0.059448 0.066345 -0.023392 -0.041290 -0.026657 0.015091 0.015144 -0.044128 -0.069580 0.012932 0.013809 -0.035828 -0.072083 -0.007751 0.153931 0.008934 -0.084351 -0.102417 -0.019806 0.050262 -0.049683 -0.085144 0.093811 0.042603 -0.149292 -0.028427 0.007362 -0.094604 -0.027130 -0.071899 -0.089783 -0.086975 -0.042114 -0.065063 -0.013649 -0.061584 -0.073181 0.021790 -0.049225 0.014732 0.083130 0.011467 -0.037445 0.103821 -0.039001 -0.027924 -0.068298 0.101074 -0.050781 0.085571 0.016190 0.086304 0.005844 0.006462 -0.003719 -0.077576 0.048737 0.023132 -0.030807 -0.052460 -0.083557 0.000701 -0.020462 -0.086426 0.015518 0.030045 -0.053162 -0.056732 0.058624 -0.009583 -0.033203 -0.043854 0.026459 -0.024567 -0.022308 0.034515 0.014580 -0.033356 -0.088257 -0.021194 0.123474 0.008614 0.056152 0.046875 -0.116333 -0.063660 0.066162 0.046844 0.070007 -0.092346 -0.072937 -0.010422 -0.103455 0.078003 -0.042969 -0.005531 -0.107361 -0.028351 0.019852 0.002773 0.000597 0.063965 -0.000360 0.041931 -0.072998 -0.041748 0.056549 -0.057983 0.047974 -0.065735 0.014565 0.132202 -0.018295 -0.050079 -0.066467 -0.073059 0.010010 -0.011925 -0.054504 0.052734 -0.181274 0.077820 -0.045624 -0.124268 -0.041901 0.023117 0.122131 0.085083 0.061157 -0.073975 -0.050476 0.016479 0.056702 -0.098999 0.088379 0.071533 0.014328 -0.107910 -0.022766 0.011124 0.049835 -0.092468 0.015518 -0.040497 0.075928 0.046265 -0.019745 0.064575 0.108826 -0.066101 0.046539 -0.070496 -0.008858 0.036987 -0.034485 -0.040802 -0.058136 0.095459 -0.040802 0.078247 -0.049438 -0.113708 0.022324 0.021973 -0.035706 0.082458 -0.057648 0.056549 0.057007 -0.092590 -0.034424 -0.006813 -0.047485 0.076721 -0.015038 0.098694 -0.017593 0.005287 -0.057800 +-0.083923 -0.012230 0.036377 0.001880 0.021027 0.098328 0.088074 -0.047119 -0.083435 0.030960 0.012840 0.022110 -0.025635 0.007576 0.040222 -0.104980 0.031799 0.003391 -0.014328 0.080750 -0.052856 0.077148 -0.070862 -0.006203 0.115295 -0.024765 -0.053528 0.059540 0.118042 0.079163 0.098328 -0.004402 -0.044159 0.083862 -0.062927 -0.026306 -0.086182 -0.012077 0.033142 0.084900 -0.015068 -0.005337 -0.015839 -0.082764 -0.130981 -0.024643 0.101074 -0.011688 -0.087646 -0.039490 0.030334 -0.163574 -0.107239 -0.141602 0.025986 0.070068 0.046326 -0.045837 0.022034 -0.036896 0.001183 0.026443 -0.074341 -0.006821 0.000267 -0.016037 -0.049896 -0.116150 0.032227 0.029068 0.074280 -0.000811 0.057343 -0.062927 0.066162 -0.058685 -0.067627 0.012573 0.090881 0.003183 -0.027817 -0.003468 0.041870 0.008095 -0.015152 -0.011559 0.040588 0.029663 -0.109985 -0.122498 0.018463 0.107300 -0.009285 -0.073914 -0.101318 0.005703 0.119202 -0.004696 -0.077576 0.057648 0.032440 -0.077576 -0.057434 0.044891 -0.054169 0.004650 -0.093750 0.040436 -0.063660 0.020065 -0.064148 -0.044128 -0.085144 -0.079407 0.019424 -0.082153 -0.070129 0.058411 0.043793 0.005188 -0.016678 -0.095032 -0.012497 -0.041290 0.122498 0.006672 0.086182 -0.002424 0.070068 -0.000957 0.029709 0.001432 -0.095703 0.081177 0.028687 -0.013474 -0.014427 -0.095276 -0.040283 -0.039459 0.027740 -0.009064 0.014862 -0.117004 -0.057037 -0.005444 0.065369 -0.016647 0.021286 0.017456 0.014336 -0.040070 0.027634 0.029068 -0.074524 -0.130371 -0.008507 0.121033 0.050934 0.060547 0.081299 -0.095215 -0.080566 0.089905 0.025238 0.028152 -0.066772 -0.001808 -0.019608 -0.091431 0.045502 0.032990 0.038818 -0.041168 -0.083618 0.009956 -0.001778 0.008873 0.040405 0.021317 0.054016 -0.076111 0.024612 0.043762 -0.044189 0.048004 -0.010689 -0.006115 0.116516 -0.037201 -0.032440 -0.022400 -0.051666 0.048187 -0.004246 0.000114 0.003225 -0.202393 0.018555 0.010117 -0.122131 0.004211 -0.005424 0.051971 0.013687 0.083557 -0.095276 -0.114319 0.024429 0.051422 -0.080688 0.077942 0.073425 0.004986 -0.061737 -0.074890 0.051819 0.075134 -0.044739 0.034943 -0.110535 0.098267 0.082581 0.013878 0.101440 0.111450 -0.069519 0.039032 -0.114014 -0.040375 0.022415 -0.049500 -0.053467 -0.050598 0.028809 -0.076111 0.046692 0.017807 -0.155518 0.061096 -0.004524 -0.013512 0.040497 -0.059937 0.103699 -0.029770 -0.070801 -0.027710 0.006432 -0.050720 0.047729 0.082214 0.055542 -0.018814 0.014801 -0.007912 +-0.038055 0.019958 0.049561 0.041565 -0.013458 0.048767 0.025894 0.024277 -0.060150 -0.004219 -0.010170 -0.001792 -0.160034 0.095154 0.058044 -0.100464 0.001265 0.027161 0.046783 -0.025162 -0.106812 0.093262 -0.044556 -0.096619 0.016220 -0.045166 0.054718 0.070923 0.123962 -0.019836 0.048279 -0.039490 -0.060577 -0.031555 -0.121948 -0.039825 -0.044128 0.019684 -0.011787 0.158203 0.004612 0.101318 0.011192 -0.075317 -0.130127 0.006428 0.025177 -0.051422 -0.121582 -0.009109 0.119995 -0.091309 -0.114380 -0.091431 0.021194 0.017303 -0.006992 0.022659 0.126465 -0.099365 0.009476 -0.004822 -0.075073 -0.054962 0.034912 0.069763 -0.049225 0.017838 0.015327 0.080994 0.060272 -0.027176 0.003904 -0.002186 0.049194 -0.050659 -0.130371 -0.002192 0.100281 0.084290 -0.059326 0.002989 -0.040375 0.130737 -0.059326 -0.131836 0.087219 0.074768 -0.063599 -0.080322 -0.046356 0.012016 0.013664 -0.023819 -0.105591 0.052124 0.015106 -0.039337 -0.053833 -0.005165 -0.013947 -0.066895 -0.040619 0.096863 -0.030121 -0.054016 0.003914 -0.058014 -0.029083 -0.039673 -0.031174 -0.045319 -0.036102 -0.071655 0.032715 -0.075317 0.040039 0.135498 0.072388 -0.003748 0.016144 -0.075562 -0.011444 -0.019455 0.019958 -0.112732 -0.013557 0.066162 0.090149 0.043732 0.008461 0.006870 -0.085693 -0.037445 0.064697 0.061066 0.021210 0.004478 0.039917 -0.038757 -0.034210 -0.053619 0.005909 -0.031921 -0.039185 0.028717 0.054077 0.104980 0.003412 -0.048187 0.026352 -0.015762 0.012947 0.008896 -0.033752 -0.166016 -0.004364 0.092224 0.071167 0.043793 0.024017 -0.109741 0.025528 0.055420 -0.035034 0.036987 0.007515 -0.043732 -0.076782 -0.078735 0.110657 -0.079407 -0.035950 -0.041412 -0.048218 0.031616 -0.016083 -0.081970 -0.014015 -0.019241 0.048950 -0.077698 -0.032562 0.088989 -0.120178 0.118713 -0.021210 0.001942 0.062225 -0.024872 -0.034668 0.016403 -0.064392 0.011452 0.080566 -0.017426 0.007988 -0.010399 0.001991 0.002514 0.012474 -0.013641 0.063721 0.014748 0.064331 0.069824 -0.111450 -0.060699 -0.041199 0.053741 -0.033447 0.122681 0.055145 -0.037018 -0.078003 -0.044312 0.109619 -0.029160 -0.057770 0.092041 -0.087097 0.020737 0.011780 -0.014877 0.043213 0.157104 0.013802 -0.001750 -0.102783 -0.048615 0.028397 -0.114380 0.045258 -0.077942 -0.051392 -0.072021 0.063110 -0.056976 -0.049683 0.069885 0.005642 0.024658 0.067627 -0.033905 0.082336 -0.031616 -0.055603 0.076233 -0.071289 0.024704 0.048096 -0.029373 0.031235 -0.098694 -0.029358 -0.051636 +-0.004452 -0.003263 0.044342 -0.006626 -0.053192 0.069397 0.042877 -0.056915 -0.046265 0.008614 0.029205 0.022827 -0.115234 0.135010 0.019547 -0.107544 0.045074 -0.041199 0.021286 0.038055 -0.053955 0.044586 -0.040985 -0.052399 0.010002 0.046509 0.083252 0.088867 0.118347 0.006226 0.137695 -0.022202 -0.039490 0.046051 -0.126831 0.006031 -0.063843 0.069519 -0.022369 0.105652 0.003038 0.086365 -0.016495 -0.068909 -0.058624 0.046265 0.041656 -0.025833 -0.147827 0.074951 0.087585 -0.111328 -0.089783 -0.045929 -0.039398 -0.042816 0.020233 -0.039825 0.115112 -0.023148 0.064209 -0.119690 -0.067322 0.015686 -0.012474 0.029480 0.039520 -0.064575 0.069946 0.050079 0.045074 -0.043518 0.098206 0.012657 0.035065 -0.056824 -0.109619 0.025223 0.181030 0.065186 -0.042755 0.002779 -0.012924 0.016998 -0.074890 -0.020874 0.043762 0.030609 -0.012344 -0.064575 -0.027969 0.075317 -0.031830 -0.088074 -0.102173 -0.070312 0.048645 -0.054413 -0.077881 0.036102 0.006519 -0.100037 -0.084290 0.012535 -0.069458 0.001565 -0.011230 -0.068726 -0.033447 -0.057190 -0.034302 -0.009758 -0.048798 -0.059326 0.039276 -0.068848 -0.020523 0.094482 0.011330 0.043030 0.027939 -0.042725 0.054535 -0.037201 0.069885 -0.043793 0.076294 -0.003647 0.001885 -0.037964 -0.023758 0.065857 -0.118225 0.075134 0.091858 0.037872 0.010193 -0.075256 0.036346 -0.028183 -0.009163 -0.073242 0.034363 -0.046265 -0.061066 0.029587 0.015068 0.049042 0.014870 0.028641 0.002771 -0.004677 0.019989 -0.054474 -0.090332 -0.145630 -0.111145 0.144409 0.008011 0.021179 0.024017 -0.122192 0.022675 -0.038422 0.025162 0.049561 -0.044037 -0.019165 -0.047638 -0.083862 0.040771 -0.022903 0.056702 -0.056274 -0.073792 0.062195 -0.005711 -0.024521 0.060150 0.056305 0.059448 -0.111938 0.012901 0.081360 -0.014015 0.033936 -0.054382 0.023087 0.100586 0.006187 -0.010628 -0.044983 -0.104614 0.061401 0.101868 0.008530 0.007843 -0.097961 0.028030 0.008217 -0.117371 0.002672 0.015297 0.066162 0.060944 0.068481 -0.106323 -0.106628 -0.019516 0.086060 -0.014824 0.052307 0.153687 -0.034546 -0.062866 -0.079590 0.061523 0.054749 -0.015961 -0.017670 -0.028564 0.031555 -0.010193 0.001993 0.068970 0.194458 0.015320 -0.025223 -0.097961 -0.022797 0.008041 0.039307 -0.012276 -0.081604 0.062195 -0.112732 0.043121 -0.034241 -0.062866 0.054230 0.003893 -0.008354 0.059448 -0.064819 0.097900 0.029205 -0.097595 0.057068 -0.076172 -0.037506 0.039276 -0.005642 -0.021835 -0.007084 0.002829 -0.035126 +-0.080139 0.004890 -0.001188 0.046844 0.072693 0.085388 0.084534 -0.066772 -0.044617 -0.047699 -0.011375 0.073181 0.018509 0.016113 0.049194 -0.158936 0.030365 -0.027267 -0.007996 0.014519 -0.053772 0.057190 -0.085571 -0.049103 0.083740 -0.027191 -0.049347 0.051361 0.051422 0.041779 0.085693 -0.028198 0.012779 0.012482 -0.092712 -0.095398 -0.074829 -0.011581 0.019470 0.119629 0.044159 0.030579 0.025757 0.000083 -0.146851 0.000938 0.061279 0.013176 -0.099609 0.006954 0.043182 -0.188354 -0.097656 -0.082886 0.081238 0.083069 0.045135 0.009468 0.023773 -0.058685 0.018066 0.069092 -0.034332 0.019608 0.002611 0.055145 -0.013062 -0.083740 -0.012505 0.011131 0.061371 -0.009201 0.141357 -0.026199 -0.012093 -0.035156 -0.107788 0.054169 0.078979 0.015884 0.001720 0.011414 -0.000395 0.002388 -0.108826 -0.038513 -0.011688 0.020126 0.017487 -0.117859 0.001474 0.061646 -0.007038 -0.099609 -0.049377 0.022385 0.109009 -0.014183 -0.091675 0.050903 0.050476 -0.048248 -0.011078 0.019104 -0.001171 0.070435 -0.063477 0.000863 -0.054108 0.003925 -0.076904 0.012589 -0.035004 -0.063782 0.013916 -0.074951 -0.024246 0.123535 0.056976 -0.007507 0.017807 -0.104675 -0.013039 -0.002748 0.068481 -0.010826 0.069519 -0.019684 0.079712 0.008194 0.024170 -0.037933 -0.099243 0.041016 -0.020508 -0.035614 -0.032837 -0.054535 -0.007641 -0.051270 -0.032806 0.027237 -0.019363 -0.102844 -0.036621 0.020004 0.051178 -0.048828 0.022568 0.046082 0.014961 -0.015465 0.061035 0.025742 -0.050659 -0.103210 0.005821 0.090210 -0.042328 0.137695 0.047302 -0.056671 -0.088135 0.026230 0.009293 0.060486 -0.082214 -0.012062 -0.048553 -0.106201 0.036316 -0.059143 0.075867 -0.070923 -0.123840 0.009308 0.043732 -0.019302 0.046173 0.003698 0.048248 -0.068726 0.069641 0.036407 -0.002552 0.116455 -0.049225 -0.005409 0.101929 -0.024002 0.010139 -0.021988 -0.026489 0.043884 -0.013351 0.011971 0.002176 -0.134521 0.053864 0.043152 -0.145874 -0.009880 0.046692 0.069763 0.107300 0.033142 -0.075317 -0.113953 0.057220 0.077209 -0.058929 0.024109 0.078674 0.010574 -0.005505 -0.062317 -0.047791 0.089294 -0.067322 0.031433 -0.073792 0.165283 0.046631 0.052277 0.091003 0.161255 -0.064880 0.014786 -0.149048 -0.061127 0.018341 0.003496 -0.018280 -0.043152 -0.007374 -0.106079 0.107605 0.002144 -0.118347 0.058624 0.047455 -0.022339 0.051453 -0.018509 0.119446 -0.072937 -0.071106 -0.066040 -0.018814 -0.003826 0.042603 -0.009926 0.090393 0.017899 0.019165 -0.000245 +-0.030579 -0.037018 0.093201 0.015778 0.078064 0.032928 0.022293 0.082703 -0.059753 0.003086 -0.045227 0.000596 -0.054291 -0.059052 0.061707 -0.088745 -0.034332 -0.014809 0.086731 0.160278 -0.056366 -0.066589 0.036774 0.089905 0.090210 0.009636 0.026077 -0.027557 0.016968 0.083679 -0.018631 0.008858 0.003799 0.117126 0.026550 0.008095 0.037170 -0.028229 0.033295 0.040161 0.073914 0.005024 0.001634 -0.070068 -0.045959 0.003378 0.119141 -0.002274 0.080994 -0.085571 -0.057495 -0.076599 -0.026367 -0.031464 -0.032349 0.023834 0.024841 -0.012764 0.016953 -0.099731 -0.003805 0.074524 -0.208862 -0.037750 -0.047943 -0.038391 -0.048187 -0.069763 -0.091858 0.089111 0.118225 0.008972 -0.071716 -0.071350 0.172852 0.015701 -0.140259 0.027908 0.032715 -0.045319 -0.041779 -0.024933 0.084473 0.029877 0.050842 -0.041412 0.011452 0.068237 -0.089905 -0.071350 0.063354 0.056488 0.036224 -0.055786 -0.018738 -0.056885 0.116516 -0.026413 -0.086548 0.023834 0.003456 -0.014076 -0.033020 0.016556 -0.023911 -0.034790 -0.151733 -0.000883 0.007282 0.021057 -0.060242 -0.113281 -0.088074 -0.038452 -0.003799 -0.064636 -0.042694 0.023941 0.029373 -0.067871 0.026962 -0.071167 0.017639 -0.045990 0.175659 0.033539 0.085632 0.070190 0.128174 -0.032074 0.009315 -0.019562 -0.051971 0.042542 -0.012505 -0.010437 -0.022537 -0.078613 -0.066284 0.007004 0.042450 -0.038605 0.033142 -0.059052 -0.033142 -0.005440 0.029236 0.005566 0.004143 -0.050781 -0.080627 -0.057678 -0.090698 0.048889 -0.018723 -0.071594 -0.012131 0.097778 0.065002 -0.034515 0.014633 -0.086060 -0.095154 0.182861 0.037933 0.029266 0.042664 -0.020813 0.018372 -0.017059 0.061340 -0.045166 0.019165 0.017838 0.089233 -0.003374 -0.013435 0.050690 -0.005253 -0.067871 0.054901 -0.025330 -0.087952 0.077820 -0.061127 -0.020996 -0.034485 -0.053070 0.055450 -0.042877 -0.023346 0.032867 -0.033447 0.044708 -0.034271 -0.017487 0.050476 -0.171387 0.005592 0.011017 0.029465 0.005554 -0.027390 0.081787 -0.023773 0.083374 -0.061462 -0.067871 0.020706 0.000172 -0.124146 0.077881 -0.054108 0.109253 0.004658 0.000799 0.107300 -0.016739 -0.046753 0.033905 -0.065918 0.052002 0.015900 0.018280 0.033203 -0.024475 0.074829 0.086670 0.011276 -0.063782 0.028366 -0.084595 0.009186 0.057159 0.066040 -0.009193 -0.011086 0.063416 -0.104187 0.005638 0.014366 0.065186 -0.005424 -0.165405 0.008659 0.043091 -0.047668 -0.023590 0.128174 -0.068726 -0.009415 0.021774 0.091858 -0.136597 0.015137 -0.045898 +-0.097900 -0.018066 0.051697 0.019623 0.008308 0.054993 0.025314 0.018570 -0.082092 -0.039581 0.048065 0.013893 -0.109375 0.099854 0.100342 -0.077087 0.026047 0.072449 -0.006367 0.084534 0.055847 0.022552 -0.057312 -0.060486 0.006004 -0.032623 0.081543 0.034210 0.077637 0.053314 0.000253 -0.009506 -0.018860 0.089722 -0.050903 -0.019867 -0.038330 0.086731 0.004475 0.070068 -0.022797 0.084473 -0.011024 -0.071716 -0.089417 0.056183 0.073059 -0.011292 -0.130615 0.056915 0.068665 -0.116150 -0.125244 -0.077576 -0.018539 0.022568 -0.005653 0.009415 0.091187 -0.064270 0.009895 -0.085022 -0.014755 -0.078003 0.048340 0.013161 0.053345 0.062744 0.091125 0.020935 0.079407 -0.019775 0.131348 0.004440 0.037231 -0.047302 -0.085388 -0.055511 0.148926 0.048828 0.012016 0.061859 -0.052124 0.043701 -0.084106 0.016937 0.085449 -0.008255 -0.029602 -0.050293 -0.017563 -0.014091 -0.009750 0.044678 -0.108948 0.004478 0.055115 0.002878 -0.032898 -0.045074 0.082214 0.002533 -0.034515 0.052887 -0.027649 0.064697 -0.076904 0.002522 0.028824 -0.096069 -0.039642 -0.075378 -0.058044 0.027420 0.006630 -0.056244 -0.016632 0.046265 0.115295 0.037964 0.048584 -0.019958 0.029434 0.036774 0.031677 0.102539 0.026459 0.063293 -0.002195 -0.015373 0.055328 0.092224 -0.222046 -0.008385 0.105103 0.042145 -0.004360 0.073853 0.018982 -0.002781 0.087463 -0.057251 0.038391 -0.029236 -0.003014 0.008064 0.056366 0.065063 0.057526 0.026001 0.101929 -0.042145 -0.003368 -0.092712 -0.089111 -0.134155 -0.114685 0.151978 0.124756 -0.077515 0.033600 -0.085449 0.059052 0.060242 0.060303 0.068237 0.011040 0.039124 -0.060333 -0.064514 0.077393 0.022858 0.079651 -0.027756 -0.029053 0.028442 -0.040955 -0.069580 -0.007431 0.016357 0.113892 0.011200 0.002327 0.112061 0.005257 0.063049 -0.024750 0.065796 0.031769 -0.041870 -0.043793 0.047272 -0.039032 0.026520 0.028107 -0.060211 0.005028 -0.050201 -0.088867 -0.031158 -0.087830 -0.014725 0.121155 0.001140 0.015823 0.015404 -0.078125 -0.130859 0.043182 0.061218 -0.070740 -0.057983 0.125732 -0.048492 -0.028580 -0.128052 0.052490 0.029022 -0.032959 0.008850 -0.044250 0.009117 0.011604 0.011948 0.021652 0.154175 0.051300 0.027084 -0.116333 -0.057465 0.009033 -0.081299 0.069641 0.015854 -0.030167 -0.017487 -0.080994 0.013069 -0.023911 0.075012 -0.004845 0.028564 0.012962 -0.094604 0.042114 0.035065 -0.041901 0.061371 -0.045441 0.001947 0.041168 -0.013412 0.010803 -0.132324 -0.024384 0.009148 +-0.050232 -0.029907 0.029968 0.070984 0.040710 0.065491 0.114807 -0.041656 -0.019653 -0.049713 0.020020 0.046844 0.043121 0.021820 0.034637 -0.145630 0.047852 0.023804 -0.006161 -0.040955 -0.043427 0.136475 -0.111938 -0.082581 -0.001426 -0.034973 -0.012955 0.096436 0.057983 0.032257 0.080627 -0.060852 -0.016174 0.016693 -0.043213 -0.080688 -0.024429 0.023132 -0.031769 0.094055 0.025726 0.101501 0.004742 0.028336 -0.125488 0.051392 0.007545 -0.058228 -0.176270 0.028961 0.068970 -0.171387 -0.127075 -0.095520 0.025986 -0.006886 -0.003963 0.056519 0.089661 -0.105347 0.064758 0.019669 -0.063782 0.007202 0.014999 0.034882 -0.034515 -0.042053 0.035858 -0.013237 0.015320 -0.006924 0.108337 -0.011086 -0.015358 -0.022949 -0.088440 0.025055 0.085266 0.061005 -0.041260 0.001339 -0.058899 0.009125 -0.177124 -0.073792 0.059448 0.004276 -0.011566 -0.114624 0.002691 0.027420 -0.015915 -0.088440 -0.077026 0.015884 0.075745 0.013824 -0.046204 -0.033752 0.046173 -0.033112 -0.021545 0.055817 0.058533 0.073975 -0.020203 0.016922 0.015854 -0.007866 -0.065552 -0.027496 -0.030762 -0.083130 -0.013062 -0.079712 -0.051575 0.155884 0.075806 0.015732 0.021255 -0.049866 0.022003 0.001189 0.040924 -0.016296 0.103638 0.013123 0.013039 -0.034515 -0.007328 0.027924 -0.120667 -0.017715 0.004032 0.057098 0.083252 0.068054 0.028336 -0.015518 -0.012276 -0.002171 0.035767 -0.115479 -0.029968 -0.012703 0.080688 -0.033661 0.025665 0.030258 0.041992 0.010574 0.039276 -0.009750 -0.027176 -0.101196 0.001236 0.045654 -0.032471 0.082581 -0.019379 -0.112549 -0.007164 -0.027527 0.015656 0.076782 -0.042267 -0.071228 -0.061951 -0.131348 0.024002 -0.043549 0.032562 -0.092407 -0.122681 0.095642 0.008530 -0.117371 -0.001532 0.015182 0.058105 -0.061249 0.008995 0.044281 -0.008644 0.132935 -0.058197 -0.035675 0.070190 0.010468 0.012047 -0.007393 -0.053864 0.072571 0.029541 -0.009552 -0.011047 -0.050598 0.042328 0.004589 -0.117554 -0.022949 0.094116 0.025574 0.060303 0.010223 -0.022995 -0.119873 -0.039307 0.081360 -0.078552 -0.005035 0.116333 0.007858 -0.052277 -0.078552 0.024384 0.069702 -0.081299 0.028488 -0.078247 0.109619 0.064941 -0.002388 0.070129 0.161743 -0.045288 -0.000926 -0.184326 -0.087952 -0.029404 -0.009354 -0.010010 -0.072388 -0.047394 -0.092651 0.095642 -0.003744 -0.057465 0.071289 0.021484 -0.011467 0.009033 -0.077759 0.086975 -0.024933 -0.098328 -0.000576 -0.064819 -0.001911 0.031372 0.021484 0.007420 0.017944 0.024734 0.006130 +-0.070312 -0.005947 0.027618 -0.002037 0.045868 0.094788 -0.056000 -0.002676 -0.092529 -0.000098 -0.038666 0.000777 -0.112854 -0.026031 0.094971 -0.123108 -0.035004 0.058929 0.032867 0.143921 -0.101318 0.009460 0.048767 0.023743 0.085571 -0.051208 0.009773 0.037415 0.153442 -0.009506 -0.009415 0.047485 -0.008148 -0.026474 -0.073853 -0.024109 -0.130859 -0.002478 0.042175 0.065063 0.014091 -0.019730 -0.001864 -0.110046 -0.086609 -0.030090 0.122681 -0.036438 0.006531 -0.043915 -0.005352 -0.071289 -0.099792 -0.074951 0.020462 0.102295 0.080017 -0.046722 0.071350 -0.001657 -0.061432 -0.028610 -0.097229 -0.024887 -0.031525 0.010147 -0.036255 -0.037689 -0.015274 0.051361 0.073059 -0.043304 0.058685 -0.057983 0.124451 -0.046875 -0.077332 -0.012367 0.040070 -0.007004 -0.012955 -0.023727 0.041443 0.056854 0.003002 -0.048309 0.021881 0.006939 -0.093628 -0.066345 -0.004349 0.089478 0.017868 0.017838 -0.099304 -0.013039 0.048340 -0.071167 -0.080261 0.075989 0.008705 -0.080566 -0.064148 0.042450 -0.083374 -0.087280 -0.110718 -0.050629 -0.102295 -0.045929 -0.040955 -0.021957 -0.051788 -0.016785 0.003160 -0.040283 -0.007442 0.025772 0.054565 -0.064758 0.072998 -0.059113 -0.057770 -0.015366 0.114136 -0.001216 0.047028 0.026245 0.125000 0.076599 0.069824 0.006954 -0.129395 0.022415 0.060455 -0.057617 -0.141724 -0.126831 -0.048492 -0.066589 -0.018692 -0.019989 0.018097 0.004642 -0.044586 0.027374 0.009232 0.081543 0.006332 -0.012268 -0.023163 -0.063416 0.009834 -0.015190 -0.050354 -0.125854 -0.034637 0.161377 0.135254 -0.010040 0.093994 -0.096130 -0.037140 0.148193 0.019608 0.066284 -0.063049 0.018158 -0.025818 -0.031464 0.107483 -0.025482 -0.022354 -0.057739 0.009651 -0.041138 -0.025269 0.002100 0.043091 -0.059875 0.049072 -0.019424 -0.014809 0.080505 -0.093262 0.033081 0.023361 0.031952 0.056000 -0.024506 -0.039490 -0.036987 -0.076477 -0.077393 -0.005325 -0.055328 0.055359 -0.152344 -0.000388 -0.001614 -0.039124 -0.037048 0.022781 0.091675 0.016159 0.081970 -0.097595 -0.041138 0.042297 0.039703 -0.089233 0.108032 0.036102 0.006413 -0.089600 -0.045868 0.068665 -0.008690 -0.049316 0.040558 -0.070251 0.029251 0.045563 0.009613 0.018402 0.071106 -0.039612 0.086121 -0.033844 -0.010750 0.041962 -0.111572 -0.017242 -0.006210 0.042236 0.008698 0.037933 0.017273 -0.159790 0.076294 0.046417 -0.012756 0.083435 -0.056946 0.047729 0.075806 -0.023743 -0.013535 0.029831 0.017609 0.031708 -0.005264 0.139771 -0.110962 0.002268 -0.048065 +-0.035767 -0.028107 0.045929 -0.037933 0.070496 0.030014 -0.012184 -0.032318 -0.044220 -0.037415 -0.006599 -0.011330 -0.102112 -0.027328 0.026840 -0.131714 0.000075 -0.027939 0.042206 0.035828 -0.093262 0.045410 -0.005596 -0.039001 0.031158 -0.007919 0.068787 0.019775 0.079224 -0.026947 0.100586 -0.049438 -0.006439 0.016922 -0.156250 -0.088623 -0.143799 0.002457 0.034729 0.079590 0.053314 0.076050 0.067627 -0.045105 -0.054840 0.045074 0.089355 -0.026901 -0.108093 -0.014633 0.006062 -0.019257 -0.135010 -0.043091 -0.006924 0.009819 0.092285 -0.018723 0.063599 -0.013832 0.025146 -0.062317 -0.085999 0.012665 -0.025925 0.012329 0.038208 -0.059631 -0.033295 -0.005219 0.065918 -0.035797 0.147095 -0.098022 0.075745 -0.080505 -0.058929 0.057678 0.080933 0.002102 -0.039459 0.020325 -0.005451 -0.022675 -0.041809 -0.048492 0.052094 0.000624 -0.019958 -0.042084 -0.002735 0.118835 0.040894 -0.062866 -0.113464 -0.030167 0.006264 -0.055481 -0.066833 0.098206 0.023132 -0.157227 -0.057220 -0.055023 -0.093445 -0.007530 -0.026260 -0.098022 -0.075623 -0.070374 -0.055664 -0.030441 -0.048279 -0.001378 0.035217 -0.053864 0.032135 0.102173 0.018951 -0.026199 0.147583 -0.019958 0.011856 -0.044617 0.048828 -0.011116 0.110779 0.059631 0.029861 0.012886 -0.013382 0.018631 -0.055603 0.059906 0.041870 0.021408 -0.063843 -0.107910 0.060547 -0.055664 -0.073547 0.029037 0.039612 -0.057556 -0.074158 0.116821 -0.035431 -0.027084 -0.019653 0.024796 0.051483 -0.036377 0.030197 0.015320 -0.047394 -0.079163 -0.072998 0.112488 -0.006538 0.038269 0.031555 -0.084351 -0.020676 0.063049 0.054199 0.054077 -0.087952 -0.020065 -0.016617 -0.083801 0.092407 -0.069885 -0.009178 -0.080750 0.012032 0.029785 0.014832 -0.017441 0.030228 0.036194 0.063232 -0.088074 -0.005589 0.055847 -0.049408 0.054474 -0.069763 0.041809 0.150879 -0.020218 -0.037109 -0.076172 -0.051025 0.012947 0.016388 -0.071106 0.109802 -0.121643 0.075317 -0.041870 -0.148315 -0.014671 0.074036 0.124207 0.103149 0.084045 -0.095215 -0.055084 0.019196 0.047821 -0.036011 0.040833 0.103882 -0.032471 -0.097717 0.020737 -0.028336 0.044922 -0.089417 -0.019363 0.011261 0.056000 0.037628 -0.000360 0.052429 0.125732 0.008881 0.008469 -0.083374 -0.002447 0.065125 -0.005718 -0.024139 -0.027908 0.113953 -0.034790 0.071411 -0.088074 -0.095764 0.026947 0.019043 -0.036530 0.084534 -0.050842 0.095459 0.061249 -0.070190 -0.039642 -0.068420 -0.081421 0.086121 -0.024994 0.115662 0.010643 0.001048 -0.042938 +-0.091309 -0.041840 -0.017227 0.037476 0.069885 0.044189 0.057861 -0.029266 -0.035309 -0.055267 -0.106934 0.024063 -0.093384 0.016891 0.045410 -0.146362 0.001634 0.006683 -0.012306 -0.022766 -0.077454 0.142578 -0.045990 -0.073303 -0.001961 -0.089905 0.025497 0.131470 0.034973 -0.025711 0.072876 -0.081116 0.028412 -0.016251 -0.164062 -0.047333 -0.079407 -0.027161 -0.004993 0.115906 -0.000871 0.073303 0.066528 -0.007275 -0.096741 -0.039948 0.037781 -0.021149 -0.162842 0.002285 0.025742 -0.072144 -0.179810 -0.034698 0.064026 0.039551 -0.065430 0.031036 0.084961 -0.096802 0.046753 -0.069153 -0.085754 0.019531 0.001538 0.039551 -0.013947 -0.062134 -0.020050 -0.045135 0.008232 -0.022339 0.072754 -0.022461 0.042664 -0.027893 -0.066223 0.106750 0.055603 0.015106 -0.000353 -0.016129 -0.004581 0.042572 -0.094482 -0.113770 0.063538 -0.018570 0.047882 -0.108887 0.034668 0.083069 0.016022 -0.083069 -0.078003 0.029419 0.018051 -0.007244 -0.045563 0.074158 0.056213 -0.064514 0.036407 -0.005085 -0.079163 0.047119 -0.011284 -0.049530 0.023422 -0.042633 -0.030258 -0.032562 0.023331 -0.043365 0.062622 -0.031860 0.053589 0.091492 0.073608 -0.046844 0.089233 -0.118652 0.055664 -0.030838 0.002535 0.000182 0.031006 0.015556 0.028030 -0.007492 -0.024673 0.002804 -0.065674 -0.035919 -0.008743 0.040161 -0.004658 -0.004826 0.024841 -0.029205 -0.084839 -0.019821 -0.018845 -0.077515 -0.025772 0.092590 0.040924 -0.062927 -0.013405 0.046051 0.015869 0.004486 -0.002451 0.030060 -0.008904 -0.057587 0.004189 0.094482 -0.026001 0.055389 0.022614 -0.095093 -0.021057 0.026230 0.010574 0.017090 -0.046967 -0.122070 -0.079651 -0.090088 0.019547 -0.047516 -0.067566 -0.165405 -0.081055 0.008186 0.000103 0.003269 -0.035248 -0.039276 0.045563 -0.115479 -0.036804 0.019348 -0.029617 0.090759 -0.084106 -0.030762 0.057007 0.000660 -0.056763 0.034943 -0.035400 0.054810 -0.015884 0.019852 0.019379 -0.079041 0.067017 -0.085449 -0.099670 -0.030701 0.124390 0.064148 0.111633 -0.025208 -0.040375 -0.062103 -0.080139 0.138184 -0.017395 0.055206 0.063110 -0.013359 -0.071106 0.022064 -0.030945 0.079041 -0.114380 0.032623 -0.056000 0.107788 0.084167 -0.085693 0.073547 0.055695 -0.135986 -0.074097 -0.056183 -0.044922 0.000926 0.001854 -0.036560 -0.027893 0.038849 -0.101257 0.027390 -0.097290 -0.100708 0.075928 0.016922 0.016983 0.103394 -0.017441 0.029602 0.039764 -0.133789 -0.025330 -0.077148 -0.069824 0.042938 -0.094421 0.061188 0.018356 -0.027145 -0.025879 +-0.061066 -0.021957 0.035431 0.039612 0.062927 0.059570 0.050812 -0.066895 -0.020813 -0.034119 -0.001148 0.043549 -0.057648 0.027618 0.052643 -0.205322 0.026062 -0.054840 0.010536 -0.028885 -0.074707 0.044586 -0.067505 -0.072266 0.040802 -0.040161 -0.032990 0.038513 0.103943 0.008881 0.097107 -0.040070 0.016800 -0.012970 -0.144653 -0.059906 -0.068909 0.024048 -0.019058 0.117981 0.054718 0.063965 0.069275 -0.036316 -0.106079 0.026123 0.047852 -0.004196 -0.139160 0.018509 0.058411 -0.120972 -0.130737 -0.024231 0.047852 0.012466 0.039642 0.025833 0.072998 -0.072571 0.034790 -0.040039 -0.092712 0.003031 -0.043274 0.066650 0.022888 -0.055481 -0.055908 0.037231 0.093384 -0.040070 0.130981 -0.022552 0.026627 -0.030457 -0.127930 0.039185 0.125854 -0.011856 -0.034729 0.004208 -0.013329 0.027222 -0.098328 -0.038208 -0.004276 0.035645 0.026871 -0.069702 -0.033752 0.125366 -0.009605 -0.075562 -0.074463 -0.013626 0.070557 -0.060669 -0.076355 0.072571 0.039673 -0.134766 0.013535 0.013916 -0.059937 0.033691 -0.016647 -0.115356 -0.044189 -0.049225 -0.082092 0.000600 -0.055176 -0.054932 -0.003834 -0.064392 0.029053 0.121155 0.034332 -0.033508 0.079712 -0.024933 -0.009132 -0.041016 0.092529 -0.048798 0.056488 0.038147 0.050446 -0.014854 -0.034546 -0.025528 -0.074890 0.018234 0.001547 -0.002087 -0.014481 -0.023422 0.013733 -0.016922 -0.078247 -0.005035 0.004311 -0.041626 -0.010475 0.121460 -0.014023 -0.003683 -0.015335 0.021606 -0.012581 -0.027542 0.054810 0.007996 -0.063904 -0.077637 -0.014053 0.113525 -0.040710 0.091614 0.022186 -0.059570 -0.020645 0.021362 0.027283 0.066956 -0.056458 -0.046112 -0.014099 -0.104309 0.065491 -0.075256 0.044952 -0.117065 -0.089661 0.004448 0.041565 -0.029251 0.034943 0.019028 0.037933 -0.091064 0.006676 0.051117 -0.005554 0.119019 -0.100830 0.016006 0.124634 -0.021378 -0.024353 -0.039337 -0.066162 0.037781 0.008987 -0.010506 0.054413 -0.155273 0.069824 0.004520 -0.108948 -0.011665 0.039429 0.075989 0.123352 0.037445 -0.085571 -0.080505 0.030151 0.056213 -0.082275 0.067200 0.123779 0.005703 -0.033813 -0.027008 -0.048981 0.056152 -0.060150 0.013588 -0.044891 0.151123 0.009689 0.036743 0.106384 0.175293 -0.015526 0.007092 -0.106384 -0.048767 0.038971 0.006836 0.002825 -0.048950 0.058472 -0.086487 0.096802 -0.052094 -0.065979 0.015602 0.015030 -0.056427 0.105164 -0.034729 0.068726 -0.017593 -0.072266 0.001398 -0.032166 -0.016296 0.043579 -0.044891 0.073181 -0.002176 0.015717 -0.036774 +-0.011597 0.009224 0.061188 0.070740 0.073547 0.052887 -0.026871 0.083252 -0.070923 -0.001356 -0.093811 0.005955 -0.091614 -0.039978 0.073364 -0.068909 -0.029114 -0.033630 0.058228 0.120239 -0.106262 -0.059082 0.057251 0.069885 0.067627 -0.049286 0.014259 -0.031097 0.088196 0.033508 -0.025818 -0.014336 0.009621 0.014389 -0.079468 0.024826 -0.024017 -0.077820 0.016602 0.073914 0.024841 0.001710 0.062378 -0.100647 -0.078003 -0.022888 0.122253 0.000040 0.076477 -0.063660 -0.003466 -0.040161 -0.079285 -0.014557 0.041351 0.068359 0.052734 0.028244 0.029968 -0.084961 -0.066406 0.045776 -0.136475 -0.087402 -0.042419 0.018021 -0.061584 -0.041382 -0.070190 0.104126 0.098328 0.002977 -0.072937 -0.080078 0.143066 -0.029068 -0.132568 0.028336 0.015007 -0.030914 0.022186 -0.002262 0.049469 0.087830 0.045807 -0.076599 0.004013 0.071411 -0.085022 -0.018448 0.013542 0.060883 0.048798 -0.014961 -0.034607 0.030136 0.042328 -0.078186 -0.047882 0.059143 0.006111 -0.029709 -0.021576 0.013359 -0.017532 -0.040680 -0.119812 -0.066467 -0.069275 -0.033325 -0.018875 -0.096008 -0.067505 0.002481 0.014648 -0.038788 0.010139 0.038971 0.049042 -0.079041 0.011505 -0.084534 -0.050446 -0.005039 0.130249 0.012039 0.049469 0.085938 0.175659 0.074280 0.031830 -0.021423 -0.025299 -0.042999 0.006660 -0.051910 -0.071777 -0.079224 -0.076660 -0.045349 0.005753 0.008797 -0.035706 0.030579 -0.033783 0.053070 0.002026 0.114746 0.017044 -0.108704 -0.089905 -0.048492 -0.040924 0.036560 -0.011375 -0.103210 0.014679 0.131836 0.124023 -0.057343 0.045837 -0.080994 -0.054962 0.225952 0.025452 0.000490 0.022919 0.020508 -0.018982 0.003445 0.080078 -0.043701 -0.025253 -0.005783 0.083252 -0.078308 -0.010803 0.050323 -0.010391 -0.081543 0.032043 -0.020203 -0.036926 0.093506 -0.078491 -0.028183 -0.041382 -0.035553 0.061707 -0.043945 -0.007530 -0.010330 -0.018250 -0.056915 -0.019485 -0.027054 0.023788 -0.136719 -0.041107 0.009155 0.041870 -0.008469 0.007008 0.052856 0.003860 0.090637 -0.115417 -0.002768 0.017212 -0.024734 -0.053833 0.091553 -0.062744 0.034027 -0.034973 0.033691 0.096558 -0.058594 -0.018204 0.091980 -0.073120 0.035553 -0.003664 0.016418 0.012451 -0.008110 0.060913 0.102478 0.032410 -0.007519 0.040680 -0.139771 0.026581 0.017151 0.062439 0.025986 -0.003233 0.021759 -0.130249 0.036438 0.039551 0.060944 0.073242 -0.053162 0.029663 0.031250 -0.030518 0.022049 0.114746 -0.025497 -0.012901 -0.002275 0.155518 -0.161133 -0.037170 -0.063354 +-0.047546 -0.023758 0.042542 -0.047363 0.066833 -0.041779 0.041504 -0.040222 -0.007126 -0.023148 0.013535 0.075623 0.037292 0.117981 0.036499 -0.130005 0.065063 -0.047546 -0.057251 0.029495 0.096741 0.032898 -0.152954 0.003876 0.018631 -0.086853 -0.006409 0.061615 0.137817 0.045410 0.065552 -0.032776 0.040253 0.101868 0.046295 0.095825 -0.003689 0.045654 -0.001965 0.002628 0.003094 0.096252 0.092407 -0.000301 -0.030411 0.070801 -0.017792 0.035248 -0.086548 0.040710 0.054749 -0.144531 -0.140625 -0.026474 0.059601 -0.027328 0.003029 0.033813 0.067993 -0.014908 0.105164 -0.083557 -0.056946 -0.053192 0.002748 0.062561 -0.024384 -0.066895 0.061249 0.046051 0.103149 0.039368 0.154785 -0.015549 0.016678 0.009064 -0.130737 0.056152 0.083374 0.003569 -0.022964 0.046509 0.032196 0.001301 -0.147095 -0.020615 0.013458 0.006241 0.022507 -0.056213 -0.086853 0.069214 -0.021530 -0.022369 -0.067627 -0.040405 0.122925 -0.043274 -0.015564 -0.025757 0.032806 -0.054962 0.034637 -0.050781 0.043610 0.078064 0.010925 0.005165 0.043823 -0.012611 0.012711 -0.055298 -0.082886 -0.037628 0.066467 -0.057343 -0.035492 0.005573 0.058411 -0.018677 0.061371 0.014023 0.046448 -0.006062 0.133057 0.051208 0.087708 -0.036682 0.049042 -0.146362 0.006248 0.033600 -0.148071 0.060181 0.053619 -0.022552 0.049866 0.005589 0.027740 0.054840 0.017700 0.008614 -0.005390 -0.048889 0.056854 0.022598 -0.042847 -0.038269 0.069641 0.053619 -0.026962 -0.056732 0.002092 0.011528 -0.084106 -0.072876 0.011353 0.123413 -0.013611 0.046997 0.035767 -0.113037 -0.054047 0.012878 0.018555 -0.016571 -0.016068 -0.046722 -0.034576 -0.131836 -0.015221 0.083557 0.055145 -0.114807 -0.067139 -0.029114 0.051392 -0.038544 0.010284 0.048645 0.067322 -0.032104 0.003948 -0.030884 0.130859 0.050812 -0.085999 0.001678 0.091492 -0.013969 -0.018661 0.000199 -0.078308 0.139160 -0.080933 -0.039093 0.011566 -0.147583 -0.093506 0.002775 -0.182007 -0.064697 0.063904 0.039551 0.084534 0.064941 -0.064941 -0.081909 0.015106 -0.031647 -0.029648 -0.004768 0.049103 -0.009132 -0.000238 -0.073364 0.047211 0.071411 -0.005383 -0.143433 0.010498 0.102234 0.060913 0.069458 0.031860 0.054413 0.024933 -0.060486 -0.056671 -0.021652 0.030045 0.107666 0.000616 -0.051849 0.001122 -0.101013 0.022095 0.000906 -0.044556 0.032837 0.017914 0.101440 -0.040161 -0.076477 0.005505 -0.028046 -0.100037 0.004539 -0.033722 0.070374 0.022491 -0.028687 -0.061249 0.013702 0.033997 0.030701 +0.014473 -0.034119 0.076538 -0.039612 -0.028641 0.061066 0.025070 -0.008263 -0.005573 0.011421 -0.007374 -0.061554 -0.087097 0.022202 0.023483 -0.081116 -0.011429 -0.012222 0.002342 0.027771 -0.042023 0.060852 -0.086670 -0.025589 0.027206 -0.032440 0.048462 0.064453 0.123291 0.051361 0.125854 -0.123230 -0.093323 0.047607 -0.126587 -0.006531 -0.001294 0.017899 0.049347 0.108154 -0.029846 0.091553 0.049713 -0.031235 -0.083130 0.039703 0.069885 -0.061554 -0.088257 -0.031342 0.063354 -0.049011 -0.139160 -0.125122 -0.040863 -0.012276 0.014091 -0.006950 0.072876 -0.041565 -0.003115 -0.011948 -0.124146 -0.067383 -0.012741 -0.031219 -0.061920 -0.048340 0.064026 0.021210 0.057159 -0.006321 0.014450 -0.095825 0.084717 -0.098328 -0.084595 0.047943 0.068665 0.023560 -0.087341 -0.003687 -0.006123 0.002434 -0.054291 -0.087402 0.082031 0.042755 -0.143188 -0.068115 -0.005428 0.108215 0.049103 -0.070618 -0.098938 0.025558 -0.001887 -0.050659 -0.031464 0.047943 0.013100 -0.127686 -0.095276 0.018875 -0.006142 -0.009178 -0.046021 -0.020844 -0.091003 -0.032654 -0.036682 -0.068481 -0.017105 -0.079895 0.011940 -0.114563 -0.054688 0.088318 0.005554 0.003443 0.003407 -0.046753 0.018051 -0.080139 0.103638 -0.066956 0.122498 0.011688 0.087402 -0.040070 0.027115 0.026596 -0.058319 0.000517 0.048065 0.052429 0.082947 -0.065063 0.021484 0.012314 0.025787 0.012779 0.028336 -0.056519 -0.028610 0.026627 0.014771 0.013885 0.026306 -0.073730 0.003214 -0.005219 0.036652 0.012558 -0.054321 -0.135376 -0.006046 0.097778 0.049194 0.029404 0.053009 -0.162231 -0.052979 0.078552 0.017075 -0.005718 -0.014236 -0.096313 -0.058319 -0.086609 0.076782 0.018204 -0.008408 -0.052917 -0.016693 0.073547 -0.001875 -0.023941 0.035248 0.008995 0.055481 -0.131226 -0.072449 0.057892 -0.099121 -0.011238 -0.066101 -0.033051 0.144775 0.017151 -0.028503 -0.044769 -0.038635 0.047211 0.063477 -0.034912 0.005493 -0.143921 -0.007713 -0.073669 -0.118103 -0.075745 0.046417 0.080505 0.037750 0.116882 -0.116699 -0.062347 -0.059784 0.027313 -0.051025 0.061737 0.056671 0.023499 -0.138428 -0.059875 0.115784 0.025925 -0.123718 0.005402 -0.067627 0.060822 0.036591 -0.028976 0.015266 0.117188 0.032471 0.005711 -0.075623 -0.026398 0.034332 -0.024155 -0.017349 -0.085449 0.020905 -0.020660 -0.029572 -0.003895 -0.078003 0.029953 -0.027817 0.064880 0.003700 -0.083801 0.043823 -0.029938 -0.093872 0.063416 -0.011620 -0.064819 0.060669 0.093323 0.026871 -0.031494 -0.012276 -0.063843 +-0.061096 -0.034180 0.016708 -0.004459 0.078674 0.043854 0.034973 -0.013474 -0.020416 -0.079041 -0.052979 0.015152 -0.075928 -0.004086 0.027908 -0.154907 0.022537 -0.027115 0.061340 0.005032 -0.082458 0.102417 -0.106262 -0.059845 0.019073 -0.054169 0.025116 0.042633 0.013664 0.002943 0.083679 -0.076782 0.020721 -0.008904 -0.157715 -0.083618 -0.054688 0.002615 0.030457 0.119812 0.049530 0.081665 0.064941 0.007214 -0.043915 0.024017 0.088196 -0.016129 -0.106934 0.000476 0.054657 -0.065552 -0.165405 -0.052826 0.031311 0.023575 0.041382 0.019058 0.062561 -0.073364 0.031830 -0.015396 -0.106628 0.008072 -0.014641 0.039062 -0.029907 -0.038452 0.003872 0.006195 0.094971 0.007469 0.120117 -0.061401 0.070374 -0.066406 -0.123718 0.063721 0.054291 -0.002232 -0.036285 0.050110 -0.011627 -0.019592 -0.083435 -0.107056 0.039398 0.043976 -0.024170 -0.083496 -0.019394 0.110229 0.052704 -0.044373 -0.066772 0.033447 0.029785 -0.051575 -0.093140 0.103516 0.067261 -0.106812 -0.005936 -0.036285 -0.024399 0.024460 -0.033112 -0.065552 -0.056519 -0.051727 -0.047485 -0.035828 0.000826 0.006443 0.031616 -0.069580 -0.006382 0.119385 0.033997 -0.038025 0.072327 -0.051239 0.028107 -0.038940 0.007168 -0.042236 0.106689 -0.004845 0.066345 -0.024338 -0.018845 -0.015900 -0.054749 0.008995 0.011536 0.016815 0.004055 -0.008705 0.070190 0.020355 -0.052002 0.008987 0.011536 -0.023346 0.009384 0.072876 0.006355 -0.069458 -0.023331 0.021637 0.050232 0.031647 0.025726 0.027863 -0.042084 -0.059723 -0.018326 0.102600 -0.051544 0.081177 0.030106 -0.117065 -0.037018 0.068970 0.037140 0.065125 -0.077576 -0.099731 -0.036926 -0.136108 0.043549 -0.079773 -0.024719 -0.106995 -0.031677 0.022919 0.065308 -0.011642 -0.044739 0.002163 0.029343 -0.116821 -0.016449 0.059479 -0.075195 0.111328 -0.100525 0.004383 0.154663 0.004131 -0.028015 -0.032196 -0.026886 0.048737 -0.012581 -0.037201 0.073486 -0.138306 0.068420 -0.040649 -0.131348 -0.072205 0.120667 0.112854 0.150757 0.066406 -0.085205 -0.036255 0.022202 0.083191 -0.069092 0.037537 0.061035 0.019791 -0.041931 0.009712 -0.025162 0.044495 -0.122681 -0.018677 -0.011780 0.136597 0.057556 -0.032928 0.046082 0.146729 -0.019363 0.002245 -0.083191 -0.004807 0.050751 0.022430 -0.008263 -0.018570 0.085205 -0.088013 0.040436 -0.065125 -0.093872 0.017929 0.023941 0.022186 0.068237 -0.032104 0.045532 0.007732 -0.081238 -0.051208 -0.088257 -0.060059 0.066040 -0.064453 0.093262 0.009872 0.026764 -0.039276 +-0.055603 -0.061920 0.038422 -0.025848 0.053955 0.044678 0.032410 -0.068237 0.017670 -0.039398 -0.052277 0.017654 -0.041870 -0.048950 0.006226 -0.141968 0.011536 -0.020844 0.026443 0.006992 -0.059845 0.092346 -0.109375 -0.057953 0.053650 -0.040527 -0.006413 0.048279 0.083618 -0.001571 0.146118 -0.094421 0.018707 0.051605 -0.086853 -0.092407 -0.055298 -0.045898 0.077576 0.058716 0.029633 0.066467 0.063843 0.022690 -0.066711 0.006302 0.046997 -0.004311 -0.115662 -0.061005 0.006062 -0.081604 -0.133179 -0.049591 -0.009773 -0.013741 0.041199 0.008232 0.063110 -0.042633 0.049469 -0.019806 -0.149658 0.028763 -0.048523 -0.000068 -0.020737 -0.101135 -0.016647 -0.007118 0.062378 -0.001393 0.058441 -0.057922 0.080750 -0.014572 -0.076294 0.102356 0.034515 -0.024353 -0.062042 0.004822 0.025345 -0.024750 -0.057739 -0.088013 0.042908 -0.003452 -0.010773 -0.059357 -0.002190 0.195312 0.040192 -0.098206 -0.080322 -0.003990 0.053528 -0.011665 -0.017410 0.094177 0.028534 -0.157349 0.008324 -0.030838 -0.076965 -0.001004 -0.006222 -0.033081 -0.018646 -0.020279 -0.038116 -0.028366 -0.020126 -0.057648 0.027191 -0.070435 -0.004478 0.100525 -0.002728 -0.039032 0.098145 -0.054993 0.054871 -0.082825 0.053864 -0.095947 0.097534 0.013641 0.043243 -0.067810 0.001536 0.002729 -0.019699 0.060028 -0.022415 0.003891 0.025330 -0.024078 0.036713 0.057190 -0.063354 0.054535 0.026367 -0.128174 0.014526 0.079834 -0.006462 -0.133301 -0.047760 0.044189 -0.013390 -0.003633 0.014923 0.068909 -0.010109 -0.038940 0.031113 0.057648 -0.096313 0.079346 0.023987 -0.125000 -0.088684 0.045746 0.032776 0.016296 -0.081421 -0.131104 0.022369 -0.126709 0.001607 -0.028122 -0.036957 -0.127319 -0.025192 0.048279 0.045624 -0.029633 0.014297 0.009827 0.001327 -0.105896 -0.061401 0.037262 -0.055298 0.063599 -0.100952 -0.036652 0.161377 0.008453 -0.062103 -0.022156 -0.031586 0.092346 -0.052582 -0.010941 0.068359 -0.154907 0.080078 -0.063782 -0.126587 -0.076965 0.032318 0.052856 0.087708 0.072998 -0.037811 -0.019516 -0.027542 0.027939 -0.077637 0.080261 0.032562 -0.006676 -0.088928 -0.017548 0.027084 0.059784 -0.097839 -0.035126 -0.058441 0.135986 0.075928 -0.032806 0.076660 0.075195 -0.051819 0.003353 -0.062561 -0.012054 0.051422 0.019608 -0.047882 -0.066223 0.070740 -0.069336 0.075317 -0.101196 -0.091125 -0.022324 -0.021759 0.014168 0.027542 -0.055725 0.008873 -0.012512 -0.092407 -0.046783 -0.030624 -0.084290 0.065918 0.004498 0.040009 0.049805 -0.000741 -0.034882 +-0.060638 -0.070374 0.009338 0.015732 0.041565 0.058899 0.074402 -0.082520 0.070129 -0.046600 -0.068970 0.046387 -0.047943 -0.062378 0.004658 -0.173706 0.018311 -0.037323 -0.013893 -0.057983 -0.084229 0.062561 -0.109009 -0.099609 0.020355 -0.056549 -0.021133 0.057037 0.040405 0.013985 0.146362 -0.112732 0.021194 0.043304 -0.137451 -0.106018 -0.025864 -0.005577 0.046692 0.102051 0.048157 0.050018 0.086060 0.010963 -0.104248 0.023514 0.063660 -0.015594 -0.115784 -0.026093 0.039185 -0.105042 -0.106873 -0.002371 0.028488 -0.052368 0.026352 0.018463 0.036804 -0.101868 0.062286 -0.004162 -0.159790 0.035095 -0.095093 -0.013168 0.006760 -0.026688 -0.073364 -0.011673 0.044769 -0.021240 0.050720 -0.009956 0.035980 -0.026733 -0.094788 0.063049 0.076843 -0.016647 -0.053009 -0.017960 -0.016739 0.009552 -0.086975 -0.105652 0.009041 0.029953 0.025589 -0.046722 0.017044 0.108521 0.020798 -0.135864 -0.061707 0.016876 0.057404 -0.000764 -0.060303 0.104919 0.041534 -0.115417 0.063782 0.020691 -0.037567 0.025757 -0.011017 -0.075500 -0.008369 -0.030365 -0.066101 0.009224 0.000971 -0.067200 0.028931 -0.042053 0.034882 0.153442 0.008957 -0.010452 0.079773 -0.068176 0.009827 -0.056458 0.041168 -0.088440 0.056549 0.030792 0.023453 -0.038116 -0.049072 0.012306 -0.039520 0.001280 -0.043762 0.006691 0.038025 0.031555 0.029022 0.054901 -0.067688 0.036163 0.030090 -0.085022 0.005413 0.055389 0.002741 -0.067505 -0.063721 -0.010300 -0.031616 -0.008217 0.038391 0.036835 0.016052 -0.031982 0.032227 0.050110 -0.104614 0.097595 -0.009132 -0.100647 -0.064941 0.028381 0.028778 0.019699 -0.059875 -0.132080 0.026428 -0.114929 0.012909 -0.065308 0.002298 -0.118591 -0.045013 0.061707 0.011208 0.007904 -0.000392 0.024292 0.024170 -0.085022 -0.074219 0.060089 -0.051636 0.068481 -0.106750 -0.051636 0.149170 0.027512 -0.056519 -0.006786 -0.003473 0.075562 -0.011917 0.004318 -0.002480 -0.124817 0.132812 -0.087830 -0.069519 -0.049377 0.013985 0.055908 0.119812 0.024948 -0.002237 -0.070862 -0.019821 0.074219 -0.092224 0.062042 0.087341 0.043396 -0.049591 -0.018341 0.003220 0.064697 -0.106079 0.019821 -0.060059 0.128052 0.013252 -0.052917 0.097046 0.100342 -0.050690 0.025925 -0.099487 -0.027206 0.027390 0.031982 -0.034576 -0.093201 0.050415 -0.065369 0.071228 -0.104370 -0.064148 -0.010559 0.001022 -0.033173 0.056854 -0.078613 0.011581 -0.021362 -0.086487 -0.011368 0.001410 -0.093018 0.042023 -0.049072 0.053802 0.035553 -0.020889 -0.060089 +0.023193 0.001149 0.062744 0.003769 0.007133 0.086792 0.035675 0.007191 -0.062805 -0.018066 0.013443 0.092102 0.027893 0.075867 0.041992 -0.098022 0.043182 -0.023315 0.018387 0.077332 -0.068359 -0.022888 -0.045898 0.033783 0.117493 -0.015732 -0.013466 0.049042 0.117188 0.052155 0.031174 -0.058228 -0.023392 0.082825 -0.031097 0.065308 0.006081 -0.002943 0.050476 0.115784 -0.038452 -0.019394 -0.014137 -0.068115 -0.109558 0.029800 0.122192 -0.014748 -0.017899 0.034119 0.056885 -0.188599 -0.111023 -0.129761 0.006203 -0.004696 0.020798 0.011093 0.089844 -0.024490 0.016266 0.022446 -0.070129 -0.019897 -0.047516 -0.013306 -0.024277 -0.096436 0.030365 0.071777 0.135254 -0.033997 0.052582 -0.006252 0.070557 -0.011330 -0.152954 0.038940 0.096375 0.003012 0.033630 0.007126 0.079102 0.022110 -0.059174 0.022232 0.023743 0.047363 -0.059601 -0.083801 -0.051361 0.062378 -0.007526 -0.119080 -0.030197 -0.034607 0.107300 -0.078186 -0.035645 0.050110 0.032471 -0.045105 -0.023514 0.001751 0.003010 0.039948 -0.120972 0.004021 -0.085571 -0.038391 -0.049713 -0.049652 -0.117065 -0.047455 -0.012482 -0.065002 -0.077026 0.059448 0.040222 -0.044250 -0.033234 -0.067139 -0.010063 -0.019150 0.166260 0.049805 0.120300 -0.016617 0.070190 -0.018021 0.037933 -0.045044 -0.138184 0.043823 0.041290 -0.028854 -0.020981 -0.098267 -0.044952 -0.020554 0.029175 0.016891 0.026077 -0.061768 -0.033112 -0.009926 0.029526 0.022690 0.039032 -0.049316 -0.053040 0.019531 -0.011505 -0.028000 -0.035004 -0.158936 -0.028763 0.148315 0.082947 0.013809 0.079773 -0.126343 -0.108093 0.063660 0.050934 0.078003 -0.018356 0.002357 -0.036224 -0.085083 0.035065 0.004337 0.080200 -0.057281 -0.061523 -0.026016 0.031204 0.017181 0.063599 -0.004654 0.074341 -0.000058 0.058197 0.040527 -0.043732 -0.013779 -0.078674 0.001524 0.098877 -0.000624 0.016434 -0.038330 -0.078918 0.055664 0.017487 -0.021576 -0.031494 -0.174194 -0.031586 0.061829 -0.121277 -0.007286 0.013138 0.072876 0.016220 0.107849 -0.132690 -0.058075 0.043945 -0.003456 -0.078918 0.027039 0.079285 0.018265 -0.050232 -0.067200 0.079468 0.074951 -0.004425 -0.002911 -0.091431 0.101624 -0.008171 0.066284 0.049347 0.151611 0.017059 0.068298 -0.083740 -0.076660 0.024567 -0.059509 -0.021866 -0.022949 0.018204 -0.048981 -0.011070 0.066711 -0.094543 0.069580 0.025803 0.054993 -0.010719 -0.074646 0.047302 -0.001543 -0.061493 0.043182 0.057068 -0.007050 0.024445 0.080017 0.041992 -0.056915 -0.034302 -0.030548 +-0.032227 -0.010994 0.012581 0.011612 -0.009598 0.050751 0.035614 -0.057861 0.034912 -0.053345 -0.051361 0.006264 -0.113647 0.020279 0.014130 -0.161377 0.024353 -0.004150 -0.024460 -0.087830 -0.060638 0.078674 -0.105225 -0.079956 -0.003056 -0.030502 0.036102 0.129028 0.093628 0.007591 0.121338 -0.059753 -0.035065 -0.029800 -0.127563 -0.043732 -0.006145 0.038177 0.010666 0.149780 0.017517 0.110535 0.057068 0.022430 -0.078125 0.038849 -0.008675 -0.063904 -0.134033 0.004578 0.078003 -0.080078 -0.161133 -0.085022 0.044830 -0.017853 0.007332 0.000362 0.126587 -0.086182 0.020416 0.006371 -0.076294 0.006870 -0.008270 0.038483 -0.045074 0.005508 0.006691 0.008003 0.051178 -0.032990 0.095520 -0.000670 0.020523 -0.068420 -0.126587 0.049713 0.079590 0.038757 -0.067444 -0.007717 -0.049042 0.064026 -0.151245 -0.145264 0.058167 0.038910 -0.028976 -0.058594 -0.031006 0.066162 0.045654 -0.051422 -0.070618 0.070435 0.016281 -0.066406 -0.070984 0.050598 0.000807 -0.112610 -0.023788 0.039490 -0.006840 0.008278 0.009384 -0.050781 -0.055939 -0.051544 -0.027802 0.013062 0.041687 -0.054810 0.014130 -0.079834 0.012413 0.139771 0.034729 0.004448 0.056213 -0.067810 -0.012077 -0.023544 0.011772 -0.117554 0.035522 -0.061493 0.081299 -0.038971 -0.021088 0.018051 -0.050354 0.001351 0.041473 0.011345 0.050873 0.001576 0.071411 0.015358 -0.059174 -0.005672 0.025665 -0.024551 0.022980 0.025894 0.012794 -0.016144 -0.001170 -0.012070 0.011818 0.014244 0.052368 0.012451 -0.047699 -0.109558 0.025299 0.097290 -0.074585 0.116821 0.006001 -0.113281 -0.065613 -0.017914 -0.015991 0.025360 -0.074402 -0.111694 -0.084229 -0.099609 0.046814 -0.063171 -0.020050 -0.104492 -0.084900 0.069885 0.051514 -0.054138 0.002159 0.018646 0.071777 -0.124573 -0.038147 0.038818 -0.063660 0.093323 -0.086487 -0.004780 0.134277 0.053711 -0.011627 -0.005779 -0.039551 0.012016 0.016525 0.008698 -0.033173 -0.041504 0.056885 -0.026550 -0.110901 -0.035095 0.102051 0.071777 0.135132 0.068054 -0.080383 -0.069397 -0.057648 0.021729 -0.058441 0.065247 0.083069 -0.020020 -0.092041 -0.079529 0.021622 0.067627 -0.112366 -0.030472 -0.025085 0.090698 0.052002 -0.016571 0.022232 0.147827 -0.060120 -0.026093 -0.093140 -0.018387 0.032562 0.060883 0.003983 -0.096313 -0.047974 -0.080200 0.071350 -0.059509 -0.084045 0.049683 0.015381 0.036072 0.035614 -0.019470 0.051239 -0.050354 -0.084839 0.016510 -0.062561 0.022461 0.040619 -0.031982 0.011147 -0.004005 -0.018356 -0.036560 +-0.075134 -0.008278 0.033417 0.027756 0.126221 0.011703 0.049927 -0.051819 -0.031891 -0.074463 -0.035400 0.113342 -0.008476 0.070801 0.052887 -0.204468 0.033569 -0.004620 0.081909 0.032959 -0.017288 0.056580 -0.080688 -0.038116 0.053314 -0.052673 -0.003845 0.121643 0.066467 -0.006992 0.008842 -0.034210 0.065796 -0.027252 -0.073792 -0.019501 -0.077209 0.014946 -0.014816 0.076416 0.056732 0.030182 -0.002415 -0.009209 -0.054169 0.030365 0.054932 0.005394 -0.126465 0.043213 0.056030 -0.157593 -0.148438 -0.024673 0.066833 0.003017 0.021362 0.039185 0.110046 -0.060211 0.056519 -0.022202 -0.060303 0.016266 -0.032410 0.067444 -0.019150 -0.028824 -0.003399 0.009171 0.124207 -0.006424 0.171265 0.048676 -0.000312 0.010818 -0.154175 0.014587 0.066650 0.011513 0.008347 0.032623 0.018051 -0.018341 -0.133545 -0.029755 0.032043 0.022720 0.040802 -0.107300 -0.045685 0.043182 -0.005123 -0.060608 -0.047516 -0.052826 0.104126 -0.031769 -0.084351 0.083069 0.056854 -0.065735 0.014809 -0.023209 0.023392 0.037354 -0.059723 -0.048492 -0.007477 -0.038330 -0.038177 0.003105 -0.032318 0.000036 0.016891 -0.029861 -0.017273 0.080322 0.082703 -0.063904 0.088806 -0.042664 0.020538 0.005650 0.033539 0.037903 0.073853 -0.023315 0.031143 -0.037018 -0.011139 -0.015427 -0.142822 0.030441 0.019379 -0.013016 -0.043701 -0.012146 0.026566 -0.008453 -0.051514 -0.019623 0.047729 -0.035370 0.004627 0.014771 0.008995 -0.040863 0.016357 0.070374 0.003471 -0.000860 -0.012177 -0.006802 -0.054901 -0.063110 -0.049164 0.151001 -0.012665 0.113586 0.032593 -0.098816 -0.053955 0.008766 0.022156 0.094910 -0.071045 -0.021194 -0.026138 -0.129761 0.002737 -0.048431 0.025223 -0.118591 -0.100891 -0.027222 0.065491 -0.041718 -0.019745 0.009544 0.070923 -0.045929 0.060394 0.020767 0.018127 0.149170 -0.059753 0.023682 0.073181 0.002338 0.005871 -0.023178 -0.073120 0.086853 -0.025513 -0.005859 0.060059 -0.098022 0.071228 0.006298 -0.145508 -0.045685 0.102905 0.095825 0.142944 0.041290 -0.049896 -0.063354 0.043335 0.100281 -0.073975 0.015869 0.137451 -0.003206 0.008713 -0.021194 -0.050201 0.078552 -0.054504 -0.023499 -0.036987 0.142456 0.048431 0.024353 0.084473 0.133057 -0.055878 -0.009468 -0.105286 -0.060547 0.036743 0.030609 -0.015823 -0.022720 0.047241 -0.148438 0.088928 0.022034 -0.042389 0.071045 0.052246 -0.020050 0.031586 -0.053009 0.050323 0.014351 -0.090088 -0.053711 -0.032898 0.034149 0.044159 -0.066833 0.048157 0.018021 -0.000889 0.033264 +-0.066040 -0.024734 0.018906 -0.061371 0.065063 0.067810 -0.030350 -0.032257 -0.038818 -0.007263 -0.017715 -0.006317 -0.166016 -0.008316 0.040253 -0.107666 -0.032166 0.048187 -0.007004 0.083679 -0.065430 0.032593 -0.008751 -0.006649 0.075317 -0.009590 0.076965 0.018311 0.076355 -0.016785 0.080139 -0.005001 -0.005802 0.062805 -0.157959 -0.063538 -0.160156 0.021500 0.049408 0.097290 0.016861 0.029221 0.024933 -0.081299 -0.078430 -0.015854 0.077942 -0.012482 -0.106079 -0.026138 -0.005653 -0.053589 -0.075562 -0.079468 -0.032898 0.063660 0.078125 -0.074402 0.044434 0.008598 0.020859 -0.059601 -0.081726 -0.012428 -0.023209 0.021729 0.036957 -0.056519 -0.032867 0.042480 0.089600 -0.055389 0.075317 -0.045166 0.095703 -0.065552 -0.040070 0.032440 0.097168 0.048828 -0.039215 -0.033447 -0.001348 0.056244 -0.008209 -0.025513 0.046936 0.009064 -0.028763 -0.100769 -0.041077 0.074036 0.035278 -0.087830 -0.113281 -0.036133 0.040985 -0.041565 -0.114319 0.091309 0.039001 -0.108215 -0.056854 0.029633 -0.130859 -0.076843 -0.071594 -0.077942 -0.072571 -0.048676 -0.056335 -0.008301 -0.056488 -0.079285 0.015594 -0.052155 -0.006031 0.070984 0.038239 -0.033813 0.084656 -0.054047 0.002674 -0.039185 0.074585 -0.013084 0.015396 0.039459 0.066467 0.047607 0.011658 0.022873 -0.112183 0.055450 0.063782 -0.003454 -0.111023 -0.119324 -0.007423 -0.028503 -0.062561 -0.018509 0.030075 -0.039154 -0.133423 0.063538 0.027222 -0.026001 -0.020828 0.025543 0.035736 -0.039825 -0.000655 0.031174 -0.051208 -0.095093 -0.029678 0.163818 0.072632 0.026154 0.062469 -0.100891 -0.028915 0.050140 0.032196 0.047028 -0.027985 -0.012878 -0.009163 -0.066406 0.095642 -0.008583 -0.013420 -0.060028 0.011673 0.029587 -0.022873 0.043457 0.081116 0.021332 0.072449 -0.050964 -0.029907 0.055817 -0.069214 0.041779 -0.002172 0.033783 0.106201 -0.061493 -0.056610 -0.024475 -0.076172 0.007664 0.039093 -0.055481 0.045258 -0.146606 0.086609 -0.069702 -0.134277 -0.005939 0.004292 0.097839 0.094666 0.076233 -0.111938 -0.073669 0.066345 0.111328 -0.039764 0.107361 0.098267 -0.031616 -0.098999 -0.019775 0.029465 0.026428 -0.075378 0.024750 -0.033752 0.020935 0.001862 -0.056488 0.034485 0.111267 -0.035706 0.023071 -0.105530 0.017334 0.028732 -0.056519 -0.027008 -0.035919 0.072083 -0.035126 0.031372 -0.081787 -0.081604 0.035583 -0.005039 -0.033264 0.116882 -0.052002 0.067322 0.072876 -0.099487 -0.052551 -0.045837 -0.038757 0.109070 -0.025238 0.085815 -0.060486 -0.017059 -0.037506 +-0.031982 -0.021790 0.031555 0.021912 0.060516 0.075806 0.046448 -0.064026 -0.039215 -0.049469 -0.021423 0.049469 -0.033966 0.037079 0.047699 -0.167358 0.011520 -0.014488 0.036743 0.019913 -0.056396 0.066040 -0.031769 -0.033295 0.048401 -0.013565 0.017029 0.106018 0.080444 -0.009750 0.079224 -0.065979 -0.012459 -0.016876 -0.127808 -0.075562 -0.094055 0.012337 -0.004158 0.100586 0.029266 0.046722 0.011780 -0.003387 -0.098206 0.034363 0.048431 -0.048767 -0.140503 0.036713 0.033447 -0.119507 -0.143066 -0.073242 0.019608 0.026260 0.018021 0.008751 0.084900 -0.026169 0.030304 -0.026779 -0.052338 0.041412 -0.017075 0.024506 -0.005310 -0.096802 0.006416 -0.027725 0.030884 -0.050323 0.172607 -0.030350 0.022537 -0.044830 -0.088013 0.071655 0.078186 0.020309 -0.008057 -0.014351 -0.001354 -0.014725 -0.133423 -0.037598 0.033051 -0.005108 0.023010 -0.116638 0.000167 0.079773 -0.002316 -0.123840 -0.068726 -0.042999 0.033783 -0.031494 -0.068604 0.059845 0.032318 -0.095459 -0.063049 -0.008667 -0.017761 0.044617 -0.054596 -0.033600 -0.037292 -0.039703 -0.061676 -0.002571 -0.003704 -0.048035 0.012253 -0.072876 -0.020325 0.099304 0.061096 -0.021072 0.078918 -0.048798 0.014511 -0.022507 0.055786 0.021500 0.116699 -0.025696 0.033691 -0.000589 0.004452 -0.000154 -0.112061 0.030563 -0.000870 0.005127 -0.029694 -0.097046 0.024933 -0.066895 -0.059387 -0.000053 0.017685 -0.082458 -0.050690 0.040497 0.030060 -0.065674 0.024109 0.060089 0.014839 0.002800 0.032532 -0.018768 -0.044434 -0.110352 -0.056061 0.112000 -0.025238 0.095154 0.042145 -0.106506 -0.048981 -0.029465 0.034454 0.062134 -0.090881 -0.037048 -0.065918 -0.096802 0.039948 -0.056274 0.046539 -0.097473 -0.092102 0.058136 0.037354 -0.047485 0.060455 0.013588 0.075562 -0.101257 0.056091 0.018341 -0.002752 0.091370 -0.063538 0.001582 0.097778 0.019562 0.025192 -0.056732 -0.088623 0.048248 0.028030 -0.020157 0.042755 -0.097717 0.059662 -0.008942 -0.182739 -0.021896 0.073730 0.125244 0.083618 0.046875 -0.056824 -0.097351 -0.030396 0.102783 -0.045959 0.019608 0.141113 -0.032471 -0.079346 -0.050262 -0.038116 0.111938 -0.088501 -0.009193 -0.048767 0.113464 0.047760 0.011429 0.060120 0.150879 -0.060730 -0.020203 -0.126953 -0.074097 0.009468 0.018555 -0.027481 -0.040344 0.032959 -0.105713 0.086487 0.000989 -0.094971 0.093506 0.040375 -0.032562 0.034760 -0.040314 0.093750 0.028824 -0.118042 -0.036316 -0.044067 -0.020691 0.048096 0.022095 0.074097 0.031006 -0.009438 -0.003340 +-0.010719 -0.047516 0.054260 -0.028244 0.075684 -0.020187 -0.030701 -0.037933 0.010094 -0.063660 -0.090820 -0.022995 -0.117493 -0.111267 -0.000849 -0.157471 -0.006535 -0.065674 0.036835 0.008980 -0.076416 0.007378 0.016113 0.004253 0.023972 -0.017670 0.074219 0.046722 0.011253 -0.012955 0.108643 -0.105774 -0.006603 0.033295 -0.138306 -0.087891 -0.069824 -0.020798 0.038300 0.071838 0.069458 0.076355 0.117737 -0.009850 -0.032928 0.075317 0.059296 -0.024017 -0.052521 -0.062469 -0.024734 0.052704 -0.158447 -0.004654 0.006565 -0.044983 0.078979 -0.015495 0.048676 -0.052246 0.024277 0.001264 -0.123230 0.003538 -0.064636 -0.023834 0.008736 -0.029434 -0.073120 -0.025101 0.073303 -0.020126 0.080688 -0.092651 0.089844 -0.069824 -0.072205 0.072266 0.013466 -0.014198 -0.039062 -0.043030 -0.006359 -0.016235 -0.037720 -0.090454 0.033691 0.007835 -0.021576 -0.007618 0.058136 0.101746 0.090149 -0.106812 -0.083618 -0.008278 -0.005859 -0.051666 -0.020248 0.143555 0.022537 -0.144775 -0.027939 -0.077271 -0.052826 0.000447 -0.023163 -0.118530 -0.063110 -0.044800 -0.027557 -0.030960 0.006832 0.020248 0.029144 -0.055267 0.021576 0.080505 -0.011185 -0.060150 0.177612 -0.031891 0.019363 -0.032471 0.056915 -0.018036 0.113770 0.036133 0.029388 -0.025772 -0.041138 0.003038 -0.025589 0.041260 -0.003250 0.014160 -0.013855 -0.087463 0.040161 -0.004322 -0.096680 0.065979 0.056793 -0.076355 -0.061096 0.106140 -0.045624 -0.087891 -0.029770 -0.028839 0.004711 -0.031708 0.011780 0.036682 -0.007244 -0.016739 -0.018936 0.106201 -0.062469 0.020096 -0.007771 -0.088623 -0.089783 0.081787 0.038940 -0.027237 -0.050171 -0.076721 -0.007412 -0.039124 0.047363 -0.069641 -0.058502 -0.093079 0.081055 0.034546 0.031311 0.049286 0.010574 0.026428 0.064087 -0.098755 -0.059418 0.021332 -0.051514 -0.029816 -0.098572 -0.021713 0.163940 0.016495 -0.026810 -0.044830 -0.010437 0.013260 -0.007965 -0.056641 0.071228 -0.107910 0.099182 -0.113770 -0.119995 -0.004932 0.077087 0.129150 0.110596 0.095825 -0.053162 -0.053253 -0.061310 0.020645 -0.024933 0.036133 0.062500 -0.018158 -0.099243 0.053955 -0.031708 0.063599 -0.094971 -0.064758 0.010223 0.062134 0.055420 -0.051086 0.042969 0.044373 -0.017044 0.024536 -0.036438 0.011887 0.089172 0.047363 -0.037537 -0.032532 0.110474 -0.010170 0.052917 -0.098694 -0.087402 0.001915 0.023849 0.006237 0.043945 -0.088135 0.029907 0.075989 -0.085022 -0.045990 -0.029343 -0.091431 0.067078 -0.025650 0.126587 0.032471 -0.028030 -0.056061 +-0.026825 -0.001142 0.095154 0.014915 0.076599 -0.012466 0.003685 0.010399 -0.107178 -0.000659 -0.077393 -0.002531 -0.100342 -0.023651 0.034363 -0.146362 -0.026962 -0.043976 0.073914 0.039612 -0.093262 0.040222 0.046600 0.035706 0.071716 -0.087769 0.016632 0.047699 0.067261 -0.026886 0.003588 -0.095642 -0.040344 -0.014626 -0.146484 -0.021500 -0.088440 -0.058685 -0.003698 0.095886 0.014420 0.003836 0.072571 -0.117065 -0.069153 0.027924 0.092773 -0.036438 -0.040619 -0.091248 0.021271 0.026306 -0.177368 -0.085266 0.033417 0.011795 0.036163 -0.006542 0.038300 -0.061523 -0.008820 0.023422 -0.082153 -0.030930 -0.044495 0.000344 -0.046631 -0.069153 -0.091858 0.043823 0.083069 -0.018173 0.020981 -0.083435 0.104614 -0.073608 -0.078796 0.035889 0.015839 -0.006546 -0.024384 -0.038147 0.055878 0.058502 0.014389 -0.058960 0.075867 0.035095 -0.074280 -0.071899 0.016006 0.075439 0.066528 -0.087097 -0.094788 -0.003847 -0.006168 -0.060486 -0.011993 0.150391 0.000656 -0.122070 -0.022919 -0.033752 -0.061127 -0.040100 -0.060242 -0.107910 -0.079529 -0.029907 -0.019394 -0.080322 -0.037598 0.010284 0.034882 -0.052185 0.035095 0.050262 0.033234 -0.094299 0.112000 -0.042816 -0.027237 -0.013023 0.090515 0.038025 0.094788 0.069641 0.085388 0.051483 -0.022247 -0.060974 -0.042023 0.017105 -0.007587 0.028717 -0.054810 -0.149292 -0.024857 -0.060913 -0.052460 0.028793 0.013969 -0.057251 -0.076355 0.114624 -0.010818 -0.000941 -0.009178 -0.066589 -0.014999 -0.044037 -0.009758 0.054108 -0.016388 -0.068604 -0.004456 0.141846 0.069702 -0.000619 0.060913 -0.072876 -0.080688 0.148804 0.013145 -0.039032 -0.028122 -0.011429 -0.035034 -0.011734 0.080017 -0.046448 -0.084106 -0.065979 0.071777 -0.037140 0.015007 0.017715 0.005112 -0.021027 0.070312 -0.083801 -0.008057 0.002850 -0.085449 0.012077 -0.050781 -0.019516 0.098083 -0.010155 -0.026947 -0.046509 -0.044708 0.006699 0.008621 -0.052338 0.067688 -0.125977 0.031006 -0.069336 -0.078247 0.009003 0.070312 0.147339 0.051117 0.117004 -0.103516 -0.035919 -0.085266 0.018402 0.000220 0.108948 0.068298 -0.053955 -0.105408 0.074768 -0.002300 0.033569 -0.048279 0.010574 -0.048676 0.049133 0.045502 -0.030334 0.085266 0.020142 -0.026855 0.014938 -0.016037 -0.034332 0.106628 -0.077209 -0.019073 0.008835 0.096008 -0.026810 0.028778 -0.045227 -0.097229 0.065796 0.022873 -0.010498 0.067627 -0.059692 0.061981 0.084229 -0.062500 -0.007957 -0.001264 -0.080383 0.068237 0.016998 0.151978 -0.034576 -0.055176 -0.057098 +-0.004070 -0.031494 0.024445 0.001722 0.036530 0.064453 0.096924 -0.097107 -0.022339 -0.053741 0.003220 0.037750 0.040558 -0.000585 0.019043 -0.163696 0.021500 -0.009216 0.011467 0.008682 -0.037659 0.088989 -0.055023 -0.046875 0.037292 -0.023849 -0.016541 0.125732 0.062500 0.011032 0.096436 -0.056091 -0.019897 0.012421 -0.068481 -0.054230 -0.048828 0.024414 -0.000864 0.084656 0.031952 0.040253 0.003229 0.034271 -0.093201 0.056824 0.049377 -0.051697 -0.125732 0.028778 0.028763 -0.143311 -0.136597 -0.082703 0.017212 -0.008499 0.006886 0.016556 0.063904 -0.050110 0.055542 0.007164 -0.054413 0.066284 -0.024826 -0.009468 -0.014763 -0.109070 0.029022 -0.060486 0.004425 -0.029022 0.169067 -0.033325 -0.016449 -0.034546 -0.082214 0.053223 0.061462 0.023346 -0.029327 -0.012932 0.018555 -0.052856 -0.143433 -0.034302 0.040497 -0.022659 0.007858 -0.097351 0.041412 0.070190 -0.012215 -0.117065 -0.087585 -0.030899 0.051941 -0.001621 -0.043457 0.042480 0.040070 -0.093994 -0.035736 -0.025787 0.010101 0.088867 -0.042297 0.008209 -0.031372 -0.002741 -0.066833 -0.012344 -0.017181 -0.053131 0.008247 -0.063110 -0.040649 0.106873 0.018707 -0.005123 0.069214 -0.049133 0.017792 -0.052887 0.060089 0.024902 0.144043 -0.046631 -0.025574 -0.047424 0.006733 0.010895 -0.094116 0.068848 0.001453 0.026962 0.036743 -0.049835 0.036133 -0.038269 -0.031830 0.031082 0.040070 -0.134399 -0.042725 -0.003952 0.044739 -0.087219 0.018066 0.054413 0.015381 0.012909 0.041962 -0.013947 -0.030106 -0.097412 -0.052917 0.067322 -0.056580 0.113220 0.019257 -0.089478 -0.070557 -0.023529 0.021576 0.064392 -0.106628 -0.059906 -0.055542 -0.110901 0.004768 -0.025757 0.038422 -0.100830 -0.109558 0.089905 0.051117 -0.062744 0.046021 0.032166 0.070129 -0.067566 0.032349 0.018539 -0.001149 0.072021 -0.076660 -0.013885 0.091492 0.047699 0.029663 -0.049500 -0.068970 0.077026 -0.012909 -0.001268 0.021774 -0.098267 0.051270 -0.000048 -0.182007 -0.008110 0.089172 0.106750 0.053101 0.044159 -0.004147 -0.101990 -0.050293 0.064209 -0.064819 -0.023270 0.145874 0.004982 -0.055511 -0.061829 -0.024124 0.135254 -0.078552 -0.048401 -0.056671 0.119629 0.094360 0.046509 0.083130 0.136597 -0.086853 -0.028305 -0.119568 -0.097595 0.003109 0.062988 -0.059814 -0.049652 0.011078 -0.087952 0.101624 0.044983 -0.084290 0.061066 0.014557 -0.024445 -0.026123 -0.071045 0.096741 0.012817 -0.087646 -0.031586 -0.035828 -0.036011 0.046814 0.038147 0.035736 0.077148 0.010597 0.013542 +-0.089478 -0.001444 0.014336 -0.060852 0.055878 0.036224 -0.029312 -0.086670 -0.066650 -0.050171 0.043976 0.012482 -0.034546 0.020737 0.031891 -0.158936 -0.008736 0.054901 0.033325 0.057861 -0.022369 0.103210 -0.058014 -0.055267 0.081543 -0.035492 -0.037445 0.112671 0.131836 0.001912 0.071106 -0.061615 0.026718 0.017014 -0.010139 -0.044556 -0.117493 -0.002420 0.043213 0.031250 0.003841 0.045776 -0.029953 -0.049530 -0.053009 -0.021027 -0.000838 0.001067 -0.141968 -0.031616 0.030014 -0.099487 -0.140747 -0.104553 0.006149 0.037354 0.021408 -0.022644 0.109924 0.001818 0.050934 -0.064819 -0.042389 -0.003883 0.023865 0.038361 0.001685 -0.041809 0.062622 -0.040436 0.134888 -0.009613 0.107849 -0.007965 0.013290 0.005394 -0.047424 0.039551 -0.022278 0.031708 -0.034515 -0.030197 0.014763 -0.070557 -0.054169 0.012512 0.076538 -0.079773 -0.027557 -0.059998 -0.006908 0.146240 0.032410 0.004662 -0.116333 -0.071167 0.074768 0.000502 0.011696 0.094727 0.023148 -0.162109 -0.016769 -0.055847 -0.107300 -0.023804 0.020004 0.023529 -0.051239 0.000063 -0.046082 0.002375 -0.063110 -0.027664 -0.005657 -0.068970 -0.072266 0.019440 0.035187 -0.076294 0.115723 -0.048798 0.126953 -0.054230 0.075500 -0.038422 0.051056 0.063660 -0.039032 -0.060699 0.050049 0.010971 -0.103271 0.071655 0.051727 0.057098 -0.040863 -0.072632 -0.018005 0.009201 -0.032532 0.026688 0.110413 -0.147461 -0.026855 0.078735 -0.033905 -0.103699 -0.003283 0.101135 0.047089 -0.076965 -0.004360 0.054291 -0.113770 -0.023148 -0.063721 0.117004 0.004364 0.048584 0.078613 -0.103027 -0.013367 0.008011 0.016708 0.058685 -0.048523 -0.056580 0.037842 -0.072998 0.019241 0.012833 -0.022568 -0.140137 -0.083923 0.003632 0.024277 -0.002558 -0.000967 0.001655 0.017136 -0.072144 -0.006947 0.005230 -0.021301 0.085632 0.009605 0.036255 0.058319 0.002375 -0.066162 0.022552 -0.060486 0.076538 0.013504 -0.004963 0.113831 -0.130859 0.094116 -0.092163 -0.165161 -0.070312 0.064392 0.050140 0.064026 0.060059 -0.081848 -0.036682 0.020309 0.078430 -0.050751 0.074524 0.074219 -0.015656 -0.057617 0.001320 -0.003748 0.034241 -0.056183 -0.067200 -0.056732 0.092590 0.085693 0.020050 0.108398 0.110352 -0.080750 -0.020859 -0.069092 -0.029388 0.044891 -0.014008 -0.088745 -0.055084 0.033081 -0.081726 0.059967 -0.034912 -0.068237 0.026260 -0.023468 -0.059692 0.076172 -0.075989 -0.020721 -0.010353 -0.044464 -0.068726 -0.066345 -0.008331 0.061829 0.027527 0.031464 0.080872 0.038513 0.028366 +-0.062408 -0.005272 0.035858 0.024475 0.013756 0.063599 0.076172 -0.012306 -0.046051 -0.010338 0.046051 0.047089 -0.020370 0.125977 0.032806 -0.044434 0.043762 0.031525 -0.032593 -0.036285 -0.016846 0.110229 -0.091736 -0.060394 -0.014778 -0.024841 0.057587 0.054138 0.046539 -0.015022 0.097229 -0.061920 -0.042023 0.043427 -0.091248 -0.060913 -0.045197 0.009727 -0.016266 0.100098 -0.019348 0.131348 0.002016 -0.001991 -0.119385 0.069336 0.021545 -0.038818 -0.149536 0.046021 0.066711 -0.136597 -0.059021 -0.120605 -0.007526 0.016983 -0.029251 0.012665 0.054901 -0.055206 0.084778 -0.060425 -0.007553 -0.017395 0.066528 0.074036 0.067505 -0.029099 0.032806 0.006680 -0.004990 -0.008743 0.113831 0.021347 -0.024155 -0.042786 -0.072388 0.059479 0.149658 0.075378 -0.047089 0.028458 -0.089294 0.038361 -0.113831 -0.077026 0.103210 -0.009605 0.037354 -0.161621 -0.035461 0.005459 -0.025620 -0.107483 -0.056305 -0.006897 0.070251 -0.029190 -0.008888 -0.013275 -0.000651 -0.013863 -0.058502 0.045013 -0.030060 0.001821 -0.009804 -0.007607 0.039581 -0.040863 -0.076416 0.003191 0.018143 -0.084351 0.050446 -0.079956 0.004322 0.112183 0.060577 0.040894 0.027771 -0.041229 0.088013 0.039764 0.024078 -0.018387 0.011353 -0.009911 0.040375 -0.019012 -0.021194 0.000870 -0.094238 0.032318 0.036957 0.085999 0.003948 0.016327 0.025085 -0.032959 -0.012283 -0.080994 0.007828 -0.084900 -0.073181 0.012978 0.102600 -0.067017 0.028152 0.097717 0.066284 0.010513 0.042389 -0.028870 -0.000340 -0.100525 -0.023438 0.055084 -0.036896 0.041748 0.013954 -0.100525 -0.028107 -0.092346 0.005375 0.023224 -0.072510 -0.029663 -0.089783 -0.081360 0.074585 -0.081604 0.076477 -0.070251 -0.090637 0.098511 -0.017960 -0.079651 0.053375 0.010002 0.062042 -0.080994 0.024063 0.038239 -0.007313 0.090820 -0.045624 0.004478 0.088989 -0.018555 -0.023315 0.010490 -0.039551 0.105225 0.082581 -0.026443 -0.044159 -0.026978 0.003798 -0.021225 -0.147827 -0.054535 0.053833 0.026993 0.085815 -0.001345 -0.092773 -0.122253 -0.054199 0.123108 0.026001 0.034058 0.122681 -0.040314 -0.052612 -0.094543 -0.016525 0.056152 -0.062164 0.049469 -0.018387 0.083130 -0.025772 -0.039520 0.033325 0.184326 -0.015305 -0.046356 -0.188232 -0.051666 -0.050781 0.003689 0.007957 -0.068359 -0.035461 -0.109070 0.043793 -0.083435 -0.001154 0.075562 0.038330 0.033325 0.044281 -0.020157 0.088684 -0.042419 -0.149170 0.006863 -0.094788 -0.051361 0.057861 -0.017487 -0.015320 -0.014015 -0.031647 0.013161 +-0.067444 0.000429 -0.001907 -0.031860 0.010582 0.110718 0.027420 -0.031677 -0.004593 -0.075073 0.053162 0.039581 -0.036407 0.003826 0.068542 -0.119995 0.066406 -0.017776 -0.005981 0.014107 -0.057861 0.055878 -0.105591 -0.071838 0.102051 -0.018311 -0.011719 0.038208 0.111877 0.064453 0.075012 -0.036102 -0.049561 -0.016373 -0.062317 -0.128296 -0.097046 0.009689 0.053955 0.136841 -0.011200 0.006046 -0.058594 0.006577 -0.176636 0.029816 0.088440 0.004833 -0.089478 0.027252 0.067810 -0.174316 -0.099182 -0.072021 0.034088 0.078491 0.057098 -0.032867 0.060120 -0.027267 0.001397 0.029449 -0.016098 -0.046661 0.012794 0.018646 0.033539 -0.012070 0.059143 0.026306 0.112244 -0.003887 0.098633 0.007183 -0.000101 -0.002554 -0.121704 -0.058258 0.121521 0.062317 -0.000849 0.032410 -0.032745 0.024734 -0.085327 -0.016525 0.040894 0.010452 -0.027374 -0.055359 -0.028488 0.061249 -0.015854 -0.036316 -0.052795 0.030609 0.120544 -0.057404 -0.020386 0.065247 0.026840 -0.078674 -0.027267 0.012054 -0.051361 -0.012642 -0.018112 0.019577 -0.026978 -0.053802 -0.051086 0.016815 -0.082214 -0.033112 -0.054321 -0.075195 -0.040649 0.087463 0.072021 -0.018967 0.014931 -0.067871 -0.011574 -0.034027 0.054565 -0.044281 0.018768 -0.021057 -0.016037 0.033691 0.082764 -0.055023 -0.084534 0.054352 0.060608 0.011398 -0.009903 0.033142 0.027710 -0.005997 -0.040955 0.008484 0.069580 -0.091736 0.003775 0.011002 0.058746 0.000948 -0.015762 0.041229 0.086487 0.035095 0.051819 -0.031143 -0.033569 -0.122192 -0.046997 0.083740 0.006359 0.104614 0.062164 -0.065369 -0.054413 0.076965 0.015236 0.130127 -0.050812 0.038391 -0.015060 -0.095520 0.045441 -0.046417 0.098206 -0.044281 -0.076965 0.053558 0.017288 -0.034393 0.055969 0.048096 0.023300 0.019592 0.030258 0.113892 -0.100952 0.097839 -0.018906 0.061798 0.152100 -0.074646 -0.019089 0.005634 -0.026855 0.037201 0.027618 -0.033356 0.026581 -0.112183 0.011452 0.051941 -0.090332 -0.072937 0.027786 -0.006287 0.106079 0.103210 -0.111511 -0.028900 0.075806 0.051483 -0.100769 0.031372 0.110229 -0.021194 -0.041199 -0.058167 -0.055511 0.064026 -0.011803 -0.000834 -0.081116 0.149048 0.031891 0.040680 0.069336 0.243896 -0.003000 0.066284 -0.158691 -0.042786 0.006226 -0.039154 0.005371 -0.067383 -0.057678 -0.075317 0.088806 -0.057983 -0.055573 0.016876 0.026413 -0.019943 0.022720 -0.023499 0.067810 -0.040100 -0.020248 -0.024200 -0.057922 -0.002216 0.069153 0.012398 0.050140 -0.017487 -0.019272 0.023651 +-0.043671 -0.044678 0.047729 0.014687 0.095642 0.017212 0.028351 -0.019348 -0.039185 -0.052765 -0.075378 0.017715 -0.024185 -0.091919 0.069336 -0.204102 0.000704 -0.074829 0.043365 0.039551 -0.105713 0.018829 0.015747 -0.014244 0.080627 -0.026230 0.034790 0.042114 0.023254 -0.015869 0.056213 -0.021530 -0.008255 -0.028488 -0.085815 -0.101746 -0.076721 -0.027466 0.044891 0.093445 0.104675 0.023865 0.058289 0.013519 -0.087219 0.059052 0.128906 -0.022736 -0.026108 -0.053192 -0.035187 -0.041473 -0.119812 -0.002947 0.015701 0.007988 0.078186 0.008095 0.038971 -0.070251 0.031006 0.055756 -0.129761 0.027756 -0.076294 -0.029861 -0.011528 -0.088745 -0.096680 0.012352 0.041748 -0.031952 0.092224 -0.080505 0.065857 -0.023895 -0.115112 0.034302 0.072998 -0.026215 -0.054199 -0.024521 0.048065 0.008133 -0.062439 -0.063599 -0.008324 0.011948 -0.007542 -0.055847 0.046173 0.091980 0.005680 -0.109070 -0.060333 -0.025208 0.054749 -0.066406 -0.062103 0.103699 0.022171 -0.121704 -0.021713 -0.056549 -0.030701 0.032104 -0.077759 -0.089905 -0.035126 -0.034241 -0.035645 -0.030441 -0.052338 -0.027451 0.001888 -0.043976 0.026718 0.109802 0.003271 -0.075317 0.140381 -0.053162 -0.034760 -0.043854 0.084839 0.012459 0.131470 -0.003733 0.041870 -0.021561 -0.003759 -0.057495 -0.038940 0.079041 -0.027267 -0.022873 -0.023438 -0.066772 0.039032 -0.034729 -0.098022 0.046783 0.043060 -0.113098 -0.026901 0.084534 -0.014526 -0.029083 -0.031036 -0.002348 -0.023178 0.008476 0.017380 0.016708 -0.003544 -0.066956 -0.030533 0.077820 -0.048370 0.094055 0.025864 -0.041443 -0.117859 0.122559 0.027054 0.082947 -0.064941 -0.033691 -0.034424 -0.093384 0.042725 -0.096802 -0.021591 -0.105835 0.012260 0.014900 0.031143 -0.033997 0.049744 -0.005253 0.045471 -0.062378 -0.039581 0.046661 -0.077271 0.062622 -0.088196 -0.016602 0.105225 -0.030136 -0.017166 -0.046814 -0.038025 0.008324 -0.067078 -0.037140 0.086853 -0.138916 0.072754 0.037872 -0.085999 -0.012009 0.063965 0.144287 0.088135 0.088318 -0.032928 -0.060974 -0.012642 0.022842 -0.082336 0.035309 0.075867 0.026794 -0.060577 0.027206 -0.066284 0.097473 -0.062561 -0.043274 -0.035187 0.140869 0.081055 0.011383 0.075684 0.089417 -0.033630 0.024872 -0.075073 -0.039276 0.076721 0.019577 -0.008881 0.019363 0.065247 -0.045197 0.129272 -0.045105 -0.112122 0.018097 0.053192 -0.012909 0.026047 -0.077332 0.122253 0.078674 -0.042786 -0.065430 -0.018356 -0.059845 0.061127 -0.054840 0.125732 0.017395 0.005493 -0.031677 +0.001164 -0.007889 0.024002 0.004211 0.020706 0.098999 -0.011993 -0.006130 -0.000281 -0.056091 -0.043091 0.040649 -0.030945 -0.003162 0.082581 -0.150024 0.054230 -0.017761 0.032074 0.098511 -0.099121 0.007664 -0.062164 -0.020187 0.060394 -0.003134 0.013832 0.114685 0.145020 0.065369 0.048096 -0.045288 -0.010880 -0.030518 -0.036377 -0.039032 -0.045166 0.025574 0.024597 0.096069 0.025284 0.031250 0.000423 -0.018127 -0.090637 0.010307 0.120972 -0.038330 -0.024521 0.048096 0.052521 -0.144531 -0.133179 -0.032440 0.011749 0.008255 0.044342 -0.001781 0.149414 -0.013947 0.002848 -0.012970 -0.125732 -0.031281 -0.064880 -0.005775 -0.054840 -0.008331 0.082397 0.031189 0.127075 -0.003881 0.091003 -0.008003 0.071472 0.010323 -0.173584 -0.008095 0.071777 0.002977 -0.019073 -0.005424 -0.004250 -0.026947 -0.108032 -0.054199 0.004913 0.057648 -0.093323 -0.037659 -0.016342 0.101318 0.001986 -0.038727 -0.034393 -0.040253 0.101196 -0.083557 -0.059174 0.056152 0.047485 -0.082031 -0.073486 0.003059 0.068542 0.001768 -0.092163 -0.032532 -0.073425 -0.052612 -0.032104 -0.021667 -0.045593 -0.018433 -0.046967 -0.081787 -0.104309 0.048126 0.052216 -0.061798 0.024963 -0.072754 -0.004253 -0.046051 0.124878 -0.017990 0.131592 -0.043213 0.054474 -0.018845 0.047485 -0.013100 -0.130493 0.006847 0.049530 -0.024048 0.025253 -0.003454 -0.002123 0.003275 -0.023209 -0.016083 0.064514 -0.038727 0.044037 -0.022079 -0.005821 0.064636 0.038727 -0.023987 -0.036896 0.035858 0.020767 -0.063782 -0.054962 -0.124207 -0.050812 0.158081 0.044403 0.067749 0.056458 -0.157715 -0.064026 0.095337 0.051270 0.131714 -0.036530 -0.032257 -0.041779 -0.098328 0.008469 -0.018417 0.060974 -0.081848 -0.074951 -0.014259 0.008675 0.005146 0.039886 -0.005363 0.022293 -0.043732 0.014374 0.078369 -0.062195 0.032776 -0.045471 -0.003633 0.111389 0.004295 0.012482 -0.046173 -0.054749 0.021057 0.031616 -0.017715 0.051239 -0.153564 0.032043 0.023361 -0.083801 -0.098083 0.034485 0.057953 0.067566 0.097534 -0.093140 -0.027161 0.048157 0.051392 -0.137329 0.022491 0.060638 0.063721 -0.080627 -0.048859 0.054321 0.046539 -0.043427 0.000618 -0.069824 0.132812 0.045959 0.013954 0.014832 0.185181 0.006157 0.103149 -0.086487 -0.013969 0.010307 -0.037598 -0.021408 -0.067261 0.033234 -0.055634 0.070679 0.045959 -0.106445 0.040070 0.073120 0.032410 0.006523 -0.087036 0.034088 0.017502 -0.062683 0.008438 0.003162 0.041382 0.009300 0.052734 0.055573 -0.020050 -0.002001 -0.015381 +-0.048859 -0.030777 0.000655 -0.051544 0.023270 0.056366 0.023071 -0.088745 -0.016068 -0.035614 -0.055237 0.032227 -0.106079 -0.016068 0.066101 -0.179688 0.008842 -0.006176 0.026794 0.039062 -0.065857 0.037323 -0.050323 -0.081116 0.075989 -0.040466 0.028564 0.074097 0.080505 -0.051025 0.095215 -0.038452 -0.006481 0.002453 -0.139648 -0.099426 -0.112244 0.039093 0.088196 0.119324 0.059906 0.002907 0.052063 -0.033295 -0.086975 0.023544 0.110901 -0.015442 -0.073059 -0.021393 0.044434 -0.084229 -0.117981 -0.047974 0.014778 0.009102 0.073608 -0.031464 0.040588 -0.006077 0.023468 -0.008865 -0.089966 0.050720 -0.086304 -0.030060 0.007065 -0.060455 -0.041718 0.006069 0.046783 -0.054993 0.142700 -0.036896 0.062866 -0.069275 -0.096619 0.036804 0.111389 -0.002861 -0.056702 0.002335 0.029221 0.034332 -0.071167 -0.048676 0.002871 0.024094 0.001997 -0.057465 -0.033630 0.070618 0.022430 -0.095764 -0.110352 -0.015778 0.011658 -0.025558 -0.109131 0.119812 0.043640 -0.127808 -0.008148 -0.002499 -0.041168 0.016281 -0.059509 -0.082703 -0.078064 -0.067932 -0.027939 0.008659 -0.018127 -0.030228 0.052185 -0.031708 0.044861 0.119690 0.023880 -0.013481 0.110901 -0.055542 -0.052338 -0.057281 0.027039 -0.018829 0.076660 -0.021698 0.033508 0.013329 0.016342 0.015656 -0.118286 0.077087 0.017609 -0.044006 -0.067017 -0.089417 0.064514 0.003893 -0.050415 0.049957 0.009140 -0.067505 -0.012100 0.044006 -0.018890 -0.012764 -0.021973 -0.019089 0.001949 -0.008644 0.050140 -0.009819 -0.022095 -0.109863 -0.022659 0.114563 -0.016052 0.109863 0.090576 -0.086609 -0.076294 0.062073 0.017380 0.062561 -0.100708 -0.035461 -0.027695 -0.116821 0.053833 -0.036957 -0.004070 -0.080505 -0.020203 0.021667 0.033691 -0.017731 0.073425 0.039185 0.070740 -0.058105 -0.005924 0.054871 -0.078003 0.090820 -0.049255 0.019379 0.127075 0.011093 -0.035156 -0.062622 -0.042572 0.024872 -0.039734 -0.036255 0.036499 -0.104065 0.085571 -0.024826 -0.130615 -0.039429 0.039368 0.133789 0.107788 0.092712 -0.038300 -0.079895 0.035095 0.053986 -0.055878 0.061432 0.130127 -0.035614 -0.097412 -0.052887 0.002048 0.100159 -0.067505 -0.033875 -0.053253 0.084534 0.033813 0.013580 0.047760 0.135132 -0.054413 0.012276 -0.113403 -0.005337 0.082886 0.002254 -0.012665 -0.043732 0.043274 -0.061127 0.073486 -0.051849 -0.109558 0.038086 0.008926 -0.029297 0.027161 -0.038361 0.105530 0.062561 -0.018860 -0.019562 -0.040131 -0.025650 0.078369 -0.056732 0.089233 -0.006195 -0.039612 -0.047333 +-0.001166 0.010895 0.002741 0.019150 -0.003345 0.100403 0.091431 -0.059937 -0.039917 -0.050903 0.020706 0.076111 0.012131 0.071472 0.063965 -0.100891 0.102600 0.026535 -0.043762 0.036560 -0.066528 0.091980 -0.107422 -0.109680 0.005711 -0.031158 -0.013802 0.112122 0.107910 0.000538 0.100098 -0.034058 0.021286 0.048981 -0.033478 -0.026550 -0.020523 0.047943 -0.000154 0.101013 0.016098 0.103455 0.040955 0.001747 -0.099487 0.018768 0.078674 -0.011574 -0.092285 0.077087 0.076599 -0.209961 -0.106323 -0.084412 0.028778 -0.011780 -0.038696 0.050232 0.112000 -0.062469 0.091125 -0.066895 -0.069031 0.024506 -0.016022 0.052826 0.035217 -0.050659 0.072021 0.006279 0.029785 -0.009750 0.152954 0.014076 0.008110 -0.006203 -0.139160 0.061951 0.137573 0.036865 -0.041595 0.043701 -0.034149 -0.011147 -0.122253 -0.057007 0.042389 0.015793 0.016220 -0.061523 -0.029068 0.079590 -0.034546 -0.043060 -0.083862 -0.017776 0.114746 -0.011864 -0.018906 -0.020691 0.059875 -0.036133 0.005272 0.006901 0.009941 0.081543 -0.032227 -0.028503 0.004406 -0.053314 -0.092163 -0.038422 -0.059418 -0.053711 0.043701 -0.061737 -0.038147 0.097229 0.039795 0.021774 0.030838 -0.091919 0.071533 -0.048126 0.092957 -0.035309 0.080322 -0.012589 -0.002171 -0.063416 -0.000635 0.038055 -0.113403 0.048706 0.058441 0.039246 0.057159 0.067322 0.015236 0.012215 -0.009430 -0.034698 -0.002417 -0.114685 0.007637 -0.003164 0.035309 0.000844 0.036194 0.045624 -0.007515 0.027100 0.063721 -0.058563 -0.048065 -0.126221 -0.032471 0.092163 -0.048218 0.060852 0.033630 -0.104614 -0.016403 -0.011086 0.029343 0.098083 -0.078979 -0.057007 -0.075378 -0.119080 0.013596 -0.033447 0.061615 -0.100525 -0.145386 0.026627 0.000723 -0.060730 0.030823 0.006855 0.025223 -0.052032 0.028183 0.068848 0.023117 0.082275 -0.093201 -0.002077 0.084534 0.020767 -0.035858 -0.008858 -0.043396 0.107910 0.017258 0.022842 -0.013603 -0.092651 0.008057 0.018173 -0.137207 -0.060059 0.070923 0.008690 0.044189 0.004776 -0.064636 -0.094604 0.017929 0.044159 -0.054199 -0.008286 0.076477 0.033630 -0.046692 -0.075317 0.042297 0.069946 -0.022324 0.007179 -0.044067 0.128174 0.048828 0.058136 0.041626 0.208618 -0.034912 0.009781 -0.130737 -0.046173 -0.033386 0.005070 -0.028259 -0.078979 0.000317 -0.091248 0.082214 -0.004185 -0.075623 0.032257 0.030838 0.046143 0.030914 -0.046143 0.080750 -0.037628 -0.089355 0.024200 -0.063660 -0.011574 0.024948 -0.015625 -0.011009 0.017914 0.008499 0.011322 +-0.062378 0.026535 0.004150 0.000620 0.027817 0.069214 0.012505 -0.007492 -0.012291 -0.070618 0.008972 0.037079 -0.111572 0.032379 0.050262 -0.138062 0.059021 0.056854 0.023621 0.005459 -0.100037 0.119141 -0.117737 -0.116638 0.031708 -0.024826 0.045868 0.096619 0.080261 -0.011246 0.055695 -0.026093 0.010155 -0.032104 -0.089722 -0.093018 -0.080078 0.034973 0.042511 0.139771 0.029816 0.087280 -0.007462 -0.012817 -0.073730 -0.019379 0.051361 -0.039764 -0.118774 0.013588 0.088074 -0.117310 -0.130737 -0.114075 0.032928 0.018188 0.025864 0.011612 0.133545 -0.075073 0.022064 0.003918 -0.054230 -0.001420 0.002138 0.055725 -0.032806 0.046234 0.021408 0.026535 0.080261 -0.021820 0.103943 0.021149 0.035248 -0.044922 -0.108032 0.015282 0.085999 0.054596 -0.048340 0.059814 -0.059479 0.035187 -0.088257 -0.097534 0.083496 0.045410 -0.069031 -0.045868 -0.079407 0.059235 0.035522 0.021225 -0.078613 0.057587 0.057373 -0.034454 -0.094604 0.044952 0.035126 -0.067688 -0.011627 0.048035 -0.025146 -0.027130 -0.017731 -0.038727 -0.053741 -0.077148 -0.040192 -0.010078 -0.042328 -0.037750 0.022629 -0.049591 0.004871 0.132812 0.077881 0.001681 0.040619 -0.098755 0.000537 -0.040436 -0.027054 -0.122192 0.013718 0.009972 0.057465 0.010681 0.018082 0.007648 -0.080872 0.002913 0.078003 0.036713 0.012413 0.046600 0.073120 0.001769 -0.047882 -0.018112 0.054962 -0.036255 0.018005 -0.004375 0.012695 0.038361 -0.036255 0.009399 0.061676 0.034393 0.026855 0.015625 -0.070923 -0.112427 -0.020432 0.103943 -0.006359 0.101135 0.043213 -0.108765 0.004704 0.045776 -0.000290 0.129150 -0.054504 -0.052246 -0.064331 -0.135010 0.061157 -0.078918 -0.046021 -0.066650 -0.094055 0.004139 0.005238 -0.087219 -0.038849 -0.001846 0.048615 -0.077271 -0.013664 0.091187 -0.101868 0.182617 -0.027679 0.039856 0.085022 -0.006748 -0.072205 -0.012222 -0.014297 0.028107 0.036560 -0.010910 0.018433 -0.035187 0.080933 -0.000783 -0.074890 -0.076904 0.119446 0.041260 0.133789 0.057617 -0.112183 -0.024323 0.062012 0.060333 -0.070984 0.065369 0.048767 -0.007660 -0.081055 -0.023926 0.027328 0.000690 -0.082214 0.040741 -0.031677 0.074829 0.050171 -0.006275 0.020599 0.188965 -0.038696 0.019943 -0.117798 -0.001084 0.040436 -0.056976 0.006424 -0.069763 -0.013321 -0.101807 0.070984 -0.064453 -0.068726 0.048981 0.013702 0.007206 0.071167 -0.001639 0.069275 -0.028214 -0.033844 -0.021164 -0.106934 0.008148 0.075684 -0.057220 0.024246 -0.030930 0.016113 -0.020020 +-0.065186 -0.059052 0.035492 0.022552 0.102356 -0.026459 0.013931 -0.061310 0.030151 -0.001068 -0.119507 0.046692 -0.110901 -0.092834 0.043762 -0.211060 -0.027374 -0.083801 0.076660 0.024338 -0.056030 0.001520 -0.006508 -0.078918 0.050659 -0.047760 0.012932 0.065979 0.032532 -0.038513 0.077576 -0.057831 0.052887 -0.020432 -0.136230 -0.069397 -0.081970 -0.014381 0.029068 0.044281 0.098206 -0.006912 0.103394 -0.040070 -0.062866 0.036499 0.096130 0.013519 -0.060608 -0.045105 0.003340 -0.014160 -0.128784 0.096863 0.008804 -0.052612 0.061951 0.004765 0.031525 -0.056061 0.034546 -0.000740 -0.164551 0.018723 -0.132568 -0.044678 -0.008385 -0.012566 -0.107117 -0.013695 0.086548 -0.027573 0.048706 0.007782 0.026611 0.009178 -0.111084 0.005573 0.034210 -0.059143 -0.041992 -0.042297 0.047882 0.007759 -0.031372 -0.076050 -0.026779 0.048706 0.018250 -0.018616 0.040070 0.087036 0.003002 -0.109802 -0.077942 -0.063110 0.018112 0.006435 -0.052032 0.166016 0.045563 -0.156372 0.022720 -0.034332 -0.020508 0.012085 -0.048706 -0.139648 -0.022644 -0.017700 0.012711 0.012047 -0.012558 -0.004494 0.037079 0.006783 0.091919 0.075134 -0.004856 -0.080078 0.151611 -0.008293 -0.052856 -0.051514 0.014084 -0.027069 0.056427 0.027802 0.028091 -0.033020 -0.039337 -0.030685 -0.053589 0.036621 -0.060425 -0.047546 -0.004341 -0.012825 0.031219 0.020218 -0.106384 0.043762 0.029831 -0.047302 -0.000170 0.066223 -0.040924 -0.012215 -0.075012 0.000321 -0.091736 -0.034302 -0.012657 0.027466 0.008247 0.007164 -0.019516 0.104675 -0.031174 0.093201 -0.005280 -0.064331 -0.071533 0.095947 0.024597 0.022003 -0.065613 -0.069031 0.055420 -0.089417 0.007980 -0.048981 -0.035492 -0.104370 0.007534 -0.014366 0.035767 0.032684 0.006218 0.015518 0.027771 -0.065125 -0.067383 0.035400 -0.042908 0.060638 -0.079285 -0.025818 0.109802 -0.015175 -0.028564 -0.058014 -0.029236 0.051819 -0.058624 -0.030212 0.084045 -0.104614 0.137085 -0.075073 -0.016144 -0.012451 -0.001327 0.119934 0.131714 0.049347 0.041382 -0.036224 -0.026703 0.062225 -0.082153 0.078857 0.097168 0.000224 -0.043427 0.035492 -0.042572 0.069519 -0.050354 0.009949 -0.060699 0.077393 0.042297 -0.053833 0.123962 0.014854 -0.076111 0.021210 -0.019897 -0.005096 0.094788 -0.014542 -0.023239 -0.056152 0.131348 -0.090393 0.101135 -0.059296 -0.016907 -0.033112 0.014816 -0.094849 0.020081 -0.096558 0.044769 0.101074 -0.058014 -0.022919 0.028015 -0.045319 0.067749 -0.086853 0.085510 0.032898 -0.072021 -0.042542 +-0.044037 -0.017609 -0.003967 0.025787 -0.033356 0.087036 0.052643 -0.085632 -0.028549 -0.049774 -0.004349 0.000102 -0.095947 0.099731 0.009697 -0.097656 -0.008499 0.013268 0.043060 -0.088501 -0.092468 0.114990 -0.066101 -0.149902 -0.021530 -0.033142 0.019958 0.072693 0.088013 -0.057831 0.123535 -0.063171 -0.035126 -0.038910 -0.149902 -0.097900 -0.044312 0.011398 0.022293 0.124634 0.005680 0.098145 -0.008568 0.006710 -0.091675 0.013802 0.002211 -0.047729 -0.178223 0.011108 0.105530 -0.115845 -0.076965 -0.039215 0.019409 -0.009087 -0.002985 0.021515 0.086975 -0.087769 0.043549 -0.063599 -0.037048 0.060913 0.035095 0.061737 0.022415 -0.018860 0.036469 0.003260 -0.022354 -0.040009 0.095032 0.008095 -0.016403 -0.059265 -0.072937 0.050293 0.094299 0.067078 -0.064453 0.036377 -0.049988 0.032196 -0.091492 -0.123779 0.090393 -0.016113 0.058899 -0.062866 0.001644 0.054565 -0.005520 -0.037048 -0.106750 0.038727 -0.013275 0.003876 -0.028824 0.037750 -0.020172 -0.113098 0.000759 0.035950 -0.101257 -0.006878 0.072205 -0.028534 -0.002104 -0.047913 -0.063538 0.027924 0.046906 -0.042145 0.063171 -0.054352 0.076721 0.181030 0.017090 0.055511 0.064148 -0.070129 0.067261 -0.022568 -0.059631 -0.135620 0.003609 0.021454 -0.010277 0.017029 -0.014076 0.065674 -0.027390 0.014503 0.042297 0.055817 -0.006687 -0.014267 0.088379 -0.025696 -0.027466 -0.038239 0.011536 -0.066895 -0.017960 0.059967 0.045441 -0.015358 -0.025345 0.054962 0.061310 -0.010460 0.058777 -0.009186 -0.004234 -0.105408 -0.042542 0.008270 -0.081055 0.079773 0.000951 -0.079224 0.033295 -0.055847 -0.012527 0.022034 -0.119568 -0.088867 -0.029083 -0.091064 0.062805 -0.116089 -0.018814 -0.093872 -0.087097 0.120483 0.012550 -0.102661 -0.026321 0.007473 0.013695 -0.090820 -0.012321 0.084045 -0.096436 0.116211 -0.056946 0.007290 0.090515 0.067871 -0.028885 0.010910 -0.041473 0.023331 0.051575 0.025269 0.018494 0.004665 0.054840 -0.019928 -0.050201 -0.037018 0.083496 0.016907 0.075989 0.006336 -0.025681 -0.065735 -0.056976 0.079712 -0.012032 0.068604 0.104248 -0.046906 -0.030563 -0.073914 0.032532 0.023239 -0.093567 0.017670 -0.044434 0.067505 0.009964 -0.003929 0.073547 0.176025 -0.038116 -0.055908 -0.112488 -0.052582 0.005180 0.021210 0.012222 -0.081421 -0.031799 -0.085693 0.084351 -0.102661 -0.059753 0.056213 0.004128 -0.018127 0.074280 0.004330 0.061523 -0.066772 -0.048248 0.034851 -0.098267 -0.047913 0.030518 -0.076355 0.033478 0.016205 -0.012535 -0.042542 +-0.037567 -0.018387 0.045563 0.016235 -0.037048 0.093018 0.060608 -0.068909 -0.042664 0.020874 0.045776 0.017776 -0.015244 0.056732 0.034210 -0.156616 0.039795 -0.019760 0.015640 -0.002621 -0.077515 0.069153 -0.070496 -0.030380 0.058380 -0.007351 -0.033661 0.065674 0.159668 0.049530 0.098389 -0.056366 -0.074890 -0.031525 -0.083679 -0.053619 -0.056519 0.016769 -0.014328 0.128662 -0.024460 0.031403 -0.019073 -0.055634 -0.140259 0.020050 0.045532 -0.047974 -0.107117 0.004341 0.083923 -0.153198 -0.125610 -0.126953 0.061981 0.016525 0.036987 -0.018875 0.075562 -0.039398 -0.020935 0.009315 -0.060394 0.019669 -0.015366 -0.006897 -0.047546 -0.060730 0.020325 0.006557 0.047150 -0.028259 0.106018 -0.044861 0.034851 -0.060547 -0.087341 0.015587 0.130981 0.002357 -0.020447 -0.000444 -0.003511 0.002573 -0.084412 -0.026291 0.028458 0.050415 -0.100952 -0.088806 -0.023849 0.119751 -0.015503 -0.079163 -0.064453 0.017502 0.065735 -0.074219 -0.054108 0.068176 0.011147 -0.097839 -0.058289 0.070129 -0.009781 0.014503 -0.021255 -0.013092 -0.103210 -0.028290 -0.070007 -0.007164 -0.042236 -0.064026 -0.003733 -0.083435 -0.026459 0.097900 0.038330 0.005661 -0.005699 -0.060455 -0.058838 -0.057495 0.087280 -0.053955 0.103394 -0.010056 0.047211 0.018570 0.013260 -0.045868 -0.099976 0.031738 0.023575 0.012123 0.014061 -0.086975 0.014816 -0.042694 -0.003559 0.003906 0.023346 -0.077332 0.007069 0.016159 0.024155 0.043335 0.024246 -0.017670 0.025314 -0.011322 0.072083 -0.024185 -0.048981 -0.135498 -0.007710 0.093201 0.025772 0.093079 0.071472 -0.101929 -0.062256 0.030899 0.011818 0.055664 -0.091187 -0.024475 -0.044037 -0.084900 0.067444 -0.039703 0.063232 -0.059265 -0.107788 0.006542 0.024261 -0.054504 0.060333 0.041931 0.052368 -0.085388 0.049530 0.052307 -0.061859 0.081726 -0.040619 0.014763 0.124817 0.016571 -0.011169 -0.071350 -0.027237 0.017059 0.054901 -0.015251 -0.004173 -0.157227 0.023834 0.039703 -0.095276 -0.024475 0.012993 0.037994 0.057861 0.085876 -0.116516 -0.084656 -0.021957 0.026901 -0.083740 0.073181 0.130859 0.001221 -0.087341 -0.093811 0.004791 0.072876 -0.061707 0.035431 -0.099731 0.119263 0.035736 0.052429 0.081604 0.201538 -0.024857 0.030411 -0.129395 -0.069580 0.040405 -0.024902 -0.020096 -0.066467 0.014465 -0.062927 0.066772 0.004543 -0.120117 0.066223 0.015350 -0.044128 0.014572 -0.020935 0.091919 -0.053741 -0.022049 0.040131 -0.018784 -0.022980 0.016830 0.079773 0.044586 -0.006500 0.026611 -0.045532 +-0.033173 -0.038910 0.041443 -0.022934 0.004532 0.071899 0.005272 -0.051056 -0.012466 -0.067139 -0.024704 0.005486 -0.195190 0.102722 0.019897 -0.125977 0.006180 0.018005 0.051300 -0.024002 -0.047394 0.067322 -0.076599 -0.101257 0.035339 0.003508 0.048218 0.090454 0.090149 -0.041443 0.104187 -0.070801 -0.029037 0.032104 -0.180176 -0.090149 -0.042603 0.045044 0.031616 0.116028 0.003031 0.087769 0.009178 0.000744 -0.044556 0.004803 -0.005760 -0.071533 -0.172119 0.024673 0.086426 -0.086914 -0.140625 -0.068665 -0.019577 -0.025284 0.015007 0.000917 0.123291 -0.039398 -0.002161 -0.053192 -0.048096 0.044495 0.006908 0.050446 -0.025299 -0.014351 0.031097 0.017014 0.060425 -0.069214 0.126953 0.000859 0.074524 -0.068848 -0.081665 0.068665 0.082214 0.043976 -0.057007 0.026306 -0.024521 0.033630 -0.076904 -0.096252 0.086426 0.052277 -0.001371 -0.072083 -0.042572 0.111206 0.046692 -0.052460 -0.107971 0.022949 -0.008743 0.002626 -0.070923 0.027664 0.023651 -0.143188 -0.039215 0.033325 -0.075684 -0.001597 0.009712 -0.052002 -0.041962 -0.056702 -0.040436 -0.020081 0.016174 -0.018036 0.037323 -0.089050 0.030426 0.112122 0.038788 0.025406 0.064270 -0.031082 0.025269 -0.071472 -0.037781 -0.114807 0.037201 -0.025497 0.049866 0.005981 -0.001042 0.065979 -0.081238 0.030548 0.052246 0.015076 0.031235 -0.040344 0.089111 0.007820 -0.050537 -0.042847 0.001695 -0.039764 -0.010811 0.036743 0.028122 -0.062073 -0.028427 0.041046 0.076111 0.022171 0.019226 0.012497 -0.061218 -0.121277 -0.037750 0.094360 -0.027588 0.067871 0.002193 -0.139038 0.002125 -0.039154 0.028595 0.011581 -0.072571 -0.113281 -0.034851 -0.106384 0.058777 -0.034302 -0.029053 -0.052734 -0.048401 0.092957 0.045807 -0.081787 -0.023315 0.042725 0.062927 -0.126221 -0.010536 0.065491 -0.058807 0.123840 -0.082642 0.020416 0.119202 0.055511 -0.014702 -0.021194 -0.082153 0.043152 0.021591 -0.011375 0.052460 -0.045013 0.038971 -0.057068 -0.113403 -0.043243 0.106201 0.067322 0.081604 0.053070 -0.058807 -0.040985 -0.026306 0.051208 -0.052368 0.066162 0.078247 -0.096619 -0.070007 -0.081665 0.061890 0.044830 -0.117188 -0.007866 -0.039856 0.046722 0.047882 -0.027985 0.026581 0.151733 -0.021057 -0.027252 -0.072510 -0.032440 0.037964 -0.006611 0.034210 -0.071960 0.014946 -0.098389 0.047516 -0.049805 -0.054871 0.052795 -0.015884 0.019424 0.026382 -0.013390 0.022095 -0.020401 -0.101990 0.009636 -0.101013 -0.024231 0.075989 0.009132 0.046875 -0.036804 -0.023529 -0.039276 +0.024765 0.013641 0.069031 0.026260 -0.038086 0.073608 -0.000193 -0.009422 -0.077454 -0.049744 -0.008705 0.017868 -0.154175 0.078308 0.089905 -0.135742 0.047150 -0.103699 0.045074 0.019226 -0.102905 -0.021515 0.020218 -0.096619 0.076660 -0.015213 0.022263 0.052429 0.112915 -0.020950 0.055115 -0.073486 -0.078125 -0.016495 -0.149780 -0.083740 -0.030472 0.006916 0.005970 0.165039 0.010254 0.023239 0.002136 -0.053558 -0.147705 0.051239 0.094055 -0.007942 -0.045044 0.041107 0.102966 -0.073364 -0.137329 -0.000795 -0.006554 -0.015137 -0.002796 0.011002 0.083374 -0.053436 0.004238 -0.010704 -0.024475 -0.047150 -0.031403 0.036774 0.058990 -0.023834 0.015099 0.079529 0.103638 -0.059540 0.036469 0.017517 0.047913 0.005543 -0.182861 -0.025681 0.149658 0.063843 -0.025360 -0.012749 0.016220 0.084717 -0.010193 -0.025177 0.032562 0.063660 0.009819 0.002153 -0.002142 0.082581 -0.020584 -0.060394 -0.102295 -0.011353 0.058533 -0.057617 0.069580 0.058197 0.014580 -0.127441 -0.025650 -0.036469 -0.099670 0.019165 0.001848 -0.131836 -0.029449 -0.074890 -0.029678 -0.042450 -0.098938 0.012848 -0.015549 -0.085205 0.028641 0.060394 0.015060 -0.061005 0.064453 -0.042877 0.001800 -0.065308 0.091064 -0.068604 0.037628 0.019455 -0.026428 0.023270 0.037750 -0.062225 -0.056091 0.060364 0.046600 0.040619 0.054932 0.007812 0.012886 -0.024582 -0.082092 -0.027740 -0.003609 -0.107178 -0.027847 0.099243 0.040680 0.071655 -0.024841 -0.011650 0.012375 0.046326 0.034576 -0.058899 -0.033752 -0.143433 -0.092102 0.109436 0.038300 0.027969 0.021393 -0.040619 -0.021393 0.105591 0.021118 0.057983 0.006222 0.020523 -0.033386 -0.012535 0.061218 -0.071289 0.040558 -0.048431 -0.007534 0.032043 0.015366 -0.028137 0.058105 0.025421 0.008781 -0.041077 -0.005630 0.126343 -0.096497 0.024216 -0.103577 0.039429 0.113159 -0.045288 -0.010056 0.005428 -0.071045 0.032501 0.072632 -0.015289 0.061554 -0.079407 -0.046234 0.044556 0.000374 0.001034 0.040039 0.039856 0.035034 0.098267 -0.109863 -0.017517 -0.030090 -0.008537 -0.025314 0.063232 0.093079 -0.079041 -0.043854 0.003139 -0.010094 0.044525 0.027939 -0.014282 -0.083923 0.106995 0.022217 0.037750 0.098999 0.225342 0.040222 0.031586 -0.046478 -0.064697 0.061401 -0.069336 0.052277 -0.043182 0.003111 -0.073486 0.101379 -0.060059 -0.021957 -0.002312 0.020065 -0.000199 0.044617 -0.056213 0.083435 0.020538 -0.036072 0.078979 -0.077148 -0.040863 0.077271 0.004623 0.075562 -0.042328 -0.085083 -0.030380 +0.001683 0.035309 0.014091 -0.016830 -0.051758 0.094299 0.049835 -0.086304 -0.088623 0.001838 0.031525 0.029373 -0.062378 0.119019 0.043274 -0.061554 0.027847 0.060913 0.009857 0.078369 -0.019348 0.070618 0.007751 -0.043427 -0.002445 0.024277 0.044983 0.168457 0.110962 -0.010437 0.076416 -0.007538 -0.044922 0.021790 -0.036194 0.003620 -0.072937 0.066162 -0.024490 0.071838 0.005402 0.064758 -0.061737 -0.057129 -0.054352 0.030823 0.030914 -0.038940 -0.106201 0.066956 0.067017 -0.128784 -0.073608 -0.108704 -0.027023 0.008163 -0.033203 -0.037262 0.099670 0.011559 0.071228 -0.101196 0.004795 0.039215 0.036346 0.027222 0.035645 -0.069580 0.132568 -0.030014 -0.012436 -0.035858 0.142700 0.025375 -0.016479 -0.040833 -0.080994 0.041870 0.080566 0.085266 -0.034790 -0.029236 -0.017975 -0.009163 -0.095093 -0.019943 0.075378 -0.046112 0.011345 -0.099609 0.024078 0.006474 -0.038025 -0.044189 -0.122864 -0.091187 0.049530 0.007278 -0.022949 0.006344 -0.008057 -0.038116 -0.102478 0.002180 -0.037537 0.007866 -0.029495 0.014854 -0.009705 -0.027756 -0.062317 0.004036 0.010361 -0.051056 0.080383 -0.055206 -0.060638 0.023163 0.025818 0.041382 0.056427 -0.074768 0.106201 -0.006535 0.064758 0.020340 0.057251 -0.039001 -0.022095 -0.048828 0.029251 0.071472 -0.145630 0.087036 0.087891 0.057617 -0.030777 -0.094482 -0.009369 -0.062103 0.020294 -0.082214 0.043518 -0.097473 -0.074524 -0.053589 0.062317 -0.023987 0.072327 0.097534 0.015335 -0.035492 0.032898 -0.085999 -0.084656 -0.129761 -0.114441 0.122986 0.009232 0.035553 0.067200 -0.107117 0.008217 -0.090027 -0.013176 0.027756 -0.096802 -0.003054 -0.094360 -0.022766 0.024231 -0.013062 0.070557 -0.068787 -0.111755 0.074219 -0.007309 -0.019913 0.071716 -0.003485 0.063599 -0.092041 0.043243 0.025131 0.024200 0.007641 0.015129 0.025406 0.037109 0.041077 0.004162 -0.000073 -0.096191 0.074219 0.094727 0.034485 -0.020905 -0.022400 0.011505 -0.029602 -0.164062 -0.012695 0.044708 0.082581 0.000236 0.022232 -0.060547 -0.148560 -0.067383 0.115906 0.025131 0.015236 0.132812 -0.032196 -0.074890 -0.108704 0.047485 0.080383 -0.023422 -0.043091 -0.026459 0.004879 0.038452 0.028244 0.049408 0.155884 -0.080688 -0.058075 -0.091797 -0.049011 -0.045288 0.043091 -0.057129 -0.071289 -0.020828 -0.111877 0.045868 0.049164 -0.078064 0.103577 0.021988 0.008766 0.025848 -0.068115 0.090698 0.010666 -0.097534 0.020340 -0.064087 0.013916 0.014030 0.028152 -0.022598 0.031250 -0.008415 0.029190 +-0.030441 0.005058 0.003736 -0.004818 0.008118 0.096985 0.018341 -0.067200 0.010612 -0.053619 -0.017181 0.037933 -0.060028 0.036072 0.034363 -0.182373 0.043335 -0.019318 0.020920 0.009766 -0.067200 0.060699 -0.105591 -0.051727 0.033691 -0.022385 -0.025391 0.118958 0.124817 0.047699 0.091614 -0.082458 0.000361 -0.031342 -0.111145 -0.042297 -0.029236 0.038452 0.018753 0.126953 -0.002131 0.050598 0.008438 -0.015442 -0.060181 -0.014206 0.049469 -0.029404 -0.091919 0.042816 0.087585 -0.138794 -0.149658 -0.079407 0.062164 0.010269 0.006035 -0.005280 0.105347 -0.048035 0.001196 -0.037537 -0.078674 0.002470 -0.032532 0.033569 -0.037170 -0.007664 0.048492 0.004082 0.120117 -0.017624 0.123047 0.007038 0.052429 -0.041718 -0.149292 0.044525 0.076233 0.003391 -0.020981 0.015266 -0.016769 -0.036926 -0.110229 -0.059296 0.028687 0.039154 -0.043030 -0.059326 -0.048889 0.125366 0.021957 -0.019257 -0.051514 0.013672 0.085815 -0.073242 -0.067078 0.099426 0.035126 -0.103943 -0.011566 -0.005695 -0.020981 0.006992 -0.009209 -0.048584 -0.083679 -0.063538 -0.068848 0.015480 -0.006779 -0.018188 0.011452 -0.073669 -0.050995 0.074524 0.034821 -0.024933 0.024261 -0.074158 0.027603 -0.055420 0.067444 -0.088257 0.079346 -0.049316 0.046387 -0.036987 0.010139 -0.016724 -0.089539 0.004669 0.039642 0.001071 0.017685 -0.034424 0.014992 0.016037 -0.025009 -0.022125 0.036896 -0.012566 0.053253 0.020706 -0.007751 -0.012451 0.009453 0.021393 -0.002148 0.009537 0.059296 -0.013901 -0.087646 -0.083496 -0.011116 0.129272 -0.045410 0.111755 0.054626 -0.125732 -0.035095 0.016220 0.018311 0.075378 -0.085083 -0.075806 -0.038483 -0.097900 0.020401 -0.060760 0.042999 -0.119507 -0.114746 0.004990 0.052826 0.013725 -0.009201 0.002411 0.029800 -0.120300 0.001229 0.054596 -0.044495 0.089600 -0.075684 0.011383 0.147461 0.048065 -0.028366 -0.021164 -0.029358 0.043365 0.049347 0.010307 0.013489 -0.153198 0.065063 -0.019669 -0.122498 -0.100525 0.063416 0.086060 0.126953 0.063354 -0.119690 -0.050720 0.029678 0.063843 -0.088562 0.053070 0.082581 0.054230 -0.053223 -0.046875 -0.015472 0.056396 -0.095215 -0.023987 -0.035675 0.153564 0.037811 0.015076 0.050781 0.203491 -0.036346 0.012558 -0.077026 -0.020294 0.016495 0.039093 -0.032471 -0.068298 0.026428 -0.116089 0.037262 -0.019363 -0.107605 0.041992 0.031982 0.006493 0.079407 -0.032715 0.008957 -0.064087 -0.070190 -0.005875 -0.046356 -0.011818 0.012238 -0.006649 0.042694 0.026016 0.029388 -0.025711 +-0.092346 -0.061859 0.064636 0.016190 -0.011208 0.003059 0.068542 -0.064453 0.013496 -0.043915 -0.048431 0.031158 -0.097961 0.120422 -0.042786 -0.114990 0.011200 -0.024490 0.009338 -0.086914 0.011444 0.110657 -0.107544 -0.040253 -0.025772 -0.068359 0.043457 0.115784 0.059052 0.003843 0.080750 -0.087585 -0.010796 0.095154 -0.152222 -0.011078 -0.019455 0.025848 0.030807 0.066284 -0.049011 0.060211 -0.004284 0.003906 -0.040344 0.035065 -0.052521 -0.053741 -0.217285 0.014046 0.092346 -0.060516 -0.149414 -0.086731 0.000065 -0.074951 -0.017395 -0.015144 0.084839 -0.031204 0.026169 -0.070251 -0.008286 0.018448 0.000338 0.052368 0.001972 -0.043304 0.000965 0.011864 -0.009834 -0.029297 0.119995 0.020721 0.074890 -0.076172 -0.049713 0.046906 0.098816 0.039948 -0.001049 0.071594 0.026825 0.052429 -0.119629 -0.061310 0.115723 -0.007202 0.045471 -0.112915 -0.034149 0.043427 0.029160 -0.096313 -0.090149 0.052307 0.022446 0.001012 -0.052155 0.026550 -0.001058 -0.058899 0.039612 0.019379 -0.092407 -0.004250 0.029648 -0.046906 0.025665 -0.051392 0.001493 -0.017776 0.023880 -0.007988 0.079834 -0.025040 0.068481 0.139160 0.024353 0.046783 0.066895 -0.016922 0.029785 0.022675 -0.041840 -0.034424 0.047394 -0.042328 0.024002 -0.029373 -0.047760 0.074402 -0.123169 0.013611 0.028534 0.021912 0.004181 -0.047729 0.066284 -0.021637 -0.021362 -0.022675 0.002602 0.002033 -0.020706 0.043579 0.047028 -0.091187 -0.038727 0.037994 0.066895 0.009323 0.011887 0.023148 -0.031464 -0.102661 -0.012566 0.066406 -0.057648 0.030640 -0.023041 -0.114258 -0.009094 -0.053162 0.001650 -0.064575 -0.081726 -0.088013 -0.054718 -0.113953 0.014565 -0.014565 -0.060303 -0.105469 -0.030869 0.078125 0.043793 -0.095825 -0.063477 0.011551 0.092163 -0.089539 -0.016647 0.005489 -0.018982 0.088928 -0.089966 -0.001853 0.119141 0.055603 -0.035339 0.009117 -0.070374 0.057343 0.004524 -0.003967 -0.017303 -0.021606 -0.013084 -0.061737 -0.143188 -0.038666 0.128418 0.087830 0.115479 0.020142 -0.037079 -0.045258 -0.066223 0.033051 0.007793 0.020187 0.104736 -0.111084 -0.053650 -0.087402 0.024872 0.106262 -0.098022 -0.046143 -0.006088 0.012596 0.028244 -0.070374 0.074646 0.058868 -0.057922 -0.090454 -0.065430 -0.051697 0.032928 0.086548 0.001606 -0.085693 0.001943 -0.119934 -0.020660 -0.091431 -0.033997 0.102417 -0.011475 0.062500 0.046112 -0.039032 -0.009071 -0.018570 -0.128418 0.020874 -0.115234 -0.080933 0.062439 -0.049377 0.030472 -0.003914 -0.037140 -0.040588 +-0.076355 -0.016800 0.036438 0.028854 0.002865 0.054474 0.033936 -0.019562 -0.085815 -0.018036 0.072449 0.045715 -0.023636 0.152710 0.098694 -0.097290 0.036041 0.045135 0.005322 0.030441 0.025406 0.047180 -0.053864 -0.081421 -0.018188 -0.057922 0.024124 0.051941 0.100037 -0.002913 0.013496 -0.038910 -0.018417 0.018570 -0.050903 -0.023590 -0.018127 0.083008 -0.011833 0.071411 -0.028305 0.101807 0.005505 -0.056732 -0.102722 0.066467 0.056366 -0.026047 -0.124878 0.082947 0.089111 -0.154663 -0.112671 -0.086975 0.020599 0.007843 -0.033539 0.036743 0.097107 -0.039276 0.031586 -0.121643 -0.005344 -0.028152 0.036682 0.052155 0.078613 0.031799 0.070618 -0.007496 0.048370 -0.034149 0.193604 0.023758 -0.008118 -0.028992 -0.109985 -0.006493 0.164917 0.023331 -0.000519 0.056458 -0.052124 -0.003832 -0.124695 0.007481 0.064148 -0.017944 0.028625 -0.100952 -0.030792 0.009163 -0.050995 0.000345 -0.084778 -0.040527 0.061920 -0.038727 0.014633 -0.040192 0.049988 -0.006680 -0.030746 0.038177 -0.015480 0.072632 -0.030975 -0.027222 0.022049 -0.092163 -0.080200 -0.021240 -0.023605 0.016693 0.024307 -0.054413 0.017853 0.058228 0.075562 0.017059 0.073059 0.017578 0.039978 0.049713 0.045837 0.069641 0.042542 0.028198 -0.016846 -0.026123 0.018097 0.029572 -0.223877 0.010040 0.061279 0.043579 -0.025101 0.038605 0.033234 -0.029694 0.044525 -0.067383 0.005478 -0.037628 0.017868 0.032867 0.052155 0.035675 0.063965 0.071533 0.069519 -0.027802 0.058228 -0.122925 -0.040131 -0.121155 -0.086914 0.102844 0.056824 -0.023880 0.039032 -0.076782 0.036743 -0.033325 0.046204 0.080444 -0.067810 0.006123 -0.064453 -0.075562 0.088623 -0.045807 0.119629 -0.091064 -0.106445 0.028641 -0.013626 -0.088074 0.022858 0.001543 0.082764 -0.011200 0.044556 0.067261 0.019608 0.088562 -0.056946 0.054138 0.039703 0.007446 -0.032074 0.008430 -0.046478 0.042725 0.051880 -0.064697 0.018555 -0.060486 -0.072815 0.002707 -0.102783 -0.047546 0.096069 0.016891 0.034485 -0.026123 -0.061096 -0.137939 0.022781 0.075989 -0.053833 -0.043335 0.160645 -0.014679 -0.016495 -0.136353 -0.007889 0.056122 -0.040436 0.007717 -0.036865 0.084290 -0.015213 0.044525 0.021729 0.218018 0.036041 0.001776 -0.151123 -0.088745 -0.012070 -0.044098 0.052856 -0.006870 -0.026077 -0.043610 -0.022552 0.003536 0.000071 0.074646 0.037537 0.012733 0.017776 -0.066772 0.041382 -0.008270 -0.054871 0.074524 -0.066772 0.009590 0.010582 -0.029388 0.010422 -0.059753 -0.018417 0.008064 +-0.061890 -0.039551 0.072510 -0.015511 0.042847 0.019516 -0.046082 0.015228 -0.013947 0.047913 -0.014160 -0.010521 -0.098694 0.078491 0.012909 -0.078613 -0.057953 -0.037445 0.031799 0.107178 0.027527 -0.050232 -0.031921 0.037231 0.100464 0.024445 0.056122 0.016693 0.075134 0.101685 0.070190 -0.120728 -0.038483 0.111023 -0.092773 0.026108 -0.032990 -0.021942 0.050201 0.047913 -0.060089 0.003527 -0.044312 -0.116333 -0.077087 -0.009789 0.050964 0.012131 -0.082458 -0.027512 0.048828 -0.073120 -0.050537 -0.054993 -0.039337 0.006485 0.033813 -0.044403 0.052673 -0.022385 0.003109 -0.012634 -0.098755 -0.123779 -0.000731 -0.027206 -0.019363 0.009132 0.045898 0.053589 0.172363 -0.001333 -0.080750 -0.008438 0.060913 -0.020782 -0.058441 -0.001517 0.061432 0.049561 -0.016602 -0.042450 0.025070 -0.029480 0.029434 0.042084 0.050079 0.020874 -0.114868 -0.091187 0.000793 0.045990 0.020386 -0.110413 -0.042023 -0.076721 0.097351 -0.014015 -0.027191 0.083679 0.023849 -0.059937 -0.091736 0.016815 -0.030197 -0.042236 -0.085510 0.012650 -0.048035 0.009407 -0.012695 -0.024567 -0.070312 -0.084961 -0.022934 -0.080505 -0.109253 0.009560 0.042236 -0.037720 -0.048889 -0.050812 0.082947 0.001262 0.121948 0.025162 0.053375 0.075134 0.063232 -0.030746 0.031708 0.023575 -0.141602 -0.008881 0.046997 0.014778 -0.003922 -0.119751 -0.084534 0.005833 0.062988 -0.020538 0.064087 -0.057983 -0.118713 0.016281 0.029434 0.035400 0.035858 -0.015129 -0.005802 -0.065979 -0.060730 0.037506 -0.082092 -0.061279 -0.049347 0.169922 0.149902 -0.029480 0.040497 -0.144043 -0.046204 0.073425 0.045685 -0.023788 0.088379 -0.002628 0.071533 -0.015152 0.046173 0.070679 0.044800 -0.018021 -0.015213 0.007294 -0.058594 0.105530 0.025711 0.013092 0.059204 -0.084229 -0.042694 0.044952 -0.045288 -0.046875 0.018646 -0.027054 0.055267 -0.051086 -0.028366 0.030670 -0.029022 0.052765 0.124939 -0.012573 0.014542 -0.194092 0.042480 -0.100708 -0.055206 -0.021896 -0.059662 0.031738 0.024445 0.081665 -0.138306 -0.085266 0.040588 0.123474 -0.028107 0.080322 0.064087 0.029160 -0.025192 -0.027786 0.099182 -0.021759 -0.067017 0.055969 -0.109253 0.036011 -0.052612 -0.092957 0.072937 0.065125 0.059021 0.042328 -0.077209 -0.008865 0.030518 -0.072327 -0.016037 -0.051849 0.057068 -0.058441 -0.091431 -0.005932 -0.033173 0.035828 -0.019562 -0.025238 0.066650 -0.149780 -0.008934 -0.024734 -0.121155 0.012817 0.050934 -0.069031 0.045990 0.090759 0.029129 -0.066284 -0.017639 -0.030655 +0.037872 -0.030411 0.065491 -0.066345 0.024139 0.051453 -0.011505 -0.052368 -0.018646 -0.018967 -0.039948 -0.013763 -0.110840 -0.002972 0.040710 -0.152344 -0.006618 -0.011940 0.065369 0.066528 -0.067993 0.008232 -0.003304 -0.007904 0.069824 0.010941 0.038757 0.108032 0.134033 -0.013596 0.095947 -0.077698 -0.061462 -0.002569 -0.114319 -0.054199 -0.062500 0.033600 0.015038 0.089600 0.034149 0.042480 0.027206 -0.033569 -0.054871 0.042603 0.086609 -0.065857 -0.061584 -0.009270 0.024628 -0.060547 -0.132080 -0.053314 -0.036407 -0.022934 0.038116 -0.021759 0.113281 -0.002869 0.009758 -0.031982 -0.122864 0.013100 -0.060303 -0.017746 -0.027649 -0.060638 0.010231 0.004429 0.100769 -0.048828 0.103088 -0.045074 0.088928 -0.035858 -0.114136 0.036469 0.063965 0.004143 -0.080750 -0.056671 0.015053 -0.031677 -0.055664 -0.058228 0.051605 0.042633 -0.072327 -0.074036 0.002657 0.125000 0.036743 -0.105347 -0.089417 -0.078674 0.034515 -0.054657 -0.036621 0.098938 0.008148 -0.171143 -0.105408 -0.016830 -0.016663 -0.029755 -0.060333 -0.072876 -0.084900 -0.035278 -0.057831 -0.020462 -0.012711 -0.040741 -0.015053 -0.100525 -0.048462 0.040039 0.005207 -0.058594 0.099670 -0.020294 0.011292 -0.099731 0.118774 -0.036804 0.120728 -0.033630 0.038757 -0.015930 0.013008 -0.000036 -0.079956 0.065796 0.037048 0.011459 0.015190 -0.112305 0.018326 -0.006958 -0.057892 -0.019684 0.051422 -0.082703 -0.042389 0.031433 -0.001151 -0.032623 0.021286 -0.008308 -0.017868 -0.001355 0.021606 -0.021393 -0.038574 -0.099976 -0.036560 0.143066 0.021103 0.071045 0.039825 -0.143311 -0.088928 0.030731 0.036438 0.037109 -0.061005 -0.069885 -0.020508 -0.058624 0.058197 -0.012260 0.010788 -0.066345 -0.016037 0.055084 0.020248 0.001548 0.077209 0.036072 0.055481 -0.098816 -0.016815 0.036804 -0.059357 0.010712 -0.064697 -0.005898 0.134521 0.030975 0.008690 -0.077087 -0.083557 0.052856 0.035675 -0.033600 0.083252 -0.153809 0.060822 -0.056946 -0.127563 -0.045227 0.021759 0.111877 0.040833 0.119202 -0.075867 -0.058746 -0.049408 0.054718 -0.083435 0.075684 0.118408 0.003222 -0.116394 -0.032379 0.039673 0.064209 -0.088074 -0.017120 -0.059662 0.093079 0.047455 -0.004372 0.028259 0.137329 -0.011383 0.037750 -0.073547 -0.041901 0.039917 -0.003773 -0.031219 -0.058472 0.069214 -0.048431 0.069763 0.015198 -0.076538 0.026321 0.017822 -0.005577 -0.013290 -0.090820 0.050720 0.050995 -0.107361 0.006077 -0.009552 -0.030014 0.065002 0.085327 0.065552 0.002981 -0.033813 -0.028625 +-0.112000 -0.065613 0.082397 0.127197 0.102661 -0.021759 -0.018616 0.000806 -0.097168 -0.024445 -0.131836 -0.011772 -0.074585 0.042389 0.028900 -0.165405 -0.037628 -0.101990 0.115723 0.052216 -0.024811 -0.036499 0.035461 0.026398 -0.021271 -0.016220 0.038788 0.046783 -0.000107 0.009521 0.014137 -0.018539 -0.013023 -0.060944 -0.085144 -0.096497 0.002235 -0.069214 -0.037323 0.013794 0.085083 0.070923 0.020340 0.006546 0.016235 0.058319 0.045502 -0.048981 -0.009430 -0.036346 0.018478 -0.010460 -0.131470 0.083862 0.058990 -0.028320 0.098511 -0.004219 0.037567 -0.082214 -0.033203 0.042023 -0.085693 0.028336 0.002293 0.010948 -0.093262 0.036774 0.012260 0.033905 0.065552 0.027908 0.088074 -0.054565 0.063171 -0.025040 -0.134399 -0.013298 0.005455 -0.010048 -0.062744 0.002703 0.018570 -0.053375 -0.060059 -0.143311 0.012718 0.046722 -0.038757 -0.058380 0.106995 0.052490 0.011658 0.010033 -0.065552 -0.020355 0.081421 -0.035675 -0.017548 0.032013 0.008171 -0.066833 -0.090759 -0.055969 0.042969 0.006832 -0.028152 -0.070923 -0.012566 0.035675 0.025070 -0.033051 0.073303 0.113037 0.043182 -0.100464 -0.025940 0.039398 0.017441 -0.059448 0.125244 -0.013748 0.009254 0.079346 0.009773 -0.012123 0.166260 -0.068298 0.095276 -0.022141 -0.040802 0.041168 -0.064270 0.054077 -0.022949 -0.036469 0.026581 -0.062347 0.052704 -0.036163 0.013634 -0.087769 -0.004974 -0.040863 0.011047 0.013107 0.020416 -0.007298 0.053528 0.078186 0.042328 -0.034332 0.008850 -0.012260 -0.035156 -0.032318 -0.062561 0.077759 -0.013229 0.052216 -0.063599 -0.081848 -0.079102 0.115051 0.049927 -0.043121 -0.110718 -0.041962 -0.002954 -0.017609 -0.002710 -0.095520 -0.025894 -0.061523 0.062866 0.042053 0.029160 -0.041412 -0.107605 0.005695 0.028992 -0.124939 -0.012680 0.046204 -0.041931 0.038971 -0.049103 -0.052094 0.080994 0.074280 0.051361 -0.002745 -0.009933 -0.055603 -0.032593 -0.047699 0.122009 -0.087891 -0.005188 0.027176 0.014091 -0.019974 0.121582 0.121704 0.045197 0.051239 0.006561 -0.096863 -0.064636 0.013847 -0.040802 0.015373 0.022644 -0.018265 0.069580 -0.025055 0.001861 0.037292 -0.105408 -0.105347 0.018784 0.102966 0.115417 -0.070984 0.057861 0.049438 0.004341 0.026627 -0.024338 0.012405 0.085449 0.068054 0.066895 0.031128 0.076477 -0.088562 0.147217 -0.004913 -0.142944 0.081543 0.153931 0.035553 0.015335 -0.113037 0.082947 0.016510 -0.079224 -0.075378 -0.063110 -0.022919 -0.018158 -0.044464 0.152710 0.003454 0.017349 -0.001744 +0.024445 -0.004959 0.021393 -0.007038 0.014244 0.074524 0.087280 -0.074158 -0.004257 -0.042816 0.008919 0.074097 0.011314 0.064880 0.026398 -0.125732 0.051178 -0.037018 0.030655 0.028885 -0.038483 0.010880 -0.094116 -0.034302 0.013962 0.000459 -0.005886 0.045410 0.089294 0.038055 0.110413 -0.046112 0.016556 0.058228 -0.048676 -0.011101 -0.005836 0.056671 -0.025009 0.108276 0.068420 0.079407 0.059448 -0.010284 -0.090515 0.070129 0.059387 0.021088 -0.084473 0.063599 0.085022 -0.198242 -0.077820 -0.024704 0.015488 -0.002390 0.026215 0.020309 0.072449 -0.036804 0.087158 -0.026337 -0.109314 0.017731 -0.037506 0.050171 0.015884 -0.103271 0.043762 0.044067 0.088867 0.003057 0.150513 -0.020325 0.021378 -0.010582 -0.184204 0.064270 0.118286 0.029083 -0.025162 0.012474 -0.005775 0.002539 -0.150269 -0.047638 -0.024475 0.051086 0.048431 -0.082336 -0.033447 0.054291 -0.016647 -0.110657 -0.055267 -0.063782 0.085144 -0.040771 -0.091187 0.017014 0.044647 -0.067322 -0.015297 0.004799 0.058228 0.067993 -0.040314 -0.030045 -0.023438 -0.023712 -0.086121 -0.022034 -0.037598 -0.058044 0.024063 -0.082642 -0.068176 0.117676 0.034210 0.006729 0.025101 -0.037476 0.036438 -0.039001 0.127441 0.000664 0.119690 -0.011345 0.043243 -0.059113 -0.003496 0.019028 -0.125732 0.045990 0.013664 0.003201 -0.000055 -0.036713 0.017227 0.026199 0.005135 0.002310 -0.005512 -0.052521 -0.008881 0.005119 0.001591 -0.036407 0.068420 0.005283 -0.041870 -0.024521 0.038300 -0.035370 -0.042725 -0.119019 -0.025635 0.116638 -0.050873 0.085876 0.031952 -0.117920 -0.044861 -0.026932 0.025986 0.051727 -0.057159 -0.035522 -0.039948 -0.106384 0.017654 -0.041016 0.141357 -0.058533 -0.084656 0.055206 0.072571 0.005478 0.075867 0.033112 0.045471 -0.039124 0.062408 0.047638 0.040558 0.037048 -0.086182 -0.011314 0.137573 0.009262 0.058075 -0.042755 -0.089172 0.111877 0.013428 0.007027 0.003151 -0.131104 0.021729 0.026016 -0.153320 -0.007889 -0.002403 0.057526 0.087036 0.073120 -0.070068 -0.120117 0.033203 0.053223 -0.068420 0.003628 0.113342 0.041046 -0.008690 -0.084595 0.048889 0.066223 -0.025330 -0.031799 -0.041626 0.114441 -0.025009 0.099609 0.052368 0.190796 0.048645 0.016983 -0.124939 -0.060059 -0.013924 0.051483 -0.013954 -0.063416 0.027985 -0.086914 0.078979 0.045837 -0.071411 0.013458 0.019608 0.025742 -0.003618 -0.085388 0.065735 -0.031677 -0.074463 0.016113 0.011948 0.041656 0.004967 0.005054 0.012589 -0.005062 0.017532 -0.011566 +0.029953 -0.013474 0.005219 0.002035 0.036438 0.116882 0.053589 -0.086487 0.025543 -0.071228 -0.028503 0.045746 -0.036041 -0.035278 0.020935 -0.167480 0.026062 -0.015396 0.001961 -0.016571 -0.115295 0.022934 -0.049438 -0.045227 0.035950 -0.010551 -0.011765 0.055298 0.073364 0.010277 0.121826 -0.084473 -0.006413 -0.003103 -0.108093 -0.085815 -0.040924 0.004807 0.010979 0.148926 0.074402 0.053284 0.072937 0.013420 -0.113464 0.037689 0.065918 -0.027008 -0.069885 0.004993 0.047455 -0.155396 -0.089783 -0.035217 0.047302 0.013351 0.044128 0.024063 0.055450 -0.080566 0.057281 0.025635 -0.116211 0.045532 -0.056000 0.022171 -0.012932 -0.075500 -0.013382 0.007359 0.054871 -0.044830 0.113159 -0.052612 0.022385 -0.042480 -0.135498 0.096924 0.050842 0.025711 -0.035339 -0.042694 -0.038208 0.014427 -0.136841 -0.105286 -0.008705 0.026199 0.026550 -0.054749 0.009018 0.073730 0.022873 -0.121338 -0.058472 -0.000524 0.051208 -0.042358 -0.086426 0.083374 0.025757 -0.103516 -0.008835 0.012268 0.010529 0.035583 -0.036377 -0.047058 -0.066467 -0.036163 -0.109863 0.006222 -0.008209 -0.089172 0.022842 -0.073303 -0.032593 0.131104 0.033112 -0.007282 0.062012 -0.097046 0.010574 -0.066833 0.108398 -0.062744 0.093872 -0.002075 0.072998 -0.005943 0.002975 -0.005527 -0.043213 0.004768 -0.013397 -0.006516 -0.014000 -0.061157 0.004002 0.005531 -0.055267 0.027863 0.025208 -0.070923 -0.024551 0.020645 -0.008316 -0.059326 0.021240 -0.007599 -0.040771 -0.024139 0.055939 -0.001364 -0.014488 -0.087219 0.006828 0.093262 -0.082947 0.124084 0.037567 -0.106873 -0.081299 -0.000940 0.010704 0.051056 -0.084412 -0.085449 -0.037170 -0.075928 0.038391 -0.093994 0.069702 -0.090210 -0.069641 0.078491 0.049774 0.012657 0.062744 0.009048 0.042297 -0.074707 0.005501 0.048553 -0.026596 0.038727 -0.088745 -0.021088 0.159058 0.035614 0.025772 -0.036469 -0.047668 0.050629 0.016006 0.010376 -0.012001 -0.133057 0.102722 -0.020599 -0.138794 -0.022644 0.027054 0.093872 0.096008 0.073120 -0.069092 -0.106201 -0.017929 0.072937 -0.075562 0.045990 0.088806 0.055054 -0.065125 -0.041687 0.008331 0.059509 -0.088562 -0.004913 -0.044037 0.125488 0.007214 0.046326 0.055695 0.166382 -0.024643 0.035248 -0.120117 -0.051453 -0.011063 0.034363 -0.034760 -0.066223 0.013374 -0.056030 0.101868 -0.005829 -0.125488 0.024704 0.035126 -0.002274 0.052002 -0.053436 0.063904 -0.032135 -0.082581 -0.023102 0.028015 0.003983 0.021683 0.001993 0.084351 0.007034 0.012581 -0.039917 +-0.087769 0.036560 -0.014854 -0.026093 0.032013 0.087830 -0.023117 -0.024857 -0.040527 -0.076050 0.055786 0.048889 -0.098328 0.078857 0.061951 -0.124268 0.045410 0.056091 -0.023148 -0.006985 -0.083801 0.085632 -0.086304 -0.098145 0.065735 -0.033936 -0.003508 0.066345 0.118591 -0.011742 0.038269 -0.028809 0.005920 -0.010269 -0.085266 -0.078186 -0.106689 0.024307 0.035065 0.133667 -0.021729 0.058624 -0.034790 -0.043762 -0.120056 -0.024948 0.032166 -0.018829 -0.130737 0.033630 0.086975 -0.145508 -0.110291 -0.122253 0.049194 0.072693 0.013710 -0.004509 0.120789 -0.035492 0.021652 -0.049286 0.016449 -0.037872 0.042084 0.098328 0.041840 0.028641 0.025024 0.030563 0.123596 -0.035248 0.113708 0.035736 0.019577 -0.022858 -0.091431 0.013084 0.095642 0.081726 -0.005825 0.030334 -0.060547 0.045776 -0.072571 -0.017334 0.081848 -0.014679 -0.002552 -0.061462 -0.085205 0.064575 0.017456 0.021927 -0.078613 0.030411 0.088013 -0.048950 -0.029282 0.039398 0.013512 -0.074646 0.020996 0.023804 -0.108582 -0.049500 0.018555 -0.020584 -0.031799 -0.078857 -0.075745 0.013847 -0.082397 -0.034393 -0.004452 -0.054504 -0.010002 0.092712 0.093872 -0.025604 0.054260 -0.073547 0.054626 -0.010284 0.032959 -0.068420 -0.044983 0.047974 0.012131 0.038391 0.040283 -0.004875 -0.103577 0.010002 0.095154 0.051270 -0.063538 0.004436 0.007282 -0.019165 -0.056183 -0.030655 0.060638 -0.050812 -0.026428 0.063110 0.013168 0.007820 -0.023697 0.053162 0.095947 -0.009369 0.035278 0.011040 -0.078308 -0.113525 -0.034821 0.108521 0.022324 0.054718 0.066956 -0.073547 0.028915 0.010056 0.007179 0.112854 -0.019485 0.001120 -0.038330 -0.081299 0.088074 -0.061768 0.010460 -0.090271 -0.100586 -0.001813 -0.009277 -0.035065 -0.006092 -0.000404 0.045380 -0.028732 0.018387 0.068726 -0.064453 0.147095 -0.012383 0.081299 0.068420 -0.037445 -0.078491 0.038208 -0.049896 0.021713 0.067261 -0.015533 0.026550 -0.064331 0.056641 -0.019501 -0.101318 -0.057007 0.086731 -0.001513 0.119324 0.042389 -0.153076 -0.031921 0.099487 0.073486 -0.041077 0.077759 0.076721 -0.029739 -0.042633 -0.016678 -0.019562 0.003281 -0.037598 0.026978 -0.038055 0.091553 0.005447 0.023407 0.046204 0.220337 -0.022858 0.016800 -0.130127 -0.016876 0.007256 -0.073120 0.004986 -0.063416 -0.050507 -0.079773 0.054016 -0.091248 -0.055267 0.059845 0.008247 -0.015854 0.132935 0.005527 0.018799 -0.061218 -0.043396 -0.028030 -0.105957 0.017517 0.067932 -0.042023 0.046173 -0.028458 0.005692 0.008682 +-0.033905 -0.010063 0.010475 0.028061 0.000831 0.092346 0.066772 -0.061890 -0.022461 -0.038391 -0.023987 0.047791 -0.089417 0.077515 0.033020 -0.158936 0.044373 -0.005390 0.007298 -0.049622 -0.062805 0.061127 -0.090576 -0.058411 0.037201 0.019714 0.006535 0.118103 0.107910 0.011147 0.113403 -0.028152 -0.020752 0.012268 -0.110291 -0.040619 -0.012619 0.035553 -0.012932 0.143921 0.011864 0.072144 0.002089 -0.005554 -0.071960 0.014870 0.002523 -0.054810 -0.154053 0.034454 0.084351 -0.159912 -0.133545 -0.073669 0.024261 -0.016525 -0.007549 0.012573 0.112671 -0.079712 0.030670 -0.025208 -0.060913 0.046600 -0.009300 0.039520 -0.031311 -0.053864 0.025101 0.031891 0.083862 -0.068115 0.095703 0.016052 0.045746 -0.037903 -0.137329 0.057800 0.126465 0.035156 -0.046997 -0.015930 -0.025940 0.052124 -0.133911 -0.069824 0.032745 0.047363 0.007706 -0.090759 -0.049957 0.089966 0.001418 -0.070557 -0.063416 0.007286 0.063965 -0.045227 -0.076355 0.038208 0.022064 -0.095642 -0.025391 0.036377 -0.030136 0.032959 -0.002844 -0.034363 -0.035461 -0.058136 -0.062866 0.012177 -0.004219 -0.051819 0.014893 -0.086060 -0.031128 0.113525 0.061066 0.003689 0.021027 -0.069519 0.004791 -0.038544 0.037201 -0.074158 0.051666 -0.062927 0.051819 -0.039001 -0.019623 0.018753 -0.079712 0.026642 0.030151 -0.007431 0.034454 -0.016739 0.032898 0.012856 -0.035248 -0.051880 0.009262 -0.056061 0.019958 0.022934 0.042877 -0.031586 0.013885 0.030228 0.005589 0.012245 0.030975 -0.014542 -0.069641 -0.114502 0.013329 0.107056 -0.059784 0.109802 0.022842 -0.117126 -0.031433 -0.059418 0.014366 0.057556 -0.075073 -0.085999 -0.051727 -0.103638 0.021164 -0.058899 0.034485 -0.107117 -0.113586 0.062134 0.058411 -0.043884 0.016235 0.033386 0.058685 -0.120605 0.006039 0.044220 -0.026627 0.105652 -0.097778 0.000656 0.133057 0.043579 0.002386 -0.000733 -0.081299 0.048187 0.020477 0.022964 -0.022614 -0.089478 0.054169 0.027222 -0.121887 -0.010696 0.054169 0.060516 0.083984 0.054321 -0.092896 -0.102966 -0.025711 0.049805 -0.069092 0.072083 0.113281 -0.028076 -0.065979 -0.103699 0.019089 0.085693 -0.073120 -0.026154 -0.057983 0.112488 0.046417 0.002396 0.048737 0.194580 -0.052795 -0.022827 -0.119019 -0.047028 -0.002781 0.034302 0.004517 -0.045349 -0.025986 -0.120300 0.070129 -0.039703 -0.109863 0.063782 0.016815 0.006935 0.052399 -0.022034 0.068359 -0.034088 -0.101135 0.008308 -0.055573 0.016754 0.015465 -0.000374 0.007195 -0.009209 -0.002911 -0.021408 +-0.043091 -0.074707 0.030762 0.044189 0.068420 0.064697 0.070557 -0.066711 0.023422 -0.018509 -0.068115 0.015182 0.015259 -0.031021 0.004971 -0.173340 -0.047028 -0.085815 -0.002056 -0.055786 -0.067444 0.063293 -0.015465 -0.020035 0.030167 -0.042603 -0.023300 0.080322 0.056793 0.006626 0.108521 -0.078430 -0.032959 0.001125 -0.131714 -0.067383 -0.053436 -0.029114 0.023041 0.051941 0.024460 0.018204 0.018951 0.028656 -0.114868 0.057922 0.021469 -0.083435 -0.149658 -0.013062 0.002634 -0.074219 -0.098755 -0.028625 -0.016525 0.002815 0.051331 0.014877 0.036224 -0.028854 0.029007 -0.013840 -0.087097 0.013306 -0.050018 -0.002832 -0.003235 -0.139893 -0.032013 -0.032379 -0.026428 -0.041199 0.093018 -0.061249 0.011299 -0.043488 -0.068909 0.066772 0.039917 0.016357 -0.031982 -0.050903 0.030884 -0.006672 -0.155518 -0.059631 0.021103 -0.055878 0.049042 -0.136841 0.058929 0.076721 -0.021622 -0.182251 -0.069580 -0.034363 0.028671 -0.032654 -0.035553 0.047241 -0.015701 -0.119263 -0.038696 -0.027405 -0.034515 0.028381 -0.032013 -0.031494 0.001493 0.000972 -0.043457 0.012154 0.006317 -0.078064 -0.001413 -0.044128 -0.005516 0.138794 -0.003353 -0.024109 0.081909 0.020981 0.002401 0.013618 0.064697 0.018433 0.130615 -0.029724 0.027985 -0.014122 -0.015076 0.014168 -0.069763 0.021881 -0.057343 -0.018723 -0.013161 -0.102844 0.002810 -0.068542 -0.075195 0.033783 0.019791 -0.076599 -0.082825 0.070618 0.046234 -0.102051 -0.022705 0.054321 -0.025116 -0.003193 0.033783 0.020203 0.003263 -0.080505 -0.028366 0.029434 -0.066040 0.090759 -0.017670 -0.090271 -0.055359 -0.022873 0.026093 0.003563 -0.091675 -0.077026 -0.012459 -0.096680 0.018005 -0.052368 0.018585 -0.139160 -0.061554 0.139038 0.042145 -0.051941 0.045349 -0.013756 0.051697 -0.088867 -0.030624 0.006317 -0.030533 0.047272 -0.082031 -0.050598 0.115112 0.030975 0.045471 -0.038574 -0.118958 0.009911 -0.013443 -0.020813 0.036499 -0.113037 0.054443 -0.031128 -0.144897 -0.019470 0.033966 0.141113 0.071655 0.030624 0.018234 -0.082947 -0.068115 0.085388 -0.046967 0.022537 0.127686 -0.006241 -0.070862 -0.053101 -0.033081 0.125366 -0.101135 -0.025787 -0.065186 0.108337 0.043793 -0.034058 0.087830 0.066711 -0.067688 -0.030396 -0.114014 -0.064880 -0.030090 0.061493 -0.038361 -0.081726 0.008476 -0.071838 0.104797 -0.027725 -0.072205 0.060272 0.018280 -0.041992 0.053253 -0.085815 0.059601 0.029129 -0.146851 -0.035278 -0.010963 -0.057373 0.040222 0.020554 0.108521 0.056427 -0.013786 -0.013420 +-0.039215 -0.067261 0.094055 -0.064087 0.059204 -0.040588 -0.004719 -0.043976 -0.040375 0.006104 -0.084229 -0.029160 -0.164185 0.001306 0.024918 -0.141968 -0.058075 -0.036530 0.089294 0.020020 -0.039429 0.009346 0.022797 0.000039 0.045959 -0.077148 0.057648 0.022858 0.077393 -0.075012 0.054077 -0.072083 -0.042786 0.010666 -0.177368 -0.047852 -0.090759 -0.008438 0.018585 0.064026 0.038452 0.020096 0.077148 -0.079285 -0.039581 0.061005 0.077576 -0.025085 -0.065613 -0.094971 0.011909 0.048462 -0.112488 -0.000763 -0.017792 -0.027252 0.058228 -0.030045 0.029221 -0.021332 0.008820 -0.056274 -0.120544 -0.008987 -0.070496 0.001659 0.014915 -0.063232 -0.118469 0.045441 0.052368 -0.028946 0.052734 -0.067017 0.122498 -0.068542 -0.069641 0.016251 0.082214 -0.012611 -0.082092 -0.028564 0.052734 0.062256 0.025452 -0.066101 0.062866 0.030960 -0.004002 -0.079895 0.003546 0.091309 0.051483 -0.108765 -0.112549 -0.041412 -0.020218 -0.046265 -0.027588 0.148315 -0.014610 -0.169067 -0.013329 -0.013206 -0.105103 -0.082336 -0.026978 -0.146606 -0.031464 -0.043732 -0.024704 -0.042877 0.009636 0.002218 0.044769 -0.041443 0.087524 0.066895 -0.008499 -0.061340 0.165283 0.025574 -0.020477 -0.053375 0.052490 0.004951 0.055481 0.045013 0.047241 0.031494 -0.040131 -0.001564 -0.050476 0.064880 0.008156 0.017136 -0.073730 -0.138916 0.030197 -0.003706 -0.076477 0.003685 0.006142 -0.031616 -0.073914 0.134155 -0.013878 -0.037811 -0.032990 -0.037109 0.002953 -0.051514 0.000969 0.029892 0.021820 -0.051971 -0.006363 0.112793 0.029617 0.013397 0.036743 -0.077454 -0.070007 0.090759 0.009613 -0.065186 -0.046967 -0.044037 0.014175 -0.028412 0.096252 -0.030090 -0.072571 -0.059479 0.109558 0.024170 0.024841 -0.001913 0.044861 0.033081 0.063354 -0.066040 -0.055328 0.026306 -0.077393 0.016174 -0.059357 0.000043 0.123230 -0.007015 -0.043549 -0.053009 -0.068298 0.030396 -0.021835 -0.059265 0.101685 -0.119019 0.038910 -0.106201 -0.064331 -0.011925 0.016785 0.110779 0.070557 0.111938 -0.042145 -0.030884 -0.067566 0.029221 -0.007294 0.128784 0.121887 -0.074097 -0.081421 0.020447 0.013786 0.037659 -0.068787 -0.013481 -0.035614 0.033630 0.006725 -0.046417 0.061432 0.023666 0.006065 -0.009491 -0.026978 -0.022049 0.107727 -0.006538 0.009056 -0.015793 0.110046 -0.008354 0.036865 -0.082458 -0.034393 0.011353 -0.011482 -0.016418 0.030472 -0.069458 0.033051 0.090698 -0.068787 0.010857 -0.011711 -0.089050 0.087891 -0.033722 0.123901 -0.053345 -0.069336 -0.062683 +-0.112854 -0.025482 0.005482 0.020279 0.059692 -0.042267 0.031586 -0.048950 -0.040253 -0.008797 -0.152100 -0.019165 -0.092712 0.010941 0.067322 -0.196411 -0.033844 -0.128418 0.088440 -0.000941 -0.011795 0.060852 -0.057220 -0.080078 0.030167 -0.071960 0.015747 0.114380 0.041992 -0.030792 0.071228 -0.067261 -0.022034 -0.100281 -0.171021 -0.104553 -0.062744 -0.014526 0.041565 0.075012 0.055084 0.038727 0.058868 -0.008957 -0.048981 0.021347 0.071350 -0.002934 -0.083008 -0.048096 0.058441 0.016479 -0.157471 0.041962 0.062988 0.012779 0.034943 0.006897 0.017471 -0.050293 -0.016953 0.004257 -0.076538 -0.017776 -0.031067 -0.000585 -0.045929 -0.025711 -0.016251 -0.004734 0.053497 0.028519 0.076660 -0.033356 0.027313 -0.052063 -0.125488 -0.010010 0.077148 -0.005856 -0.081116 0.015457 0.038208 -0.011597 -0.062988 -0.092346 0.008179 0.033844 -0.002117 -0.068359 0.028885 0.069336 0.012299 -0.041962 -0.082153 0.001546 0.020584 -0.035828 -0.025558 0.138916 0.010719 -0.124268 -0.024048 -0.078857 -0.009933 0.028809 0.010895 -0.094849 -0.002447 -0.027924 0.041931 0.009644 0.069641 0.064941 0.050018 -0.048584 0.053802 0.081238 0.006062 -0.069580 0.112488 -0.035706 -0.007183 -0.000055 -0.043152 -0.015388 0.080627 -0.061707 0.012703 -0.020157 -0.009735 -0.017563 -0.061432 0.052826 -0.030060 -0.027008 0.017593 -0.034180 0.079041 -0.005634 -0.054993 0.007370 -0.028214 -0.054626 0.047760 0.097351 0.009506 0.006466 -0.007553 0.018219 0.018982 0.004433 0.056000 0.005699 -0.029144 -0.038330 -0.012337 0.068604 -0.049377 0.138794 0.038452 -0.048859 -0.057190 0.119629 -0.011131 -0.016388 -0.085999 -0.041748 -0.026672 -0.086365 -0.005589 -0.055542 -0.055328 -0.126465 -0.010002 -0.000075 0.053864 -0.018692 -0.035675 0.012138 0.006001 -0.150146 -0.037598 0.029358 -0.077698 0.111450 -0.063232 -0.025040 0.106018 0.013931 -0.026550 -0.011070 -0.001914 0.011086 -0.045319 -0.014580 0.110291 -0.079956 0.046265 -0.014252 -0.047577 -0.076416 0.076904 0.119873 0.131226 0.067993 -0.004433 -0.053619 -0.027161 0.069031 0.002426 0.054901 0.091003 -0.032990 -0.026718 0.008980 -0.078064 0.097534 -0.083130 -0.061493 -0.047638 0.164429 0.107849 -0.063660 0.074524 0.083435 -0.049347 -0.061462 -0.059631 0.017822 0.106140 0.058350 0.019424 -0.014931 0.043335 -0.115051 0.099854 -0.094849 -0.084900 0.024323 0.053223 -0.014671 0.043610 -0.033905 0.098694 0.012497 -0.041504 -0.034546 -0.106934 -0.053223 0.045807 -0.100769 0.110535 0.067444 -0.041168 -0.007671 +0.017929 -0.018723 -0.028030 -0.025391 -0.024414 0.104248 0.000623 -0.090576 0.012886 -0.088074 -0.033875 0.031174 -0.089233 0.002180 0.017212 -0.142944 0.062256 0.000796 -0.041046 -0.027954 -0.096313 0.043091 -0.066956 -0.069275 0.053711 0.016785 0.011047 0.129639 0.107422 0.004948 0.141479 -0.057739 -0.037903 -0.012688 -0.108948 -0.051483 -0.035034 0.022781 0.030731 0.154053 -0.013000 0.054474 0.030518 0.028152 -0.082092 0.015396 0.034088 -0.048859 -0.096619 0.042938 0.058502 -0.138428 -0.170166 -0.067566 0.056458 -0.012047 0.028152 -0.009102 0.133301 -0.045746 0.004971 -0.000458 -0.037506 0.070374 -0.028275 -0.009819 -0.040436 -0.026962 0.068970 -0.034058 0.070068 -0.070984 0.132202 -0.013420 0.021973 -0.052765 -0.103882 0.072327 0.060364 0.022430 -0.001070 -0.031494 -0.021042 -0.002335 -0.120117 -0.080688 0.014008 0.025497 -0.028107 -0.007694 -0.004406 0.115601 0.030579 -0.062622 -0.068481 0.046753 0.018555 -0.059967 -0.034088 0.076965 0.049377 -0.135620 -0.026871 -0.005478 -0.021561 0.064209 0.002422 -0.012718 -0.115234 -0.056885 -0.036591 0.015289 -0.011833 -0.022507 0.001439 -0.073853 -0.038391 0.088257 0.024506 -0.002724 0.050873 -0.104797 -0.018936 -0.078918 0.032776 -0.081909 0.076416 -0.085388 0.011993 -0.019592 0.017456 0.025284 -0.053833 0.039703 0.056122 -0.031097 0.040771 -0.040741 0.060303 0.008430 -0.068237 0.038300 0.034637 -0.087036 0.021988 0.003504 -0.006550 -0.035339 0.009674 -0.004513 0.029251 0.043396 0.049835 -0.022720 -0.046173 -0.121399 -0.010719 0.112610 -0.057343 0.103699 0.038666 -0.120850 -0.086792 -0.016953 0.029556 0.070862 -0.096436 -0.106140 -0.059906 -0.092346 0.007980 -0.026062 0.008110 -0.095581 -0.107666 0.038788 0.058289 0.006073 0.033997 0.066467 0.055206 -0.080505 0.024368 0.040283 -0.058960 0.023438 -0.107239 0.017838 0.144287 0.062073 0.005550 -0.036774 -0.038910 -0.003952 -0.001529 0.014221 -0.024261 -0.099182 0.055969 -0.010254 -0.140259 -0.009117 0.089600 0.045227 0.080200 0.082581 -0.085815 -0.054718 -0.025909 0.009064 -0.076782 0.021667 0.086670 -0.027649 -0.095337 -0.069458 0.016449 0.102173 -0.077820 -0.062378 -0.053497 0.096436 0.087646 0.025070 0.020370 0.190552 -0.091797 0.025452 -0.078735 -0.017929 0.026031 0.049042 -0.031311 -0.075256 -0.015388 -0.050415 0.075134 -0.027069 -0.144165 0.044617 0.023788 0.020142 0.003881 0.007057 0.047974 -0.027649 -0.059631 -0.002188 -0.046631 0.020798 0.024246 0.027603 0.028336 0.039246 -0.015083 -0.034363 diff --git a/practice/data_.bin b/practice/data_.bin new file mode 100644 index 0000000000000000000000000000000000000000..7c604514fd7f7377b668e7176f993ed648049e2c GIT binary patch literal 39958 zcmWifg=5sn-^OWim$uZmEAdRSTPW`C?(XhR4>+K>98jQ8?@DZvne4XsU2%R;+z)p> z++E&%|AWoWB=dYf&u2o46)RS;cD))&b&_h&nZ|qz|TxPvPI2`SClINDv2l;5D9EQa7zNxXo^NL#QZEB7P(#%_WPon|#H?=`1;YkvAWiK@*YQ@oS zX|jD7GYr(72!#qQAL+*_!5d_|03w zX(h6Vp;(t%h(pmPxRi}HewgC|lj2?|H_#X*O^w2b^=GI#6=!>FO{Axrb74=e3VS`y z;NBQ<^fzTFXyBg#3e}&W20M&9z~>=~>jkE27qkffOyZ7lXKMsLNXNs9j-hd-66%4Y z><)SWy$H?}UTHINg}?%sDqM6Rp$&h^AEun=5~z{PAO0tiPuzC+3OqvFn5y~|{SI?X z-UrvE&awQqz4zaaIwu@JM?j&w4LQjb!QD|JV2YNYQJ}oCUij>vN3SP88&mzu>^J$p z$+BW2|2tHX+r$>>WrROC+I|`#T%XGeuWrgjN&T2;;Wxz%_k2#Q#8m??&5|}?Tjw2} z5I}3T95H%{p<4O;bzrwp&3+Ty(aH%eaBFlX_Y&+SS+hs--JBhzp9G!V0u3);)l-MH zGAqT*^l((#c&A;033Na6bZRHzLw*fvrG}YVR2quTTMc)hXz@q%6>Sq}=qgUPbcV}2 z)T*$nIl`=KT(u|+=_=svF?Z&^(%HxH;6~;bdwr{XhDz`yGThyKH zOT3If#k6B$Y=fc=*a!ra`N7@U+_TeJMiHGnHwoKuLvWH>z*q9OR_~`TK~1=S&_q4~ zvAC@5CUeQ!kZ8zkWk#FR$u7c5L<*Dif1{FJiF6l7HD#z&NxPkXJw23J6i~Tzs+Rtr z1ep*}3nU8+-sD%w`gDOQgHvE>+7{&reifI;ZbSFoQ}8<1R1nJU<()NTZ4dZmHuA;u z`MxY-lh#|RhaZVMJgxFYt_66cK45q)N7$lImh1WK(P0eAdy|_as&ebi`{V;?wl3R` z7@eKR@Lq6U`!nyF?#7|kx+uqJsJR0|!V;ql-HWm)<;8!|a%l{6+xQ<#f^+&g;+t^Q z2xVU}NB#FyEAFI9-u7TC`-M*sN9V<>kz_@F9KYAJ!$ai``5Nb!wSEI1y*tQm(qg7P z{zvFalnpp@4tei69w~eEX;4;|h+*J6ko5}majhxp!5$`O#t)9RE#Au}Yc1vX!L_(d z+dTD*5OyhdhJTNX5NA8aw(#CXBU}wYoH>a7fFjg%W|b6xRkO>JTVfcr5B@LiI9pA+ zOReHxI8x9IXH|0xTLTXzqnTsiB$Mb%H(H>&-s~D~4)CE&mJ9?&!h)nQeu0G!2zA4@{h8le%D_c7_L-9`cTwy_=o><&G z>d%Rf6&;{`V!W_brL?xy-Jp(Kl4e0eV%FwP&J+4CPz^nS13Z0%$>KJ>K)jT35RHOA zl@Jdpe4Y`?!!yWnz*VtT3m=vb0dX8TMopP zAuD+oI;&Y1$vT%uOyG-jE88qR)VQi=vYjmlv<+$;3%&^$Q zPK&c1zu2FPu7lHf3v-%UoxRyQUMSFJaaooMW>3`9(@;1q)lvVJ8?Zk82fm4W!Wua{ zq^4>#XkZ+cPP@7MXZU;GTJKUg%#g_(p-9|G<)e+bscR(cZ4P!sfV8dGwbdC*xb8U< zXe&Ghwu1CPw(-9Nr+APVZcs*Nr3@dB=E2Jhl~)gW@I}%I8F&T7%8QM8dE;PrbEnb5 zXr)&4$D>b7ymgXx1THhqvMr3lL;}XTeu0HzZeGCN+Edb4uH?|iKo|$iRWMv#3sT@C z!meD03>!sX2m6^z*bl2~6{V?UxPH(duibSva;C#T*eHfk+7 zx6#pE-IkQ!9R5#T;H!pmP$C-1mvJWLR)F#PX=g`yAG$#N>$WP@)Q4~;hy@L}?+Al2 zY#(!&*@o;PbmT4>r!foPu`PXTQIxZ@^%-7c1gQGx9WL_E(yAMYHbOdtwi;dZ93l<= zvd$+~a6>Qvk?5H(Ozq^nV;jJI0~=jW>G{Mp^}LZ!G_bG8vEqLItwt$mO1I^TtOL%# zZRzGr_sz+YOX`5HqK9Z47%k67O}qmWn>v3=ojK_Lhz__e5z98_Nq>76S{PVL=FBDwwKFJ#Z$=rLW*aF{yKPqK8=&v8u}A3Sz7>Gal5mx zYVmx{z#KTtZ4tl0Y1T4TPU4;HWsAl0nHgrP%yyA5$H-a23#f4~$qT|1bGzOh_Qp^< z>@eLDZ*s-xFZe$EZp6Y_79iJVDds_-l5`vHWOlNvd`>XM9EUuhuAZ!=a{r0V$T`j{ zaG|Yy_DAy|x{HoW-?$;5E1kk!B8xM5_^+rx`9t&w|9{>te4RkgKqKu6mj_;e(?nD5 zne-{MrS&-6Cw(T`@w z_u(@7+jhY9EPB5J&Ff@mVXk+Q)&R`o+<{fnTfL1wh3k~J#N$M12|pB+H(l}P-M3%I z54AWkDIO|=_&KNx>p}$k+7O+$R2$a?t_A;6Rq!aVn3|(~jb4ZLFzxd?E8Dp~QU`N) zZZhBA+CYCs4F@&(IO!F?m0gYpn5ERN!UpBDvp1W8t!T4Q!*Pv1Y+lh9dnNw|d+UV4 zs_V?IxHVBh_zMbEbBF`(Q}_beoByg73Z>8=jxA2)4hd_jc;Oj(jsDm+R2-JSDcx_I z5{O5qgj6n6+yGXi>6*eXWB%6TNf-CoH!MMdfodUqsM*~Zjd~|O68~Yxh@)K7;9cKf zbU~>Ns_^kjo?eVDXNEcTa3(Ox(U06yr@|;)m-)!lG3r@gm}T<{h;o5HqGDr5lLqlgzu|mu4)GZ{>-yjcuii&2hKEq2am$2jXo{yYs1emy3qzZUCwMPcJf7l8!fNhRc0YR*Hi&y@ z%~!ejui&#f-@4iOL#-G*J$f>+TwV1zwA#uE?~N{E50HeGIRID*ci0abw~YbPcz*#? zOY`Vh^J-PDCPR@NkaS4?3GEE$y5*SXmQj?_O+qFOJEmMU|r0qnWP9 zcz5vpDM826{}zzfAgLQA$Tu8_XWkZ@jmtN_47m4qSmAsXCRo^#wKD zbv!YbC?Op2DCt#l_o2(|3!@Ct&uGpy)6R;Wyj$T(xsSJZbc|6gKanpvP zD{-Fpo=r7I!Zc=JU<7{Qxk4`$?#Z;g9-JgTIcInUXAj$B?r}~Je=PMUh$O}<%WaBd zy4Df(Hcp7gtc&4B1H`k5%c7Q&8TdQwEyUw&c?-KzX_ns!zLMscj9!bjYj31jrMGrQ zTW8cra7SE2m%Sb7F~PYaUX0Y+ieG~%JOQ=gZrSr}+w>Kx$&4_D^1Fpjd~s@(@rzyw zhZ`-;rov6FdHj4q(jo}O@dR9^>uW8wDa?BR3bT@V&ZXF%(-kY<^EW3>*apxATqvr9 zAFFTi2Buv2c5S);C%&Kek*Enf8ykpZ<_tdW@vwI9C6JDqvsZ=6R9jfgv(MDI;naR2 z-q|wH&9+r``6n5N#evibJqKN1O)~c;=T0~d9rFw~(mOqGHz?I9-A@3`x>BWySC+E82R+!!3 z0KJaxrn5CeU(CMKtFmXryX>W$aPg`^kqtL30MvuK4Bo^u~+l+_Kx;< zQR4}>(h*&dE8zvg7I~j{g?}ZkXL~9IEUO~lZ0W~WMOpA8xR_Z*7!CV5s*Bb%i1Haj zPfW;WetAjns~|HNhM%M6@HxMTUg_+e9fo(~bnYAbT>lKNa7FSUeF~bxAGS`wx_xHw zT#P3Cd6l^w*JnM0?1|?_4`pIKlQX&p?#f5eO#U#wiBj2kV!Wk^tEMp^#9ksl6TJ>dtJYM!>05WKS}az)`f3 zONZ^?4rYMQC+!fAx}H!wcv=d#4$j`>k2IE{MNCQ06yb=^&sHS$bY>$J2@(lQTkUJ1@%xooPkmSs>qFjPOw%la^|IWLVV;dn=T`M!Ze z^iH!ejE6!dW2dUALB03 zt4xqy+-NU;Vmn$H&^$369!lt`-+YD~=k}ydyN|Hj#l~c$*#t2_A!nl+>U*&paoc3= zTeP9@A5hPoZ#4DY(B0NZrHSK*R)NijBZUR7G2y+urJdXSzdcRS78;|A;&p{*E5W`@ zk@i2O7-vR1?ElfKZ=ukkL^S#aQsOhsjcg9TFfY_IT?xx6D^Ih9urI5p*m{|FwI!gB znIjH#q#2gLY-bdV%nqM+*-?A_9J=-yNRRGWUjmU z(zDpPc~iXdPBrOcOtL=FQO0r$^|KbEZUm=UB{=^#a}5+4!Y67KbHs*I@H;t$pW_{6 zM5!v=Dl9>o_EKBxnhh?pdxcu!4ehJ;Tw7u&LM`E3#$f%Gy&)PPK18OuBcVF=f+m@W{xxyQam@ld0)P2q-4xS^_yR|{3Zu#s{ZWSglZ{WfpV=$#Uu_I{qs`|{ zw8RzZbMPVXf!0DeZ+}gENhszm9ut-O9c@A7#HD&0ITBZn5nN8@y1pMrRNO{4P?~8a zgzvO7a1Y+GE%z5wKfoj8EmT9#)$^jmq~d5c-3~2xUtp_p4ZI!1`esY+ivEKA3#PEK zYCc!hXXDp1i_HVe?g>&APQvSdysDAG@6 zcW3gA2E?`?6BzCk>4mU{X8_twwFz%8HzVr$Wu_)Rm!E_xhzgj+FXvM5de~R(0@mOO z+*|$+xXV8l-(d4Wb^kbdkG7S)!QYWbG0(+0{=q~oR0ICc`qMqjn1TxJk@}lxQ(NM1 zBSaI=sI9cDF3cEayX^m}t&~T}yTL7*VcWY4l^FF4x}rn=ZR|$I86L+>gwymYzLDm* zgcgB^j?L+90)EI++DpE;HV7=oU$qa+2(Aaw#Fv^}bGqzQ(w)dM5V z=X7-~Mx6)uxtfGq0=1>A?9zcdT1|N?+N||cV`+zclCCG6;!kPkgl%F7v0mLQc7t=| zzMGE7?L85^A}!-fF&*Sno(Fmn6Jt$ExT9AJbPe)}boA2JC$1vghAx70TqFuL*4n?2 zpEA0*8MYVk2ma6ZLyV5;!X%R)as6Pf*VE4Fhw(%sN(CHt3F=@z%qlK+an%x^fqw9V zS|u5wss{zEpnfkM7{DsQooYu*=P^bBE#=PU9UmyLh*8ocbQASPLX)F3BU zy{?_alROmzU2!I$0;AM(oA*;wnF72YM5GVa1Kd!vDp*Or0W0-?KrXx?&Cn+W7NeW~ z-9`*^R@lXr0V&QHDaoJ3m2uj#!(fPMQ!0l44urTzGM#uUND6<&Rl#cY%|uF|ft)R$ z*}7F*29E{LobUF**^Ri~co-j}4?;iKu_UDoF@F1U6T*ZW?j`wKxyIx>&8q)qTRBg$ z)6rr4m7S!t&}*w!*K)`Ez<9Ot+BZf^*i;{gWAs>MtYw6rQvH}dhMA?G6(0yK=t5(i zD+$$tU5uafX1z3<$6jzApx)U_!DY6k|3S`{@cIPRXZXkdMB!ZChF_aaxoM!LC!~U@iAi( z2E$Il?@k{!2DLL1`Tv=P>{NqxXNykb5j>#}l@lW;qu{IxN|^*Lpnm#dH5vFpC$X7$ zPCuI2-8@A7rFV30qJa+0ee{9!wT}9DE_+?C3ncJcZNooukSNveSC0Amh+FkSOB1+_ zzwgt80vv-I+hWLBhf+$oVpLUecbzutHD@LQ9hTZsq`pMJiuF88SYs>^4 zH@-DK82{*ttiQE#xnA3kz+QV-xglT34$-fOWpN2ly!DIm2Uh?(rs zZ)m-6UP68K6X*%XitPoj(ncCio(7V&lz*Rl1Jw*J${!1l@uyQms0G%`AQV>>{&BDO zi{7{4SGa@PdNs_$ME&7>$qjVTXc^a8|7k|hfcwkRFgTm-bHuWP1s0)h(MR+>1fosY0A(vBeJ<@&@T(|OLzort^Ok6#5w`@5 zb!MYs>?gRMoyW#Gd$5^w1^9=t%e@QlVD8%H@P_@CG!Mjjcj)h<$1|pJO#2CX$$x4W z=!OxApk~f#c?k$Xsj!bW(^aBa3qhpLVqNR!+(6vpyvlha#%LSx(>;`E^c{Eb?uA{L z|ExOdO#k30yeOwU>5|`xDd=v*NYT*xz~xdm?*SnlR)dY5bppG=Nf-$H2h&|v=Tld0 zKqJn$&x{u|SkmSLUzkj(5H!=Ca{2hT8s@krW(&cn06gHD{74SLjokx4WhM`9+5E`a z7w_N$+AcJWF3vWhm-81<9q}%ch6mxA{%J;Ep(_3Y%5f!`C$SPfTy>A<0d=3e3c6?Y z^Q^G-)Ne~FhXZ|ua>UhOSF)HbfKDU9_#k%hzr(YbNm3?V-BsPWiFhl7z#W-)$eaF` z+5~i!h+&?Ij8Rdrs^Ok%C{43#PYpf)PyW8}+&?cc+APDgPB@X*C8vvPoUy`IsK;a< zlaqp7QUjR9jRn6P)r4VsNw5;EroL-+QDvqUcm^`FFnQ9r$<;DPnJa`8b< zA;)_v-~pgmQiDSuByt(?6L>^?g9~hfxD4$odI~rDdoZ2UyV`3k`{%Kn zy=US7jCSO1UNZksesFD!$*#xRPU3~o&w5m!#{6ltqv!I+JZaiznPlfc9(P3*#j8|% z=NKZ{>;jKkqJ*K)DKz68=molJd}mA2U$K>G06)+@`2XQHbhc{{&X(GkgW?8xB>7bK zLH|{KXP_;!(TqfIgbrj|hf7=>8|hd8+XS}dZT3I5{o)FhqGSc;0VtZ+n1_64(~0MH?1XZ}|Hi0iK&+&myS{e*hM&2`R+6nc6<&Bp2k*WG`{;fCz z+|loW9PQt{TEtmmRNhT4T3q8g&;6jn!ao|6)+nYFwG*`ojMzFK6=Zgx;z>angU5p@ z44Ly=>80&az398KLg=TgGuz0uTzNtz_aOSWxksz&>=Kc!q$(Tbl~QW(*H~Zzo~}+~ zbb1{*SkKm4qI<$wd_dmKo;UA-le^gxx&SzBx6nB$n|iON`J^{)*Ft+9sP`h8m+$LSC>1s*v4JU5J(oH3QWX zN~@olx~OdSXwM;?6-LOzq;kv#M6<8>LujJ)H^&=i`4_hD;s&!9&VXN`0}kbG(5L7M z;Id_cu}6wTDX1hp0$(DN_>1`;nCZrB5U_7BSJ^|fp~hQcj{FC603eyS-QF7Z8X!{x7)Q$uMGCWIRTxC6-j9g+{;W>wo7~P@BmHSW+kakkmMyf zm)Wx{?bH@-t~O70~#$sXn(rgoNYre|8e=A1?lCZp;4EzfB(hN%ZO8&BB1VtZE3 zG@T{PFzKuIh&+vkJBzD+9@!FdRmXSuocTsxR6?Z_`Z;h}{-o`bu2Vs^&;wa zd7o;>zuwZ>a56vn=dR7f0?;bM%Vld?puFT0Q@Hum)gbP*vmu7dTApu4HrMZ=mUus9 zQ1_%w#z5whGZ_!YW5I2rt-41Z3~R%=zKVFDdobE)ERxm-dFntZE$_YdRwae~AXlH3 z+rj@cVut)qh_WnT*5q^nyUD7;0KJTVG&@8Pb4DVoPUT4Yc5fSEEcHaLqJ5%1(tq&B z>=mSuj^~y=5htlH_)eg)rn*wV7oY@Nx`}#S*QY$fdByu0+(ysMLtI}uI6)h;j4VBi zIh0nHtS{~6SGpsa)NqN)nV!?a>Oc#swf2pC2;z~#vT}j+kJw**W~u2q=^QGa;kxN_^xN!Z z^j7;}B&Q8vr@OMVb`dp{`lxq4>vapQ^3t$ltAp(jxSU_$Pb0STZ@qoAVZj7cTwcX> zML(e>;g_$mR2XE1Ey)mPBdIHUK-t8F%c}y;y#EP0RonhEyO6EI|1v~h99T?fs0}K` zR01wC6h)Y49QndB?T~hx)o2-6(SMos^^M$foMhVyNo|~zZfwB!)H$k*k0|wpF2Q`2 zL`4S9c~%Airo;nVN)R=}k!HWp@ti!(m}>_`g5~ z^GsN7PQ{m{a}>tY86V)(EYwHuM%l$8`3m{itl<0wdb170p04)Vb;^xXaSpox-Q5-UBK^GMSk!DG zoL=S|qLlHKWl9i1kA(4pe*Qe>w6uuX=Q)QH#TsUrKy{(Jw}o7h=qs{htnfj5r5`Z5 z2dPD@zk%#!6=zCpb0*lmYEpi3?tOMgR;GWSTqt%AG}9x{ZzfFG%Rk9;bB%Q>?*_eD z>uH<{_Gw8GEo|Y;YSs$QCS;KJ;^Sl7zJB<;J~H@(3-x+b6_m?ffMtzD_BwT4KaLiu zN4XQqQ+YW$$wY|NU$qJG!tO^rz%oVi_a0MRU3{; zE=fLwGVSl|MRIAq*@pVgm_Vb%b<|VZDYnH+i~^#Rr z!Bax7pwV<)`^7uNVn%^@1WZ!q!=A8;6z$!orU(c8DbAb37GDM7a}ConkVE;0e2pAq z%n|f+JjpnNGo3%ov-$>y5_FzM3ypoNga_!cd#uN4-tc_jy11KxLCQAk)QW{UZ2Uet z)_T?Ym!R<9bq==IM^g28k9!H{V8wI`@xz5rO0cLXda3y0GJA%Cls+v_`MJ)O!vIDeS zZoApv&*aviekzIdD+=)oQ4YPD3;j!H*7(zzcCMxtw;HCu(?HNR+rPO{wlBb2t??W3 zA8K92vcd`B2u}rCpjp}Ptc9>z&NyL7!Zc)2Q?gS8MOz`+KrR^ajR1F2- z2nXqLaltM;V>&Du7l}I?W4&knucTwv?S5a}=)C&&!eGCL#c?>qj3!95iJc9q@jLT= z1)afuYNq-yf24T>Ur^rh5zf{YhwzO}Bwia$nM5!h)(Om(53;2-F@GxjP2RCVuDfpn z*pCj`+pDEfMMrn*Y3m^AKYJQ8Uv9@%mfDC3@Bq;Umqyu)L0%_T=oF*D#qNgadf=N- zB5Q@V0s`uc_=9V#-ok?cmsv@xq5g7))9(VmRYA$bv*k|KUiyBcNWUO8w%Rx~_cc=+ zJ!2X=s}RG}S@D-Ki*71CfGOr1w!id>4a;4g^?-0x=t>CO8ykpC&g(DqPM?hS6a(CE zt+u;}PbA+N)pe5#fMsMPE7&hfgY|k^1!0G=5A1SWGcyd8twFsZ-};xB^QCp>V>TM= zx?yfq-hqg@cal!=#6f zlV>T%#RZNs`atLkny`J@qy9o?ags13uC1_@*ivmHdLbqw!>n!{M%)8`i@U_)@PzPE zI~O$2PT&RlE)>swCtr%RZ>ZQ`)4lWcCd9FzJK7=t5x-byANXh<@W;TRQp>ysd6}-O z@?c)Z55t@B`K+BkMLm{J2-hsD$t>fL>k&PRp!9Hb8RQ5qVU_wP7ir98V$HiK#8oZt zwaso=(Qm#hfn?3>9M#t{*kaKuTfNoSVW4-U`r`o}%JDoiRr!cay^HU@?=Y+i5{-(s zN216V2gkX&=r*{avFaJ@Ca2~I#FD&yL^!C2ee78g@=yMsMgu}^CjHbWb7@9f?SaR~ z#OV)%-6jR9JAT-Hs>RX3z$)BM9H>5GN;3AqJo*Io5-gZ(T8(R{kJ%>3i<{V*8i#Ok z5!nu!ODu1Q6i|c&CWjvbJBZ2f2^S&`Wc^CG6ob!z(qPo)FF~$Xj;V2XWzR+fvCxW?tzHH6? ziKhBW`BQ_|P&SMZ%4Xf6Mlf>x3GQaDhEF*ZvujQ_P(JpdZ;Bix*On}(o-y3vl74c> z#l_NM{eioeT1BUW=4%KV!~O7I+32ROVW&SdI1)a2gbbatTNK#&D!->`K zOrVGzkM4VInPGZ4eL?&Y)~z1^uV5{qB&-$eo0f9Bv{3lid(C=-hThr!lVl^}qk39D z8P_^7n*hj%=UY9@Qkai!J9)M+;Lf;1&+xy74BCa<_yR04mT!^O$^7?$u- z#o{`=GuRJUKv}acTalVBKCr*D*7jW0QrWrGJ#8i$VYIN1$moan*);l-9;x==PUX~8 zLs6-qOTfuXsLrG-{wfl)Mmpzu26FegG=BlEAUtARAl2X9T$;AZdKeW8B|q$%u~ih7u5meVuJ^f`e5O-+Ex09BJe(UJ!VA0K5B|M zQ21Ayg*isGy(Et-TM{0#!_0e>NyNCD3;*dqz%1m?>E!%V+5t=OyPbg`qb|RB1AGZ; z7;#E6Zs6<9ED&Nmf5zLrwQ+1e!1na`{Do$E08?JIX-l;CkxkC4`rONY^a%^*EsQ+W| ze#Bt$Vcs+Z%)b-9i#xJ2@kH(poq_&BF1`#DEWOQT!BlpDsEjtkm*^lqKu*P5&@;Y# z(4ElbmF67ZJ#C(oi0Ljksw1IT*f^%1wYb>~Y@*A^o1`-43vC+g#i*XAcFzBw4y4-P zZr;E2Ir}!t0a!p@q}HK^fpQx!IGgi(_};=^GaA%ML4x?7 z(MR748<7w#VBe4p^QQr(YH3dj6TCs<9HROVuQVexts>h@Xvlq6#}K-Ed~l-3V5%^0 zvNm%ysZV5cl^A9un3br0FoLfJ<~lEVu5lso zrrt>1?SBS)7@vuC?!JlLV%Ccb?Z?o}z@ITqs7qRn0CEp@wg{SoO4%;t*$)KyU+}bUBC_7fa=MRs1ET#$z^cpc)dQ(>zN)1x} zx?qXX7+=vJIb6hcrK?$wuR%hXYQ)FQ&MJn_Bj)K941Pri!v;N6+(LQTKU~xMI zb767T!?9vg>_u3DttpMR&vv}ls^%wDA0W6?%<{ z96}|0H$}l#oi*4dC|T&E>)@TS4veJ!h_0>eP^t^ladF|g(1*`TS&syEfXZhiqxS45 z)CGy`e8&-Lvt6NX$4!ym6Z_OMcyZt#v#o27`)!aemJ2vYn|gt)%^fk$Xod!{hr6Pc zVnWdZbPP21H3;5F+0HT?;hz}$mq2K57~LQo-JO-l(&{WN%6tyy3fJu=DB3*8N}iCw z^&lsT1_#+*fHw2Y7V=QxreqKLAm5}qs61*d9AH?jf_tD+hD|R2%W4Jp6I1LzgQjwX z`j2HLxloP6NnlX0y<7rI;s)HFj0Lf&;I%=CKO7B%$@DKY)cA`{bU*aOMLo=Dug$}W z@$chi1brX~?g0{Iz<=~+(q(>Ne40I*o10&Ps-QiN>O|>!EZ+|I)jJ8H>KNFbAHXeS z1!1U0I}Y1;^PKq<&CS_MoOF)j{>SiCn~m;3t(*;fHL{1E$jDgRHiJ+3bd6QWsP z+*!J-;Up%2ELbgJY}9W)E$Y_FfEnO8Y3p+@sxyO zFwG$SSmz3$DS9LNGJi|>kls5p zS$RVC6hfmP#S>P|SvR*;UL#_dwu5moao~>R%z1%Xy|WtQ{JrIUkfAKn%i~Vcc{x*k zPf^T3t;o^c?CpyO6}Q!qFX@WL>d%bI<`b~mImfyPN1@ony$Qqob&2z_v-B0PxHeyK zlfOV$V)>}mZP(deACY}n~dP$?WJ4#ID^W|vkX

{OuS4d+2)alpbONN z>Vj!nOUp${0-tS9eM5ufZi%shov2b~X`wVul|)~9@cUC$Yd;PH;zdg1Opvy%x2G+7Ngrj?tfrMRt4ILuZ6m8`T9C+=m|Kn2~v$?+s_N z;i4mWa%WS`Of`2rHAvW*13e!(yLrW3%NtJbuvgEoD%U4h>bdGQS2>*RzCq0uU4gWS zE=CR(b62sg9IGt9`46OSZ-aK|G4wD>4Qvx8h#~kY{RT8udJ9$AdkMdTwu;v}N;xd9 z<<19h#D1~XU76%*CALFnrBiUfP%^%cIKn$tSY=s@MDq;m1N$-@f$Mw$zt&$p&=!r7 zAQ35@$}q&KXfZh)XUQ}g&d9_GU;!P#6)HvOtpQgJavpPATVVEwO%gYA+lUd|V_guI zVi40)m|L-L&Ni)sTvxuh@ji9J6cX-p=dw2I&s9oTm6;~D<{!c9d`J97`j`4;7HSPp zcjFJDGw}~xX4SY=&dSVvezG1$ULor+4}}T2sXUB7>AuI#6bcH;um4Z?Ky8h$~6M9Tz8_kFc9vS7ULFpL!g0QN^IaPg?ci@@eFnmZ*XhC9Q#FP zD_UdtL7e?HSgPtuPqGypr2o(6B?(t+@^peoVWN` zxXKPuWA;_xDQXQ)lJC?T*wnsLm%NF%3T{G23YRi6j2dNzaSzqbF%^W?9K&3ZlI3Zxm(uxxNet9Dm0ww^P z_#gGWT9THZeuyh+?p8jyzw`k~@;s!Q?aIN>B zAVb*;)*b?FY|J{zvWd^)&8TneNXsU5J(?kh1uAIs=@@X)e#A4+@i*>lZiSq)3goi0 zq19W-yy$UgyS}Ysr=5YV&Ws15wR6lzK{C#}Q;LE?IwoUh~VSi+I2BKYpii z9aZutX(9e5O0pWNwbpB>wKHD9A=y3Y#vlxB<0+hpy2^t@MRPNKsH%zoN6}daN0GdJ z9M^*+NOY5|j8D((26rd8bGQ@S?QqvXut3~a#;1E`1BV@Qzz=tKf*($RJKWxR|4mg= zwN=^fe!lW~9)hkQB)+`yPySU#g2l#a^j*EKw^oJ2*bEYV*|CtQS9u=rip8%BrE3PuP-HjSXXja>KZu}-BqVtjw6}$5^+oldrGTbuZA4+YZ-kUw8}U z2fqnznTq@kYOkf+j8q2cCtbby{qj;{Ku#upOxqajuI5GX_8|A%--h2QWm(SSXE>T@ zD{jIfFsHITDlJU`*VM)yQ}4}AghSwW_B{L68LrsKm%cbDTB(Yzu$Ap)6ev{K(!vu( zZ&bs~W8Qnt71rz-{e?OOLX>4F(wGG2sPV!;^+Z-p+SD;p<+~BJ#INpY zFn}M>nh-9ypPNAcL*K`C#4^-&gzGc`|Urc(!vDM~ZYhg}FB7&{eBxR3ULEpVuO3oaEu<9^#nX^N{I z`I4?;{Hz|z{RJ1Z^Was=@A+Tqf66)-qYjKbil0!6xpPJWcSxxhY_AyHS{~8uUA~-+Tgocn{K@&A**J!8PnS zdTK<)ta}qQWG;mPz@p_Z=lv4f2Nj{^8(+g9_n)I1-60><@;Lx?{iRS zmIf1*KfSZXdRVJS52gBh%M&A;>qT;Lu1dqa7wO%oBf?R*Sh*BfqCfH1UewWS zv^kLu{jk~?yhn|kwbij$HG+M`ZpdJ|i;TT;Oh08zHJ7|~|0{?F{;m+>>BM;?&5ZA-bwgC1oiL;m}djE>UZPqq*|FY;;wxNxi2B zcm%4Iu}-;RP304f8(bG|jjgwOS`L-pQZ?ZY_MZOGGd5~+{%_pqgw<9md#q7iEI~a| zcIB^u3G@qORfOON7(rbkTPl0ppYrW=wmJ-j${Pirc!k-lhH?|6DUw6U7t6$T1=B$- zZa1+{?hKadH8WT0MnETVo7|s z_buAuJS*>mX(4uSn(h_;g?(crz*BN3ewE`HTNkbJwfCNcpBxyI$}XoLSnvCnXecbA zt_I_gUmHmF(7GybjB5NGZdB|smVH1alB64Mx{SC&D)hVx$_n^Bj0|PeW^DN zG^S25^VsYDaCN1NwenS!^&$YhXOyl5qp=;zTz!v`j@(+Y+(Y;uGSq2~E7&PfD__ttzP+WCmRFC0 zSYKDSMes3xp*2v|!kD*dJy4;&mZz=zfHs~wsn1grYfrNOCnS$RY#l^|C@Y-+8);*+3U z;VRzL$_Pg1)}*hhF@bBkH|zwrOvrOjXW9mTaVJI1Vkc$NX`o%z0f5#07Mk6l1Eh#YP;c4muTPOg)9|3rJNwb z9bwD?Wf2MmoTGKbxx zEzG~kK4dE9F9n0t1TaXb#nlun%8nec*9gvzpT>R(UIW%|hF51KR$yncEBux62&;8; zo*9BQ6|V$*&gr0!->5n^bVuY0*vo97I6Oa-4IW*i!g>so(Y1G!%11ym?YZF*_d7oc>}Sr>9N)rwRlTH@ zmZmW$z`aTm++u4Sw6lLH$J9j99@m5)B9L&TBamZ9kE2ussZ?4-yWl)~l5-k91Fxg( zV!!IUq|0CvUdp~ae@xXDF_~5hv2k8AA_Y1ME@v(vhSE#WRWJ#4R+iJ1lzMb4I@)uS z7Txh?In<2lZ}t>p#C1-bOLw0a&sja-=2q@v1s2XX*S_nl@`K5Nx6PWtZOVz*#@N_^ zA9&Q|1zo(ygB#TLfwjs94TF8@1Ofx;>C+v$v7b*yIcSrWBt02-5MISfU=`CVD;14O z+yG`mP}gI`@9s#pGAwU+sHTxC^c1ZQd%#Wx@54c^1xi_QjJnmEXtY!BsReMQrGgG| zGDcNtE8l+er_4Py&+2RKqS4&S-)(fyC#P^-1esb9-pEQ~E@ghuL1q9vPbEcnbw!e| z30hwvq>%@mOI^0yJFs)^QQHloJ5f`a7u=m6#Vw%AQDs0>;eIWRzl~L5yja?x$URk|nnd+IXj3%mf^`gpyc%X$lLv{{v(jy(QQ&#kQ8@G~A|Z_U)R zMdVfC1_aA-<6%{}8=ZDXgTtP;R9#fZ{*qkJCBb1}ux&b{N&VQpx#jXa!PB;e!b(q& zO@?*YaqfZ2+~{`7c;|hlk@t+S#D9cSVFThF8iV@yYC3jNcljF1?3hnt93=EI#v?Qn zY_*zU;m$tzIrY940dG=`lncxcsu9%z-oVc&)3mLwWc5#tiklal>j;$s#PrznS{Pr? zRP?HBmb$y33e%Pgsj}Bo+X%rHGMVTs61C0heXxQ%A!M~ka7=N7YXmz6e!nxoryn+^)-bS2coDin@nu3goSQhBT;Joi49L7(j zPFjtcnK5-cN)h_n}ucVNmFxU@#~ ztk%kSVV^KgX)A9M)Acax9NUl*%gcF-)!O`Gt$;a*_As4{f4DqHq~(`kw$BB1td?MP zX+&ImN)$@c$JwE9A)828*$%7$S3a*_aI=<5-}RSWal^F%G$`1pY@isHGg@)G@x$gt z6vY&hDXv$rRZz#P1g}Tl6LXY`K|^{&H)j-SGuFcSJax0-f`3s?Jq-A*i4i0;trh~m zh_u{+578U@r+{*WrvVQinJ*zEf6#Ba{osGf1^;H*PgFxLE{1BDw-rqbG{%E0WjK_l z`X8QW;H_MO`xETYW`(TPeSt&FGb~0M3g?0a&r{`9Pz0U3jJL%&vhrOvbgW=2~I2PtOutLQ-MJjfbR3;(A zO0+#k!|6tPff7c4qu=1eJr&HQWC~HTFv)zWzRK^&7Vy8*GpP>TT5r4&6OM70*EBXp z${h8ZdEO|U*NI;2UrlX|iKQIIA5>-EuV6Yg8BH!2?s()K3+n|~E<2FMHp0@twGNEA;|NN~y?V zWvc%}N;fQsA7LEu8@8Lk^)Xm^wwF_bjbW5MU$h67(oSl(Yq768bsF45)%e2L`Nk92 zf|jUuL@RX5?8{g^Cvpp%gBKZ-GzT5!Izd0kdw_Lw`BAt&1%$(7a07i)`X$W5eR{F~ zq_ddqluzWZ#!45?^z<}m{9<#?z@g5UJW04paVr(6rK zYG~9zZ40Q3`=tGPN__dPS6Fv+L&rn@U%FL61GriG7vIL^W0SxPrlb*1M>`m*ox1_- zU(i=+K>p#5i;SthjjiUsz*eU=Dx(6Q!73?+J}lmkI!s;Q@5{HuV^)uRkXhNudRFGu zQX0|~Y45iB#$hu(`jvB~t3+;Te!TP%>+i6kPg|eM%L2a(ZH#yHa%Q;uptJ;R3AMg` znWKXp$V7gqeFmNHSOvmkOKX2w35)3zuHQv&DFHMUs+g;lSLzn`2koTRnu(#CD?gRt zSfc-5vRSaFMI6YL>%hudwE0;3=0B@nfPI)G=9K(WZeq-g$JJ||wG8DBE2zYN^)6wW zS){{lOn0V>&|A5TM0LH=jv}%a(-qJe)vqjO4D1or$RDAWc5M|qDBV=N@Vx%n(~jGZ z#d1H*DC0d#Gi~@GN}}_T(iHWi+NC_;;?+-ZQ6SCbclHNgGXr2!Y!mPsII4uCh3G#V zZMY5o_V!)!AvhNN4_}dAQJh#<5V*|lF?W08oK0EI5#%yW8}!oSsW+$_p3Ti98mc*Ct4@^YjoBg2Q_7m_=$Y3=VnA&jbjBA5Hl!$;I5^6 zmWgT%+u%NSuke8=!=0o$=(VN!LY!JoeBgK!5B-Q(KE*&7#PN*CV8 ztNB*RmCY5_9dy`u2?_6X^(a-(Bk<2-N4RV2SCmloUz1Q;7gq>u-+=MlHmx8P;4M4=0Gr!H8pyEj&AFUVNkQ{BrI*=Upi2e9ph zqvp5V`Sdye7Vl4diZ)DNr*{6gf+QL zX}$a%4^hi*{zWT!5#+4=_1p+&5sIJ-N8dYmUUWb>2H$mjGdxXk=imqW~>bHBmNXCdiH=taHrZp|2M5H1fUu>O-VzW z(KKQ#xMWOIKL(zF5A+?s;%e;Ks`nQwpfdjMR+eU|0~$Z9417PZ3l2q2_Ad6*>IB`% z4I!uLX>dJ0Q|nLVkx$eWSVEw@a$H@aU3UEsZ;bZ?eYr@oNMC0W?h>%cd<9s^6T$Wj zHexcEx}Y07K%dEOgjI}#tR8ha-o>ADw^54O%>uzrh-##JwD#zRGkwD$PNsi>2<4pr zqn;@cbWGgp;AjSdyW9RYT5A#XXe`+!Guu2>VMXv%*VTFSEY}OJUq*;Bl)XYk@p($g z1i-pzwR_BCho3GFO^xDad2V!MYJv04+RC>;N1}tblWb~tsrRUQZlZ0M{kqVK$mVU-Mxkv~x(`Rq&FQd_ zhZA;iSE+91fh|c=Bzco>i@K`2#rMX0tdX{sID}dUPe*>h12E4YVFy%Qc!*60c2}n7 zv)YNaddn7_gbw`)cW`;G&QuJ$*LurgScX|ueZZY^t^u0}3^j%)nHE;lal4hZC?&^v zH)~6%pRT4_t=MT=CVz!F!VCdL2}R1N%r1so|K#W@aQ?;WO>BAaIsY}T4{B_EW6tLu zXFiAttj+RCMkw|5LxezuC_S+CITi5ZZ(~;a00_ zKrOW&_ov?3nr13;-z;yujFOUWW9MYx7B`}`ZHBVg7%EGkCw&xFG^YsPsGTwwT*Pl- zsv9%ZhD__=9T<)N)!gW&Lcv=(uT>L$a~@Nxcxf(@UatHN9;2!@zg7bDk)zT!(|y4R z#=sM?{|p~-XOm}^;UBRchK*t{z`YLDdD28DVK74(jC;l(QC0q zLO*bn(m@a7rSg?+j+X%|m8a4}e*pgCbYEZbfSy@!2EQe}V4i`Q_7dQfa#-#PmZ3}Z zB!`n~z(>FyFz7Qh+7V8cQR`7T!4>>z7!o|_EA6boW$1ie z2KowH8nuSsmHo;WzL^@$&C}Nx^j1H^Z+SgpVPF9$@BXjgkH9hYEZkR+K>h)@GFgm_ z%&mjLMpr%1RUgmogqsz>^cH$Ct-vC#Bwh%9gGKg!(S;^3+M45QY@`0>yX9LgI{(C+ zhvBbenJOjrlgt82@d)Qs5f?N-L#H{!Ui!AkkJs4F!R`cVM0{ z*7K*7z=W$K;2Q9Tc}?%i8$=|ioyCW!hLxsD5gX_2F_Yv=Tn>?{cGAcAs(=YfX>@{a zL=T3^aD{WV)wT@i6Py*5E!uJD&o~`bP5(1|s6pvFz*jC+TF0C-PI2|bv-BuSO6I_8VsFCmtY6nu)Ez~`W0FqC)4=faZl3AiiA4Av4Qs9$v zj!O&N#qV)8>0fDW#34)ET*bCh^e8@ExeCzaBEnMpG+Py@90gf)3Swr&LW$I zg%!dSby|(Th%@Fo>Wb9ZeTXQfKxfN@vC7-{3c(X{jIc^MA_bK?m=C3sPE|D)b1o(y z*SYr6D0-$`JGcS*AuaQOijM}J{CfO?sG!R0-L3RuI^Z2KN`1ALgR*$WUfUkynE_mp zg|^HA(l)9aeGt{8Mh4u{4$9O#Oc+bh{;amV%V>cW6Ccf0$bmKpEx}sAu=|;2yb(yz z&d|wxIlo=`q@{{CV%&wQINEho#=yU_3(V8P@u}Wm@QU*jTq{S|TYDSB#Zoyg$sfj_ z)jx3cwK1p(D>yLqcjXUXbt_~9#0)FFR@UiN{t-qptVaixP!hVEs}e{(CV%rRrxph9 z=akU*!wk`>oi=7c!E!=Mi>}NfM`!Au+Le9@SYLHGHUVjF?3LP&U7_{oSCHkHP4Y$qa6wiO%6Nm4KO zY|Tb(wr3mHjIUOMzR)!ZWuvh*2EidLf-(AX!^2E={_R{q*Q`-C>KzSGU5hw)2gVlU zqAC8kgs0BZut4?OI+5)KhkhM&2y%Q`Gt&61Rp3f^R=F>M=juYKywaFD0hcrP=sm8j zs0CdhZe-%jK}v<(-?=!ppLU;xOgXJS^GqBQ*^>VQ57(M#S#DWgNbf^O(ej$(s3?nX zej1f^Y-1n6aILBE**FYFYR%oN@D$kruc{kzYjTnCBDXFV#HTtJp@OtqNVH8cHtR#E zGQs<@DU<*Wn7@qL%qA+^a(9!Arr1U5qSbah5!Vww5!Z>+f+M^>BNKj(q4;UemU)&o zV75ou_8IO+zNcb;gUVcH?_+U|qM4mkF7=04m0k{c|8Epy+7wzHnKeS&pf50z>13`- zTBnFySc)g~l4usOs%C_I)EBM{XBU8lR1M=25a}Wa;Z&jt#{NaqDgoyV5LQn6wg2nyVt)88mc{ zXHx|p{qA!*rse*0_+hzVoLE5*hjGL`>~EznY|h``3T;=#eR{T1Te~Gr0`|CbdQ;b4 zPZF5n6xikPs4+5OR%E)gNZlKFDnAzoa<{dHC{2$6CH2~IV`#(HQ|`o$(Ekt)y8OoV z$Rp~PKoLJz8K72BZ;LUkExxG*uW+NBWCY z+V}>pXFbFuEsjyNR!la%UAf53%et)D$W1m=Ud`tqpFAmIDnCwKM0CRjj>+(1C*t5AFpJomyJCXJI?3{_d(j(oKUUV68(U6|``%eM~9=3lF?YcgV?z7LHvHcPXx{``Kt2mQsD z9$Cle;hk^kPDMtnYcO@Ea7yr~{x`h~ui$)vQ~U<_h6&0^uowTzmm9bsb=Q5IrB1~z zQ_?+&%46?rp$)voisUSOzu?@|vS6b&4yB=T78`0);G3GlCb%#8ho}#YTmJ3L5Tb#w z9Sj8TjU2HcyQfkYM5)Kf1==F<4ZI(y8*nMnOiR70`W0NFduN>n6N4$tO4ygEAg|%a zFZ*4%;jc@lQZ3*&<~(%)+nM%v;1(eZD}{RTYneKQZr_N&6l#yv;A&_kZ_igxA~z^? zB>~NaH@OTki3_p|%yoJ+@s4uv+k>;wC$W;TDgCih%6{BH{vxgI7P#0|-mxyR= zKUX8C2|TZ@CbPg$bUZg5F6Gy|r{Y_3IXQ^;_h3^&rFjxni zqmlE4czpG4_wkvyy-q;~#HPh1W$tp&Na(B8KS@Yp#(kXXFP2oAMA^pUD zRJrbYOq>ZO`6{xrs0!>b@gjdq|EiVYV%28KMZTKnNX%I)FKl&&@dJVX)S2d^ycL!n z-l4_@W}*0>dRVI{ezU!|r38m7wFwI_9h_(ki2p*_um;jkeo^XwOh5RWmXKdvR6KT=9+mGkd=WQjXXT z=1{l;45}Q54d++ktqL)}qK`BK(tF%V98{f|30iX48hxU8Cu=#pra!`_QIY6_yT8@e zFQeyzpz?+82EHrz^y~D(xJpJ4Br!*qM+b)Ul1o zJ0Cp?>klXSUd7p@X56%zMO0s~XVWUUnD|foo!e`F;q|&(1&?zLjKo3+hk$2R!*UT@ z4|P!nV#VN?wht@;6#~Ut$M|W!WQ!qJ6E4(Z_`Y0i>@|OjuYe|r3=CJ!)9?HyTA)3r zaEp-hNwr(^Ub1Lvd%$)0yL8N#r{%*$_*np8EN-Woa~x$7gO$+8am0^}ZSyN})xcS$ zNNFRjqvtS3VSCSbg3_8WgXqEjJXKM*ahokyrjr*5nQQ{P1~gF8-96!Gbrcn5{-?cB z(g>%I@OZtfr=9blILdg!o+N51vx0RPfjb+-bif7z zM>y6ULSc0DI_jG5h+GYy1#8o**$B>;^*^VNp6{zITt)No40uvIQJF9bOa9@ zGnOSXTRq8vm1S)3cgKT5fX(BsJ3@@XfD-BHZIJpu6f-pL34X)JXz{PU4x6n7`lCQL!pZ{L>L0* zi04(WzJXfh{!5+aUj}MYr>ub z*2);>)wQlx9<#Btx>#MQN!8^h>GR-J*1@*JmTfGcPvPtR_4TgKVPK(oJ15HS2d#6z ziVc|47KvmxT}eJ7oiR6C6V$Pcr+i5e0(WXbfZ1Dn^0X*wl2pTppxS8-IhQ^ctz^ns zeV25$7PAhE#<~;J-Cm=Z+bMb2Y)>`xRmyNGVoPQ<-dQ~3N;bmrSauNlq~9e_pfmrO zOEbPpqnRb_bHvjn+=A3yJD~2NOAC8U;{W|yGN}_pCLJke9fiLrXD+-d#PJ;v7s}&3hTyH*UMtpDBYMwW`%zB?&rdkv9!*d#~$Z4<1R~VY&W4J zs)i=QCVDj{pU(jIuu{N9rWoDnj-G?L{iFjH1;q}dgG<6oksVw~teiiPNkUc<$Vvqr zrWU|<>h(Yc^b7r5w}A0U<$f#%*@;RMWv+6F>5E5e<&DbKj@ujM)Yk8^ zW!>B3LW5nDdwE~k2#D0)o}=VV^Lf??wVf7VH$Ls3V3r=#;@G}>Of6(d|4s<6IkHHJ;JvCdQjUqxrwCpsMtcx-K zl83|RuvvL+>5A6hD5Q^|mQ;TON%8JMicRjUR1iW50__vVGJ4R>rD7QJc&{^%f5Ug@ zGLe#Lv2Td+`kzEOxX`+X&x(CC)kAXwd|SA#KtT(MZn|mlI1gh7Wl#7l zt07p+{X^evq}Y2gE4ThH_KDV;p9q}r4y=UDhBLr*{W#YHUnee9;-z6*_c>{5hD9LX zl8-y$l@P6-x`$e-kugIpZbu`qC6Ga%;TiJ_m9HPsAlo`{!+wn4?g_CX9;YRnw}pC2 z{Zs7)zqo!UxASEP57o`LLw;;5_O|k@k_bg)KCl;pcY~{yOT4lv>0}^JHbI?kG#(N zj=$_Ju{lv6?7hl0x5)5?bQ!Q0>hNs*M|wU!9UT{!!ZLbG0V$jH=4-o%d6uVrnz_U- zSL2*kuLrQ(bDa_A^~M``D{$wvrZf4i^tQIleW_$8q>+bQ@ZUZ$sM^HF^^ zlSb@xuD-EUTxL0lLxVf;5c&c2KdT4uof%ARP@7p^lkT>0er!HjoRI2!!R>-O{d=*= zFw0wC52JR$wO}7rH5kb>027IS=O3U{)ujF6w?V>0h-IrQb&;YxXbJ|Z8TS) ze6De7OY7irV}kJy=I4_`aX9I3Y_y4eD3hSH5a zA?9M^U9@o*(8eNlhYu>x6qtRRZVN}bxBCXOcQwLzN?+iLQx~f@@+VOx=^TA2d>LPr z8Y(=oG7bnFCOR0L(bIki|0Np6ZMVXfHN#?0x!S3-oQAbehBhwiDI)FMCTLdv;HQ{K zuX8`e&WZc2yZNmCMfW*MX;)ZlR}1|KJA@^teK!_?S=eDM*E*{{vq5JJWEl@eqY&RE zd-JVr{F7BpD3`I6XhwnDXW3OucVLmbzQ3n?6xYRAX5@m4*i6oAxS=V(G;dQw)G=}! zv`>kMyN|yw2w_d4G#IXx6qxm)qABx-B8Sz|i&TTJvq}JAp@^Gx$ z=5_c|DVMvzUC{Pw50!LlSJr*(GnfJvqlx@bY^oYc{->94KQR)53EoGltsv9d{K>WK*vEwn@fNv`K* znePIv&kAGUiMR9B5Ep!OZc@-e=XvH>ZSdQ)O|2&MHhWn! zN}cpl*lX>V&;xYR669xSnE07L?jM4E6`Rm2mD>3$a*t)_0Jnd>6hU6mZb8emQFZMW z-54&FDSi=g3jdQDi`@Kqc>p(ETM2RlcKIe89Oa>B8au4K5e-fOgy9JvE=}Pe~fEtEOHMsr&vENt(0IE z@?XI;!DJ>%CmiGCohZS;(KPBaUEtY7j^$bwBo>rFcf{?qqWop1x~6g)&3?h|=3;6D zZs0#0Lp+)A44xOaSYx8w)yQRU%ipL-Je?@Tb(BBw|Ka~oQR*vW89sp1*hT7B=9YGq z{)w6zO}HOaW4)}_0QF%1rF562v9M0Isqz>#pr24JVdZ>+xhy{w3xylX4DCBCQrh{J zsv)W!pQ>GtZR8=iRk>g3JOfJ`q#lqYv$Nx?ttLCtS%dJ|RW#9d6V#!O#O<|ax<72u zdZvFQlcrX~>Syk?lyyldZ@t3*N4bf%SX;QzoF&}lC+E-NGwA2W*pytlQASNqZ!KK! z3)=*zvVX!kS_*uPTEvR+xhPV(k(t3H!!-Y&+z8`vf?K|CIuonzjJi{($lVBY9Meh|Dv_Yy!b%=MPaB7lr50qomb7x|& z627W^uxaMPygqaZ-5uZCYUA`Vjsg}gurz$1V}+|TaBOvf`{E3xl@w)m!(5!8AG6qz zSM0^YGPquwL#)PDaB~BfET42BzI7{SE~W$ zmE~e0)Gcs=)QMi^xGlM;^W5~1qrb+j;1+TB)AfGpXg@E$ zqG-H<(TSNsjL>*Tdy7w7#s3y2XZN=#awjq_;zf}cv$u#N`BO@Bo^*u5wy*~ugFmNs zz@^sgG}D;u2-nk<&gPV?wSjW`Bko_? zR0}K$V0kpr^vG8tuAAgCgJao$G%}dm%Z69LC z^7+OMj$;WQHlm)X0s`=WQNnTCVjAx?`arGzs#guZ58b}#C=VJk4f z8mWJ-M=J}v3Fcv ze?{_g2})Ucy%LYFf%D{KaEs26>dA}PLXaN#LATo~7LdkJZI$aMTo3Y7-@vZa6n#P7 zMAsN|ELtOVLZ4X4qG#1HMiX~Qy`TLR7Yo|UdmYD> z)%X_HNz}7;U0QStd9i*+%;Touzi|WXbClmv0 z$l`X*@8Skn{_jye+FYmIu^+~+It1tve@B-AZ(h~QfSIXtoW?4> z8r2QHrp~)w_=+qBTls=JbQ0D{tI1zx2g7mNBRricas|Zy(V_H-U=jUN23WYQ2;BkA zAg*S!wZ(2SV$OSxS@hgD`VB~FtkDgAgll3u=45$RiW4zT8U|knPdn4VWhsb`=jC#< zgUii}<^)iKJWTP*R%WNA8sxj2`h&Qd!ad&wsk4@3C4;8Y^Zcn?Lv;l4OW%yrv)6kD z#_knrId^Bjc9hrirHRxwI?YIi>xGtXpO6Gwz-)3ph(JfwG5k0CbyT1pvtG4hwi?1q zSul1f{o&0VUK91!(F@_K?9O~WYN~B?-YoP}3+R0~H(bJva!jQXsStcAd|@R-#*=>% zh1DO!5a(TWP2Pw2(iDce#|FqEybV}qeD>2iJpQQ@+`vTS(CR#356)~ zGS(Pu^`ZPyh2O}P^lmG;S|IFAj8r2kP6dcYuJ-uV=A{?#~f3sS0r|B4@ zlJ!y=$QxUdM}-|_>JfJ9a?(i5IP{8 z*G`g4nazwd`y;kpJ1%cm&Qk>vvh4+my}!l?{b4|A5YKKK&u8Fo%~SS8*nPUC=+lzG zX_#nSqprptVHB=2w@`h+dtpO4o4Q_j+saHO(~;DF?kzFfx%tkz6>DqPBOBCc2WJ&- zCK_?MXns(IFNHbcF?-Lj40k(qXzWjItktC;PzNa5In&B0^6E|kS&txPyJs4Cn$VOyhFos@Dy5VQ3Bz+U)5;~Uc9H(D5GZZ&3$~`UJXIQYx zmh;M3va*%Iu5ETu_ZkyfO?fLN>JDueH-_E{=LHtf;h=i3s*eQ2^?-W=D#HBkF3cSv zT?j{gn3s5YUl`Ltn@dOPhWSA;tfpF5PGF+pE%gtnKl{{bEa2P+v=<(R9Gk=pG`o5$ zsXLf|>9KM$@zL{-c-d+j5{gXC&DTi^Ua>T;vve)1i>xvAghTi_a)oaIc{-49k;no@ zoKl(l5)0{ON*5_oJ)Jd_;J{3xyYD$$(qec2f`2I4`El5%!dt+`O+xc&NnJs$$J&`S zsTARYF_>*FRR9?Ejz1*&K&+as1*78&=jv~@FX>I}GZPYBU%-B<6I>L`Ckej6DldHE zO5}&5gXTin<#or+&a`9G_{r!zE(k~TR6W#D89=IQfjfQ_znFii9CEI6ytiD=j)ir- z`#oV+bJg-R#a-@(wj);8Z4Osj7%fs(j^gNwVTxh2CuMq#cE)~_-foXJn=71avT<0b zV#q>q!m@Sf@v`7|{P zyr*T#N6n%BkZ-_HtuQxWk!{Cu6`5@Ao!nozXRl9ecNPcE$&Z5P^i+3y+Cf$&>cUyx zv;6w%PPS^+hOM8p?s|DX7Zt`)yI}6@a zSJ`iCX>@zGh4_=IYO&_tk$qY6W$1i&)l~D<$#;%m`~sgfI6xRby*& z`)GCs>;=9!VjO2c!&+UaRQ$Z&SWRUrnHLyZ|0n)3{0XihBrXoice=@YEEKQvnNer; zJTMVfP%=1DJwi`KjZsH+l9)>!aXb*3Dh>G$)GD+cxxDR&we$rv-b2&v;Ge_}?z}?+ ztHgsq_HERz$0s>#)SQHC?mL1Tbo71@Hd5WSv(8_zh;1Si0F-l)eXd`G=akuz&+%gA zxv8>Y+=5_rw9i~7M#ZnRDC!yRkchcJHFrgpqUTUu7)VBG-`#Zr1U_DE?>R+R$mFek zkjLm5pe@(XavSdorz6{;$>IYpQtjbbV64s!$E%3b#j3$ps4d&vbwDYBIa4>OkKlN0 zlwM8PC^wDo;-9C?fSI=QaW%Bz7N;OvzmIL82UAa(Zb)>m$g9hijHynfi%fo^x)o35 zjs@3)_WTB`O}@m^&;M2%;I$3AwWnkWtfL-eJn~02fp3j(Q3qQ5%brG|*~=*Ol*Q+e z@4#Q?@Ay|V!8e~!Q3-LI^*x+OWM!?UYoOug8s<0uroe3~=&cUyMi~7ae}vbgHe%(i zBb}&iv3T^ zXXDdO8>}k?cEP;ZSd0|GQQ&#$+#fP z9wUqVyK-ez$dxir!d}#ACC698UEOn&!rYC~PirH_sNib7BfRO{Om6eMl^(Nmv334p z_(q=3Fw$2ef==SP1iM>zgrA*G)s6k#e~(Yp<+Ltpp{hog%uJvs$iG|zI7iMUzMXWM zZ)i`ZwrQ;Sh#tmlCj5D$@$p*oT*lg4ebk~>yg zkT#V#m08=`7BLjGa?Es=iZSt{uHV#LA%&VJVbo~slk22VBKH(InNqPL=C6DRx1%rK zhMw(mrp3&y6^u~I5{K}m;6Kz5T~!OvV|=iF-)R`B#tZwuWN&O@pcEEK>^CaLUI*8# z*TG;o7q6W#fZDAd&HLu{P|KJUivqvR%w!vChs{`HFZY68>z>Xg1iwfl?Sp}2ea<=T zf|?c3E2UY~aVpA~8a`GDxKA^a1NE7)wXVXR#B3NJnuINg%2$S><}NEmN>zic%s=QS zL@n$J_se-PHVj^c&8$s(>x2U8OunCTI{(T#Bi}XB^ojIJai&lvCDKxo4?AvY?cr)n zHCV2UJ`B12(=)_^C^#7#?~XH1XwSSpRFV3~|ITi=@8e6M=@IwcCxVpFUipp<2A5cm zHiXT==Gj?Ik87ZI6_#&%;j@7z`re?&SR8jo{m)-s-C(hYuMwMcOc+JBay+01U=BSH zz9D0zkm$eWUTRMOWzlW12ipw1CkI5A;G$TKZigpP`}Cj^^@A)cmBydRm+TD%o+?vtiYq6D@{K)nHy)%@xf7aBhlO<0 zbZsxjDb{K(*)DD6bYnX`hir$954_g@0&~S~qSwBz;J7?RnaQlDyPCJuT2=${ymylG zBHK`$VUWIwU=V~<9ig7lLpdq*^^HZ}kjGeL{pVJ4-E;Ipx=~7&L1XHZUJkCbM{!4B zsB*#i-0JWoAUs2IXV8`OF2ok~8~fAp0oQm>NC$)==u|LD9qh>l9yjld3Ltr-=EVPw zeT#9R$k?TpMpnm(KVUS_e&nXx-_xW1uc9;YkKz9RxTA3sg2=f$yF2%MW_BZ}y5hcC zw63CVRf!|CC{=gRl+>9Z_a3uzem*lBqG%D7YEV?Eo3Fa-th;W%&+i}D-N!ukF`t?D z`}KN0%@N{wavi#k&Z$#$uW&>xR0u28<+DP{SZluVC%C0F5-FC{HU_U~E$q#k?pkTl*y{nD={3ljzKc{4I--CPLbFMjPnluKSQyQc=_&cGjP>EePsa6Wd zXZk;7>%(ujv*>V`5LqYb&c%(gSFTHHoq&ZphlhYciof}ok{}2NmWM|PchqjUP4}~Y zB$+}a(p9KN$%X7FGvJ=U2gI1%H`u^}x0l2`?h4Z{w16Fv*sWxPhuhqI%T{-FFy zg@wVMA47+Tn=tGM!~VhA%xnk zh&T00{~Xi~#)>DjQDPOGW+xTh2^Sk7HoDnbFd!VoTcE3d5ax!>N&9u?rXfm z6U-dz6QcmuSJT*K$qV(~LY21BaV?N)|7-Vl^awU1wkQ3>o)QkHK=(+vv-mSGHB^o| zC7lzWvjYQ8e>M6Xwvb+7#_@02ZB{zU41Og%rjDWoYMPnuU8rU2GsK0gU*88a+y^k3 zxu!)q9_xPv4`{d4c6c|rUm1t8&_b#cw_aCqR%wrz6=r;7N9(+6 z37(|3;8XJjKQT2)B_w5a+)ddSBlbEDTquY4#5x7r11>7PuEEOK=N)w|OFOD!L0>p&FiZLTBkdZ332Rt2~1z64y$z&3@)h z^((3Yaz~z^1$sQ0(xc= zgz<^81Qu(D^^JOebs5}8KcV{a1Aaqkdovmg z;YrrX?lUiPj>2L3^WZ#ghdo5j_DIx`@COZ-Cs#DTPn410#1qQWcotP?Pth3=l*^Sq@J}_DS3`emUg0DWV5+Q7jW~Qo+X+aI4HkG~*Olq5 z%tCz^sBkChAB(*shq>8$4{JW=iJbyh=^IiM{nWd8CiW^8bR<7ayNndUWdXU^z z&oruw`-Sh>zk@ZED#d3@a4BfyT_|0WY573Fjqk2Xq@Da9ZXy28G%EW@kFj=pp9@)P zj1q;Pe?CzTs@1t--W90TsFM0o`?zST*~dC+yfj!k!_5~_r+ZGKb9>JYdeTS12g<0$yu^yZQLO9dE znh3|dlDCbleEtt!8!4)cE0a#m0&&w1qnk-(o)8o>7qOA)E}|!%%Q?2 z^|jK4sD$VE811raC43V6&N%CO$kZnD)#3a#(48ySy1Gu4G*%q=S2PqaE2H^~dUG@x z-SBqf^NcO_Mk7$TE|gF-z)ICtKa_`9`s)IR`FHb0Aed@2^TP3REeBTMunPy5dm*WJFcbu zjrA?r#@oXC|DCEq+=1d5B<@jpD#Tg9&u?TOixleMn=S8*m>|d3j)T-r%MW^zKjEp$ zI&7#c2*sMMQu=yKqM!d}X;tVOJOztvuI?KOa*Ya^)0Vh%L^+`n{K+r2yMh>PG#SSX zwvJQTs1)5KKT>upwK&0d-?LpZLvK7^(zKZyYAAomeL&5SR`4lcJ=Z>b9lHnOy^DjB zO-wElpKbX7EeZcY{hK$P&%z$4rTS8Sx-kduCyyH~nOBaU=62yGw_K3I7kp&krR$k| zsm#aU^)4>041dkvP0mWL9{C#emL0<1odZiMzXiRyZ|U#4Oe%v zkKKz;VJbBypq4!0K66rW-^e`!OO*GxnWeintzj3_*QmOND>qT_Vz=P2$aGVX8fnYG z?@XCJM+>=caf2k?{?PD;Cq(A38=>1b4La-`*5dl>4LF{xpnuk|b5I%~_XZiLUSq-c z8Joz|z!~PA{KUY|0mhjeX;VsoEObgANpgIBaGC393_{;?{pjI#2H8@qWN#O*wf_QF zxGWX7x%IZ*k2k*)3g<`)r9_!LsXlh7_%3+ ztLEvqxThY0?NTyc_RvtRN1WHTD2=rcd8nudo#=~Y9oQl;5G_+za`%ib{!Sc>oTATg zSMyFY8*G|SM5Vg#g#;$~Q%wqQ>%=vf-(*V!zvc?jh zabN4(T_yU-U^ASyIbfBC1$96&!0uQ}Y`FF+R!I{V&?lIaXzP6@;d?rVn8oow- zK^)ahcMJDESB!jEgJe5~QO~-Tu@9|est+?>{z;E+@q{=M-iUM6nRNYdn$_CTUg`!P zi}}1WvK?Jw5xo_VXsO*rdyZ~l|HDA+g?tJ>W3MM%Q!cYsh-CVqG=&hmn?u1&sD&?h zH!?T%AtlX9w+lz|1-5Z za7Q9lsU# zVEf5SA{tvJ?v4CzwY6gS8Q_xV%Mzb2OFu{5H=?OE+BQB~%4PTRGC!NXC?fQ{yh;DGK7_F@gWphsY9XwAi zW;@$8%u7^d@Rd3M(+;juC2)ead%eS$zM-zPOMEW(;qp;mVP9ZIv5xx~PVQIdT<#OD zl(>mzCl^T*xnV{NcD<*XoCE{fS)r48O%wPjEbs2BZ32g-;Y4e)#BxS%4M~5vN6QkQ`x8=UXShh~M!nItKG0&@h@HW^f zi24QCh996e_WUe-SXxPTH>UE9u|YCuJ`ihayS-8DgoqIOR4fe~_*c<8@cTReRGt$4xz`VwFOL)T$)k=(eOdK66E{7jW z`;%%5PGeML64>e;%Z)U?m3Jt|_*Cp8uEUXhhlJkNL7d(y#O;|$upV`R?`Nc-bjG4C zqG?)J_OAAV$uF#}F4bq5@4*;ns-wM;PQ6Bi7VGUR1QS1}Z^3HLJ^Fdvd>qf8gX4vJ z+R5Nd@+7v34Pw0;RZ_#~`=pkFk++zkTfQ(DjkDM22a8*Aqm%#8=4&(T+Bn~yVSB-T&j6++ zUq3t<km2C(w3wmwG+a zfuA4wSKS^y6!=$7ut&2IIo~+UpAG`HK6}O8EB~$6M89eQd6}IN!Nz0w%stH)X1DO~ zGkpTX%2Mb%TWdZ=&mkkD}W4_T8vW^Z-hHoFiVQ&zD%l@Xx3okRWQT+I=I z@3?tP1-Fpi9bTqXnGsKhk?DA0_OR;tTg$WH4t6MYAhI6)j{V=Ma8kbP?CKvFdg`7{ z4Z)uJ2$>_iHFYr)`=6WIF$J=#n`?@`1NN7P>3R5k;rN!;Mx&wlX(*4}>YYq@xEHW) z>BsCia_1gPVKL(S@9PK<+Db8SaYD4YQ#wZ`F ztP!V5J7aiwLT^}#(;O(m=UU^uY1#|D14#GoG48nPmUYn0O>pxPe^Wy$e5$sVbn9zt z6W5E$F|P8RjnBoH&=Is#PotL^U8%NVO{`HgP5att2kXF1;#2dDuuUT{jkT$SjC0$A~+XU)*8sl=Q?nYg{4DgS^mGRIGo;UcmX+C^TMN!JpN-TVvx=#L2<|Y?i%Y zvAgCi~09df0EPiK2xqEk&TYu?8EZX29{}dhbqlj(!o;HamoSSpCaxT6bZs z;v#l{=mwK;b`=C-%%kKP@Fa0Px~-4r_Y>92uG5c&3$&Z57T*k?b@hs)lIFpvqD-ZJ z(l{+g7v+(m_FNiOOM0YLqh1@!ZRdvn!1x#sX850D=lQG5s zPqw}<%Jei*W3*wup=4BKpz#DctQtCVO(N_IGNBggq=xt7*eJB@1cJ4^=d<}1m*WM|()aaGbu-{%nMD+*fM z&ERdVp=%WLz&D}vun=PEv9V~XdnVn?xNaS%-*Aq|l(MF`j&?RC-ZP$c^7FuU z&uDKot`P2q1Gq9080+x;F`ruz`9irDtftokpSlu?r(20enqJ}lVDmhs2N939Y8%8q z=*`6`AloiaN#<-rX-beKh$6E%tt@tA=qtA<% zxdviaF$$AS>SLaT7y6m7NNE>Qce5YP-p@t-;2Ps2>8;q$GlJceGSp&;$MBY+=VPq56uhrxEXmu_;CI6@=H+C_<(ybVqzaoFD{vRRpQ1Ac% literal 0 HcmV?d00001 diff --git a/practice/json_to_data.py b/practice/json_to_data.py new file mode 100644 index 0000000..fd5d2af --- /dev/null +++ b/practice/json_to_data.py @@ -0,0 +1,90 @@ +# -*- coding: utf-8 -*- +""" +Created on Wed Dec 18 15:44:33 2024 + +@author: ieemoo-zl003 +""" + +import json +import struct +import numpy as np + +json_path = r"D:\DetectTracking\practice\resv11_test.json" + +def write_binary_file(filename, datas): + with open(filename, 'wb') as f: + # 先写入数据中的key数量(为C++读取提供便利) + key_count = len(datas) + f.write(struct.pack('I', key_count)) # 'I'代表无符号整型(4字节) + + feats_32, feats_16 = [], [] + for data in datas: + key = data['key'] + feats = data['value'] + key_bytes = key.encode('utf-8') + key_len = len(key) + length_byte = struct.pack('=0 and evtpath.name.find(".txt")>0: - weight_data = read_weight_sensor(evtpath) - - if not evtpath.is_dir(): - continue - - ## 2. 读取事件data数据 - for fpath in evtpath.iterdir(): - - fname = fpath.name - if fname.find("tracker.data"): - pass - - if fname.find("tracking_output.data"): - pass - - - if fname.find("process.data") >=0: - pass - - - fpath = str(fpath) - - - - - - - - - - - - - - - pass - - -if __name__ == "__main__": - main() \ No newline at end of file diff --git a/realtime/tracker_test.py b/realtime/tracker_test.py new file mode 100644 index 0000000..7a1a4dc --- /dev/null +++ b/realtime/tracker_test.py @@ -0,0 +1,281 @@ +# -*- coding: utf-8 -*- +""" +Created on Sun Mar 2 14:15:57 2025 + +@author: ym +""" +import numpy as np +import cv2 +import os +from pathlib import Path + +import sys +sys.path.append(r"D:\DetectTracking") + +# from tracking.utils.read_data import extract_data_realtime, read_tracking_output_realtime +from tracking.utils.plotting import Annotator, colors +from tracking.utils import Boxes, IterableSimpleNamespace, yaml_load, boxes_add_fid +from tracking.trackers import BOTSORT, BYTETracker +from tracking.utils.showtrack import drawtracks +from hands.hand_inference import hand_pose +from tracking.utils.read_data import read_weight_sensor, extract_data_realtime, read_tracking_output_realtime +from contrast.feat_extract.config import config as conf +from contrast.feat_extract.inference import FeatsInterface +from tracking.utils.drawtracks import drawTrack + + +ReIDEncoder = FeatsInterface(conf) + + +W, H = 1024, 1280 +Mode = 'front' #'back' +ImgFormat = ['.jpg', '.jpeg', '.png', '.bmp'] + + +'''调用tracking()函数,利用本地跟踪算法获取各目标轨迹,可以比较本地跟踪算法与现场跟踪算法的区别。''' +def init_tracker(tracker_yaml = None, bs=1): + """ + Initialize tracker for object tracking during prediction. + """ + TRACKER_MAP = {'bytetrack': BYTETracker, 'botsort': BOTSORT} + cfg = IterableSimpleNamespace(**yaml_load(tracker_yaml)) + + tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30) + + return tracker + + +def init_trackers(tracker_yaml = None, bs=1): + """ + Initialize trackers for object tracking during prediction. + """ + # tracker_yaml = r"./tracking/trackers/cfg/botsort.yaml" + + TRACKER_MAP = {'bytetrack': BYTETracker, 'botsort': BOTSORT} + + cfg = IterableSimpleNamespace(**yaml_load(tracker_yaml)) + trackers = [] + for _ in range(bs): + tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30) + trackers.append(tracker) + + return trackers + + +def draw_box(img, tracks): + annotator = Annotator(img.copy(), line_width=2) + # for *xyxy, conf, cls in reversed(tracks): + # name = f'{int(cls)} {conf:.2f}' + # color = colors(int(cls), True) + # annotator.box_label(xyxy, name, color=color) + + for *xyxy, id, conf, cls, fid, bid in reversed(tracks): + name = f'ID:{int(id)} {int(cls)} {conf:.2f}' + color = colors(int(cls), True) + annotator.box_label(xyxy, name, color=color) + + + + im0 = annotator.result() + + return im0 + + + + +def tracking(bboxes, ffeats): + tracker_yaml = "./tracking/trackers/cfg/botsort.yaml" + + tracker = init_tracker(tracker_yaml) + + TrackBoxes = np.empty((0, 9), dtype = np.float32) + TracksDict = {} + + frmIds = [] + '''========================== 执行跟踪处理 =============================''' + # dets 与 feats 应保持严格对应 + k=0 + for dets, feats in zip(bboxes, ffeats): + + frmIds.append(np.unique(dets[:, 6]).astype(np.int64)[0]) + + boxes = dets[:, :6] + det_tracking = Boxes(boxes).cpu().numpy() + tracks, outfeats = tracker.update(det_tracking, features=feats) + '''tracks: [x1, y1, x2, y2, track_id, score, cls, frame_index, box_index] + 0 1 2 3 4 5 6 7 8 + 这里,frame_index 也可以用视频的 帧ID 代替, box_index 保持不变 + ''' + k += 1 + imgpath = r"D:\全实时\202502\tracker\Yolos_Tracking\tracker\1_1740891284792\1_1740891284792_{}.png".format(int(k)) + img = cv2.imread(imgpath) + + im0 = draw_box(img, tracks) + savepath = r"D:\全实时\202502\tracker\Yolos_Tracking\tracker\1_1740891284792\b\1_1740891284792_{}_b.png".format(k) + cv2.imwrite(savepath, im0) + + + if len(tracks): + TrackBoxes = np.concatenate([TrackBoxes, tracks], axis=0) + +# ============================================================================= +# FeatDict = {} +# for track in tracks: +# tid = int(track[8]) +# FeatDict.update({tid: feats[tid, :]}) +# +# frameID = tracks[0, 7] +# +# # print(f"frameID: {int(frameID)}") +# assert len(tracks) == len(FeatDict), f"Please check the func: tracker.update() at frameID({int(frameID)})" +# +# TracksDict[f"frame_{int(frameID)}"] = {"feats":FeatDict} +# ============================================================================= + + + return TrackBoxes, TracksDict + +def dotrack(): + + datapath = r"D:\全实时\202502\tracker\1_tracker_in.data" + + bboxes, ffeats = extract_data_realtime(datapath) + trackerboxes, tracker_feat_dict = tracking(bboxes, ffeats) + + print("done!") + + +# def plotbox(): + +# fpath = r"\\192.168.1.28\share\测试视频数据以及日志\全实时测试\V12\2025-3-3\20250303-103833-338_6928804010091_6928804010091\1_tracking_output.data" +# imgpath = r"D:\全实时\202502\result\Yolos_Tracking\20250303-103833-338_6928804010091_6928804010091\1_1740969517953" +# trackingboxes, trackingfeats, tracking_outboxes, tracking_outfeats = read_tracking_output_realtime(fpath) + +# for *xyxy, id, conf, cls, fid, bid in tracking_outboxes[0]: +# imgname = f"1_1740969517953_{int(fid)}.png" + +# img_path = os.path.join(imgpath, imgname) +# img = cv2.imread(img_path) +# annotator = Annotator(img.copy(), line_width=2) + +# name = f'ID:{int(id)} {int(cls)} {conf:.2f}' +# color = colors(int(cls), True) +# annotator.box_label(xyxy, name, color=color) +# im0 = annotator.result() +# cv2.imwrite(os.path.join(imgpath, f"1_1740969517953_{int(fid)}_.png"), im0) + +# print(f"1_1740969676295_{int(fid)}_.png") + +# print("done") + +def video2imgs(videopath): + cap = cv2.VideoCapture(str(videopath)) + k = 0 + while True: + ret, frame = cap.read() + if frame is None: + break + k += 1 + imgpath = videopath.parent / f"{videopath.stem}_{k}.png" + cv2.imwrite(str(imgpath), frame) + + + +def extract_evtimgs(evtpath): + vidpaths = [v for v in evtpath.iterdir() if v.suffix == '.mp4'] + for vidpath in vidpaths: + video2imgs(vidpath) + + stamps = [name.stem.split('_')[1] for name in vidpaths] + + if len(set(stamps)==1): + return stamps[0] + return None + +def draw_tracking_boxes(evtpath, stamp): + for datapath in evtpath.iterdir(): + if datapath.name.find('_tracking_output.data')<=0: + continue + + camera = datapath.stem.split('_')[0] + trackingboxes, trackingfeats, tracking_outboxes, tracking_outfeats = read_tracking_output_realtime(str(datapath)) + + ## 该模块先读取轨迹数据,再根据帧ID读取相应图像 + for *xyxy, id, conf, cls, fid, bid in tracking_outboxes[0]: + imgpath = evtpath / f"{camera}_{stamp}_{int(fid)}.png" + + img = cv2.imread(str(imgpath)) + annotator = Annotator(img.copy(), line_width=2) + + name = f'ID:{int(id)} {int(cls)} {conf:.2f}' + color = colors(int(cls), True) + annotator.box_label(xyxy, name, color=color) + im0 = annotator.result() + cv2.imwrite(imgpath, im0) + + print(datapath.name) + +def draw_traj(evtpath): + for datapath in evtpath.iterdir(): + if datapath.name.find('_tracking_output.data')<=0: + continue + + fname = datapath.name + trackingboxes, trackingfeats, tracking_outboxes, tracking_outfeats = read_tracking_output_realtime(datapath) + + CamerType = fname.split('_')[0] + if CamerType == '1': + edgeline = cv2.imread("./CartTemp/board_ftmp_line.png") + if CamerType == '0': + edgeline = cv2.imread("./CartTemp/edgeline.png") + edgeline = drawTrack(tracking_outboxes, edgeline) + + + imgpath = datapath.parent / f"{datapath.stem}.png" + cv2.imwrite(str(imgpath), edgeline) + + +def main(): + + path = r"\\192.168.1.28\share\测试视频数据以及日志\全实时测试\V12\2025-3-3\20250303-104225-381_6920459958674" + evtpaths = [p for p in Path(path).iterdir() if p.is_dir()] + for evtpath in evtpaths: + #1. 从事件的前后摄视频提取图像 + stamp = extract_evtimgs(evtpath) + + #2. 根据 0/1_tracking_output.data 中提取的轨迹在img中绘制box + draw_tracking_boxes(evtpath, stamp) + + #3. 根据 0/1_tracking_output.data 中提取的轨迹在edgeline中绘制box + draw_traj(evtpath) + + + + +if __name__ == '__main__': + # dotrack() + # plotbox() + + vpath = r"D:\datasets\ym\VID_20250307_105606" + extract_evtimgs(Path(vpath)) + + + + + + + + + + + + + + + + + + + + + diff --git a/track_reid.py b/track_reid.py index 536c53c..df91966 100644 --- a/track_reid.py +++ b/track_reid.py @@ -279,7 +279,7 @@ def yolo_resnet_tracker( color = colors(int(id), True) else: color = colors(19, True) # 19为调色板的最后一个元素 - # annotator.box_label(xyxy, label, color=color) + annotator.box_label(xyxy, label, color=color) '''====== Save results (image and video) ======''' # save_path = str(save_dir / Path(path).name) # 带有后缀名 @@ -727,8 +727,8 @@ def main(): # p = r"D:\exhibition\images\153112511_0_seek_105.mp4" # p = r"D:\exhibition\images\image" - p = r"\\192.168.1.28\share\数据\原始数据\小物品数据\视频\82654976401_20241213-143457_front_addGood_5478c9a53bbe_40_17700000001.mp4" - optdict["project"] = r"D:\小物品入侵检测\result" + p = r"D:\全实时\202502\tracker\1_1740891284792.mp4" + optdict["project"] = r"D:\全实时\202502\tracker" # optdict["project"] = r"D:\exhibition\result" if os.path.isdir(p): diff --git a/tracking/module_analysis.py b/tracking/module_analysis.py index 8318163..1752100 100644 --- a/tracking/module_analysis.py +++ b/tracking/module_analysis.py @@ -17,6 +17,7 @@ import warnings import sys sys.path.append(r"D:\DetectTracking") +from tracking.utils.read_data import extract_data_realtime, read_tracking_output_realtime from tracking.utils.plotting import Annotator, colors, draw_tracking_boxes from tracking.utils import Boxes, IterableSimpleNamespace, yaml_load @@ -85,6 +86,12 @@ def tracking(bboxes, ffeats): return TrackBoxes, TracksDict + + + + + + def read_imgs(imgspath, CamerType): ''' inputs: @@ -440,6 +447,7 @@ def main(): if __name__ == "__main__": + # main_loop() main() # try: diff --git a/tracking/utils/__pycache__/read_data.cpython-39.pyc b/tracking/utils/__pycache__/read_data.cpython-39.pyc index 4c463e0a0ec3a93b11c86e1551e516402d608962..0d7146fa8fe43526d862c6a335a370d433c27082 100644 GIT binary patch delta 3149 zcmaJ@Yj7J^72d1IYW1=nc4FC%s@Sm{%ZXo!W6QRjq^;XD%`{E0(2x|};13K741^!0Q~ImZKV^o2bM9KI z?UqQh-=1^tx#zX#o_k*`epGD8`28LMewF?==f6GsgNE0g(X>mane5qvlW8|6W>i^A zi@CYNlZuvR|8O2A+pB}(4Hp@x{@(uzA!$|!oEPJugm$s_0wbie+7S#Ba-zB?^f%(& zffG9sdReUTdV4pL1fd0C2w@LEB0!T!kFvisM#XU?_p$#rMrQXTc`raBL?@B%K-h-x zD8j=ChX73RaXqJMI(-mF4j>#sIEv7TU^$7@W`xfmOtA}1DmhiX(^OvXY+>^} z-wAV<2S7OCuKD<8b4M6`On5Dyrcu=~_MhgSHttW|N7M0OE;G;lqiJ?uL?g4+A4fj7 z-c+phW|AA}L6v^fR?tkxVn#n>imLXwnp0NIqLDF#2833GarRN`9&(8Fx6P6>)k>Rp zz2;zZ6Wix^v+MD0_OC7e&7-i!bWvq7m&q!x*{BhC`BFVWHI!sbPQ_a7ShWQs5v#hoQ^IjU_B#ZJP_`2=F(_2*THk;``2QrJL8gR6jLo$l z9y48qys`@(Q$%9wu<68io;qMdnSo4ho))I`4ArL#59DRKw)1}62NGTtr0D`e0XIH5 z$|gF7BfKT|<0y8zv;>-`3y0gOqZrEsJRTKXHgUzH*evlQ+Yzk z>;EPbrbEBDs3d$=%UVQ%4gDjAW4w*=P7+1dh0qRQx>QY8=T$w?NY5cJO{oh$byCgh zR=<9j4R4!?@P6;W(XIpENs;(?(tL+@cx1cSjn%9SiK!bvu$FjU84Ji0U1gqmB^(B;a zot2b}7YbCSm)NV@hsjO$*X_OJD!bDZt#)@0lh!q5fs5+V(JSo9L>C!gHxkq2DP9?W zWWJt#oA|N3;X{tG*`5~iEL-YnkJS%>4X)7VQ2!j@`?~AQ-8NMdyS8h831gtw5H2Eo z0pY6vCh4*6K$!g{``}of?>cKgeGSIaUaIKlY5qW=AZwK2x~~IFTlb|UAZvG#4IhSQ zp|-pTX@3_tRo;T!DBySHw_Ek?hIfOSPLAzWrZ-<=?S z_Rj8ka-({9=ubrC_m&~nJ6s@7vsZ@Oh{k?8oNHM|@f8Fof)~LDptHRraVRo*WDf9+ zk>gNmv1Ci)GHev;2Z3oTF}R19Jl)gkf-<&sK})3V2Ol{GJ>eOaNk+&xTS}(Le)f8D zm-ksz{S}1g*@wwExx`vW)6ttafL6`WVy>XiXi8oy(3$Lc`h;?fT^l_}Zm~a)K5(>x za<>2y4%3ZStr@&`(KSj@fX7e|#PsQkrq3+WLRQf<2A*r!fd$e)=3{W`VS-^8`}2*&oJZt-nEXgDJ;CM$Ny(0;zWLR&_8%h*(Cc z`&n{gN9Z*)EdnnP=yrs@&Gd-`$*^xtj6e2$6bm6l5Vj+5Tc?nkML2_iw=~LiUPX%M n<2q6|5HK_JHo{v7Z?pcr#~M#dZBnPSQ+i0+D>T6dB!qDXn~ zY*)syL_jA_>)KJWNz*!sExBodq6M0QXxfJsMf;G{FK&VY1$;1&Dh~ycJ_aa|{ve%M zinOGpK}pC zCJ~MxOaR!@jG5LAlYSK?Uqd*Ca2%l%q2we|wFoB=zQHcl=;TaswWhGq*=+4Hd6KPm z)UftCR?Xdx!Gx&0?C0IOwrcb<>Mi+o63r#qf9krLxK9;7ZSje8YL@#*r`Til2GNRd z)jzp$xt7K|alS||n)KU_tYM1_Df65y>Bfwn*4CEAMMe<<2#pA1?32blWP3=^IH()vPO#;kI@S>xAiLSANN)$8f$gSRN=@q- z&7fga!kMM@f=G?BpGR8i`R-w$Nol&I%Qtm`{Vg)tatY+qc*^BpH4q9skHce#?Bte~ zEv8@zs;IhD>AG{t@%$fh4$HAjR)m~Wl~sk^+R~JFpK|7uoIB?+9hO)i^>ljMn710q>{1O}19h=W$Z@~gGryJ7_k1n9bi zV7Zpv7Pv+PaK;TrAN)_F|G!Nszs{(KV*Djn%6?W=Bo*h>`jT^273@_5k6K)E(1XCs zocF=;gy0xL1)?_2x%gOU*|P#i3tFM_Y%@;t_en^TE42*#T$#=mO?K?iv-4ih5@ zAyds|xTzJHB|i+Olozn%Z`Nf7WCBR;m2<Pdf>=&$8;IU%TCQ4ocKlfV-F;Ir|M zodV(ilYkaEDnz%io2`f2lX5nr?SdyMA#wDu?ZS74_CW=d8{%rm6W$E+6v4z=ggU;~ zHV_s;kW^sCWcEl#;|-JDZ`+!u*n{Y909!trqSIMbvt>h{*V8FV7jO)l>4(_VZI^aY z%b5QpBerNRE@;rFc!#}!TAS*+1!cUg@CuiaZABZhZm9aKZbqx=Mc_lWaugOD*Qd== z`#i#~Y@71&_A7GfBKz02xNL#0;1pS+JxT&B-9AB{E&jH>VRK{pZ1lI-!R`HFjE~1` zOD8ma_MAy$yc6H3b+eyt-$U|jb$ciI8S{MUQvOY7Gt>_gqCV=td7l?#B{bWmo7%jw z);LkU833dib07v5o z$D(0+4Gr-_j3C9&bnU+JAf6!OtYK)E_c{)}fbb$aKGZ=9%o<8YeuM&a#11W_v*whc zWsEGHn!Z3UYKPdzLkGw^Y-D(E8$-Q!0HUJp#+;tQ8xLJ?^o`-I!E4~LA%dDf0)*Zz z{&{#0*~u?s3Y`I|E#tjU)hV4tPJAk>XXrT~OX+tSsk*Qy&_8xB0Y;*``FEq?$8P@EdehOktl?|%l2;B&LsWV7v y2=fSd7oyzc5>h{mt=ml9GWh5Q#gWyUW6 diff --git a/tracking/utils/read_data.py b/tracking/utils/read_data.py index 45880df..0e89536 100644 --- a/tracking/utils/read_data.py +++ b/tracking/utils/read_data.py @@ -330,6 +330,7 @@ def read_similar(filePath): SimiDict['one2one'] = [] SimiDict['one2SN'] = [] SimiDict['one2n'] = [] + SimiDict['algroStartToEnd'] = -1 with open(filePath, 'r', encoding='utf-8') as f: lines = f.readlines() @@ -352,6 +353,13 @@ def read_similar(filePath): one2one_list, one2SN_list, one2n_list = [], [], [] Flag_1to1, Flag_1toSN, Flag_1ton = False, False, False continue + + if line.find("algroStartToEnd")>=0: + alg_during = line.split(':')[1].strip() + SimiDict['algroStartToEnd'] = int(alg_during) + + + if line.find('oneToOne')>=0: Flag_1to1, Flag_1toSN, Flag_1ton = True, False,False @@ -387,7 +395,7 @@ def read_similar(filePath): Dict['barcode'] = '' if label.find("_") > 0: bcd = label.split('_')[-1] - if len(bcd)>=10 and bcd.isdigit(): + if len(bcd)>=8 and bcd.isdigit(): Dict['barcode'] = bcd