last update in 2024

This commit is contained in:
王庆刚
2024-12-31 16:45:04 +08:00
parent dac3b3f2b6
commit 7e13e0f5b4
20 changed files with 1349 additions and 389 deletions

View File

@ -0,0 +1,313 @@
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 10 11:01:39 2024
@author: ym
"""
import os
import numpy as np
# from matplotlib.pylab import mpl
# mpl.use('Qt5Agg')
import matplotlib.pyplot as plt
from move_detect import MoveDetect
import sys
sys.path.append(r"D:\DetectTracking")
# from tracking.utils.read_data import extract_data, read_deletedBarcode_file, read_tracking_output, read_weight_timeConsuming
from tracking.utils.read_data import read_weight_timeConsuming
def str_to_float_arr(s):
# 移除字符串末尾的逗号(如果存在)
if s.endswith(','):
s = s[:-1]
# 使用split()方法分割字符串然后将每个元素转化为float
float_array = [float(x) for x in s.split(",")]
return float_array
def find_samebox_in_array(arr, target):
for i, st in enumerate(arr):
if st[:4] == target[:4]:
return i
return -1
def array2frame(bboxes):
frameID = np.sort(np.unique(bboxes[:, 7].astype(int)))
# frame_ids = bboxes[:, frameID].astype(int)
fboxes, ttamps = [], []
for fid in frameID:
idx = np.where(bboxes[:, 7] == fid)[0]
box = bboxes[idx, :]
fboxes.append(box)
ttamps.append(int(box[0, 9]))
frameTstamp = np.concatenate((frameID[:,None], np.array(ttamps)[:,None]), axis=1)
return fboxes, frameTstamp
def extract_data_1(datapath):
'''
要求每一帧(包括最后一帧)输出数据后有一空行作为分割行,该分割行为标志行
'''
trackerboxes = np.empty((0, 10), dtype=np.float64)
trackerfeats = np.empty((0, 256), dtype=np.float64)
boxes, feats, tboxes, tfeats = [], [], [], []
timestamp = -1
newframe = False
with open(datapath, 'r', encoding='utf-8') as lines:
for line in lines:
if line.find("CameraId")>=0:
newframe = True
timestamp, frameId = [int(ln.split(":")[1]) for ln in line.split(",")[1:]]
# boxes, feats, tboxes, tfeats = [], [], [], []
if line.find("box:") >= 0 and line.find("output_box:") < 0:
line = line.strip()
box = line[line.find("box:") + 4:].strip()
# if len(box)==6:
boxes.append(str_to_float_arr(box))
if line.find("feat:") >= 0:
line = line.strip()
feat = line[line.find("feat:") + 5:].strip()
# if len(feat)==256:
feats.append(str_to_float_arr(feat))
if line.find("output_box:") >= 0:
line = line.strip()
# 确保 boxes 和 feats 一一对应,并可以保证 tboxes 和 tfeats 一一对应
if len(boxes)==0 or len(boxes)!=len(feats):
continue
box = str_to_float_arr(line[line.find("output_box:") + 11:].strip())
box.append(timestamp)
index = find_samebox_in_array(boxes, box)
if index >= 0:
tboxes.append(box) # 去掉'output_box:'并去除可能的空白字符
# feat_f = str_to_float_arr(input_feats[index])
feat_f = feats[index]
norm_f = np.linalg.norm(feat_f)
feat_f = feat_f / norm_f
tfeats.append(feat_f)
'''标志行(空行)判断'''
condt = line.find("timestamp")<0 and line.find("box:")<0 and line.find("feat:")<0
if condt and newframe:
if len(tboxes) and len(tfeats):
trackerboxes = np.concatenate((trackerboxes, np.array(tboxes)))
trackerfeats = np.concatenate((trackerfeats, np.array(tfeats)))
timestamp = -1
boxes, feats, tboxes, tfeats = [], [], [], []
newframe = False
return trackerboxes, trackerfeats
def devide_motion_state(tboxes, width):
'''frameTstamp: 用于标记当前相机视野内用购物车运动状态变化
Hand状态
0: 不存在
1: 手部存在
2: 手部存在且处于某种状态(静止)
'''
periods = []
if len(tboxes) < width:
return periods
fboxes, frameTstamp = array2frame(tboxes)
fnum = len(frameTstamp)
if fnum < width: return periods
state = np.zeros((fnum, 2), dtype=np.int64)
frameState = np.concatenate((frameTstamp, state), axis = 1).astype(np.int64)
handState = np.concatenate((frameTstamp, state), axis = 1).astype(np.int64)
mtrackFid = {}
handFid = {}
'''frameState 标记由图像判断的购物车状态0: 静止1: 运动'''
for idx in range(width, fnum+1):
idx0 = idx-width
lboxes = np.concatenate(fboxes[idx0:idx], axis = 0)
md = MoveDetect(lboxes)
md.classify()
## track.during 二元素组, 表征在该时间片段内,轨迹 track 的起止时间,数值用 boxes[:, 7]
for track in md.track_motion:
f1, f2 = track.during
# if track.cls == 0: continue
idx1 = set(np.where(frameState[:,0] >= f1)[0])
idx2 = set(np.where(frameState[:,0] <= f2)[0])
idx3 = list(idx1.intersection(idx2))
if track.tid not in mtrackFid:
mtrackFid[track.tid] = set(idx3)
else:
mtrackFid[track.tid] = mtrackFid[track.tid].union(set(idx3))
frameState[idx-1, 3] = 1
frameState[idx3, 2] = 1
for track in md.hand_tracks:
f11, f22 = track.during
idx11 = set(np.where(handState[:,0] >= f11)[0])
idx22 = set(np.where(handState[:,0] <= f22)[0])
idx33 = list(idx11.intersection(idx22))
'''手部存在标记'''
handState[idx33, 2] = 1
'''未来改进方向is_static 可以用手部状态判断的函数代替'''
if track.is_static(70) and len(idx33)>1:
idx11 = set(np.where(handState[:,0] >= f11)[0])
idx22 = set(np.where(handState[:,0] <= f22)[0])
idx33 = list(idx11.intersection(idx22))
'''手部静止标记'''
handState[idx33, 2] = 2
'''状态变化输出'''
for tid, fid in mtrackFid.items():
fstate = np.zeros((fnum, 1), dtype=np.int64)
fstate[list(fid), 0] = tid
frameState = np.concatenate((frameState, fstate), axis = 1).astype(np.int64)
return frameState, handState
def state_measure(periods, weights, hands, spath=None):
'''两种状态static、motion,
(t0, t1)
t0: static ----> motion
t1: motion ----> static
'''
PrevState = 'static'
CuurState = 'static'
camtype_0, frstate_0 = periods[0]
camtype_1, frstate_1 = periods[1]
'''计算总时间区间: tmin, tmax, during'''
tmin_w, tmax_w = np.min(weights[:, 0]), np.max(weights[:, 0])
tmin_0, tmax_0 = np.min(frstate_0[:, 1]), np.max(frstate_0[:, 1])
tmin_1, tmax_1 = np.min(frstate_1[:, 1]), np.max(frstate_1[:, 1])
tmin = min([tmin_w, tmin_0, tmin_1])
tmax = max([tmax_w, tmax_0, tmax_1])
# for ctype, tboxes, _ in tracker_boxes:
# t_min, t_max = np.min(tboxes[:, 9]), np.max(tboxes[:, 9])
# if t_min<tmin:
# tmin = t_min
# if t_max>tmax:
# tmax = t_max
# during = tmax - tmin
fig, (ax1, ax2, ax3) = plt.subplots(3, 1)
ax1.plot(weights[:, 0] - tmin, weights[:, 1], 'bo-', linewidth=1, markersize=4)
# ax1.set_xlim([0, during])
ax1.set_title('Weight (g)')
ax2.plot(frstate_0[:, 1] - tmin, frstate_0[:, 2], 'rx-', linewidth=1, markersize=8)
ax2.plot(frstate_0[:, 1] - tmin, frstate_0[:, 3], 'bo-', linewidth=1, markersize=4)
# ax2.set_xlim([0, during])
ax2.set_title(f'Camera: {int(camtype_0)}')
ax3.plot(frstate_1[:, 1] - tmin, frstate_1[:, 2], 'rx-', linewidth=1, markersize=8)
ax3.plot(frstate_1[:, 1] - tmin, frstate_1[:, 3], 'bo-', linewidth=1, markersize=4)
ax3.set_title(f'Camera: {int(camtype_1)}')
if spath:
plt.savefig(spath)
plt.show()
def read_yolo_weight_data(eventdir):
filepaths = []
for filename in os.listdir(eventdir):
file, ext = os.path.splitext(filename)
if ext =='.data':
filepath = os.path.join(eventdir, filename)
filepaths.append(filepath)
if len(filepaths) != 5:
return
tracker_boxes = []
WeightDict, SensorDict, ProcessTimeDict = {}, {}, {}
for filepath in filepaths:
filename = os.path.basename(filepath)
if filename.find('_track.data')>0:
CamerType = filename.split('_')[0]
trackerboxes, trackerfeats = extract_data_1(filepath)
tracker_boxes.append((CamerType, trackerboxes, trackerfeats))
if filename.find('process.data')==0:
WeightDict, SensorDict, ProcessTimeDict = read_weight_timeConsuming(filepath)
'''====================重力信号处理===================='''
weights = [(float(t), w) for t, w in WeightDict.items()]
weights = np.array(weights)
return tracker_boxes, weights
def main():
eventdir = r"\\192.168.1.28\share\测试_202406\0819\images\20240817-192549-6940120c-634c-481b-97a6-65042729f86b_null"
tracker_boxes, weights = read_yolo_weight_data(eventdir)
'''====================图像运动分析===================='''
win_width = 12
periods, hands = [], []
for ctype, tboxes, _ in tracker_boxes:
period, handState = devide_motion_state(tboxes, win_width)
periods.append((ctype, period))
hands.append((ctype, handState))
print('done!')
'''===============重力、图像信息融合==================='''
state_measure(periods, weights, hands)
if __name__ == "__main__":
main()