add yolo v10 and modify pipeline
This commit is contained in:
BIN
__pycache__/pipeline_01.cpython-39.pyc
Normal file
BIN
__pycache__/pipeline_01.cpython-39.pyc
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -48,7 +48,7 @@ class FeatsInterface:
|
||||
modpath = os.path.join(curpath, conf.test_model)
|
||||
self.model.load_state_dict(torch.load(modpath, map_location=conf.device))
|
||||
self.model.eval()
|
||||
print('load model {} '.format(conf.testbackbone))
|
||||
# print('load model {} '.format(conf.testbackbone))
|
||||
|
||||
def inference(self, images, detections=None):
|
||||
'''
|
||||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
31
execute_pipeline.py
Normal file
31
execute_pipeline.py
Normal file
@ -0,0 +1,31 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Fri Mar 28 11:35:28 2025
|
||||
|
||||
@author: ym
|
||||
"""
|
||||
|
||||
from pipeline_01 import execute_pipeline
|
||||
|
||||
|
||||
execute_pipeline(evtdir = r"D:\datasets\ym\后台数据\unzip",
|
||||
DataType = "raw", # raw, pkl
|
||||
kk=1,
|
||||
source_type = "video", # video, image,
|
||||
save_path = r"D:\work\result_pipeline_V5",
|
||||
yolo_ver = "V5", # V10, V5
|
||||
weight_yolo_v5 = r'./ckpts/best_cls10_0906.pt' ,
|
||||
weight_yolo_v10 = r'./ckpts/best_v10s_width0375_1205.pt',
|
||||
saveimages = False
|
||||
)
|
||||
|
||||
execute_pipeline(evtdir = r"D:\datasets\ym\后台数据\unzip",
|
||||
DataType = "raw", # raw, pkl
|
||||
kk=1,
|
||||
source_type = "video", # video, image,
|
||||
save_path = r"D:\work\result_pipeline_V10",
|
||||
yolo_ver = "V10", # V10, V5
|
||||
weight_yolo_v5 = r'./ckpts/best_cls10_0906.pt' ,
|
||||
weight_yolo_v10 = r'./ckpts/best_v10s_width0375_1205.pt',
|
||||
saveimages = False
|
||||
)
|
127
imgs_to_video.py
Normal file
127
imgs_to_video.py
Normal file
@ -0,0 +1,127 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Tue Jan 30 19:15:05 2024
|
||||
|
||||
@author: ym
|
||||
"""
|
||||
import cv2
|
||||
import os
|
||||
import glob
|
||||
IMG_FORMATS = "bmp", "dng", "jpeg", "jpg", "mpo", "png", "tif", "tiff", "webp", "pfm" # include image suffixes
|
||||
VID_FORMATS = "asf", "avi", "gif", "m4v", "mkv", "mov", "mp4", "mpeg", "mpg", "ts", "wmv" # include video suffixes
|
||||
|
||||
|
||||
def for_test():
|
||||
save_path = video_path + img_path
|
||||
|
||||
fps, w, h = 10, 1024, 1280
|
||||
cap = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
||||
|
||||
pathx = path + img_path
|
||||
imgfiles = [f for f in os.listdir(pathx) if not f.find("_cut") != -1]
|
||||
|
||||
imgfiles.sort(key = lambda x: int(x[:-5]))
|
||||
imgpaths = []
|
||||
for imgfile in imgfiles:
|
||||
imgpaths.append(os.path.join(pathx, imgfile))
|
||||
|
||||
center = (1280/2, 1024/2)
|
||||
rotate_matrix = cv2.getRotationMatrix2D(center=center, angle=-90, scale=1)
|
||||
k = 0
|
||||
for ipath in imgpaths:
|
||||
img = cv2.imread(ipath)
|
||||
rotated_image = cv2.warpAffine(src=img, M=rotate_matrix, dsize=(w, h))
|
||||
cap.write(rotated_image)
|
||||
print("Have imgs")
|
||||
|
||||
def test_1():
|
||||
|
||||
# name = os.path.split(img_path)[-1]
|
||||
# save_path = video_path + name + '.mp4'
|
||||
|
||||
save_path = video_path + img_path
|
||||
|
||||
|
||||
|
||||
fps, w, h = 10, 1024, 1280
|
||||
cap = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
||||
|
||||
pathx = path + img_path
|
||||
imgfiles = [f for f in os.listdir(pathx) if not f.find("_cut") != -1]
|
||||
|
||||
imgfiles.sort(key = lambda x: int(x[:-5]))
|
||||
imgpaths = []
|
||||
for imgfile in imgfiles:
|
||||
imgpaths.append(os.path.join(pathx, imgfile))
|
||||
|
||||
|
||||
|
||||
|
||||
# ipaths = [os.path.join(pathx, f) for f in os.listdir(pathx) if not f.find("_cut") != -1]
|
||||
# ipaths = []
|
||||
# for f in os.listdir(pathx):
|
||||
# if not f.find('_cut'):
|
||||
# ipaths.append(os.path.join(pathx, f))
|
||||
# ipaths.sort(key = lambda x: int(x.split('_')[-2]))
|
||||
|
||||
|
||||
k = 0
|
||||
for ipath in imgpaths:
|
||||
img = cv2.imread(ipath)
|
||||
cap.write(img)
|
||||
|
||||
|
||||
k += 1
|
||||
|
||||
cap.release()
|
||||
|
||||
print(img_path + f" have imgs: {k}")
|
||||
|
||||
def img2video(imgpath):
|
||||
if not os.path.isdir(imgpath):
|
||||
return
|
||||
|
||||
files = []
|
||||
files.extend(sorted(glob.glob(os.path.join(imgpath, "*.*"))))
|
||||
images = [x for x in files if x.split(".")[-1].lower() in IMG_FORMATS]
|
||||
|
||||
h, w = cv2.imread(images[0]).shape[:2]
|
||||
fps = 25
|
||||
|
||||
vidpath = imgpath + '.mp4'
|
||||
cap = cv2.VideoWriter(vidpath, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
||||
for p in images:
|
||||
img = cv2.imread(p)
|
||||
cap.write(img)
|
||||
cap.release()
|
||||
|
||||
|
||||
def main():
|
||||
imgpath = r"D:\work\result\202503251112_v10s_result"
|
||||
|
||||
img2video(imgpath)
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Binary file not shown.
@ -76,7 +76,11 @@ def attempt_load(weights, device=None, inplace=True, fuse=True):
|
||||
|
||||
model = Ensemble()
|
||||
for w in weights if isinstance(weights, list) else [weights]:
|
||||
ckpt = torch.load(attempt_download(w), map_location=device, weights_only=False) # load
|
||||
if torch.__version__ >= '2.6':
|
||||
ckpt = torch.load(attempt_download(w), map_location=device, weights_only=False) # load
|
||||
else:
|
||||
ckpt = torch.load(attempt_download(w), map_location=device)
|
||||
|
||||
ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
|
||||
|
||||
# Model compatibility updates
|
||||
|
67
pipeline.py
67
pipeline.py
@ -11,7 +11,7 @@ import pickle
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
from scipy.spatial.distance import cdist
|
||||
from track_reid import yolo_resnet_tracker
|
||||
from track_reid import yolo_resnet_tracker, yolov10_resnet_tracker
|
||||
|
||||
from tracking.dotrack.dotracks_back import doBackTracks
|
||||
from tracking.dotrack.dotracks_front import doFrontTracks
|
||||
@ -65,22 +65,20 @@ def pipeline(
|
||||
eventpath,
|
||||
savepath,
|
||||
SourceType,
|
||||
weights
|
||||
weights,
|
||||
YoloVersion="V5"
|
||||
):
|
||||
'''
|
||||
eventpath: 单个事件的存储路径
|
||||
|
||||
'''
|
||||
optdict = {}
|
||||
optdict["weights"] = weights
|
||||
|
||||
if SourceType == "video":
|
||||
vpaths = get_video_pairs(eventpath)
|
||||
elif SourceType == "image":
|
||||
vpaths = get_image_pairs(eventpath)
|
||||
|
||||
optdict = {}
|
||||
optdict["weights"] = weights
|
||||
|
||||
|
||||
event_tracks = []
|
||||
|
||||
## 构造购物事件字典
|
||||
@ -101,9 +99,9 @@ def pipeline(
|
||||
savepath_spdict.mkdir(parents=True, exist_ok=True)
|
||||
pf_path = Path(savepath_spdict) / Path(str(evtname)+".pickle")
|
||||
|
||||
if pf_path.exists():
|
||||
print(f"Pickle file have saved: {evtname}.pickle")
|
||||
return
|
||||
# if pf_path.exists():
|
||||
# print(f"Pickle file have saved: {evtname}.pickle")
|
||||
# return
|
||||
|
||||
'''====================== 构造 ShoppingDict 模块 ======================='''
|
||||
ShoppingDict = {"eventPath": eventpath,
|
||||
@ -160,11 +158,15 @@ def pipeline(
|
||||
'''================= 3. Yolo + Resnet + Tracker ================='''
|
||||
optdict["source"] = vpath
|
||||
optdict["save_dir"] = savepath_pipeline_imgs
|
||||
optdict["is_save_img"] = False
|
||||
optdict["is_save_img"] = True
|
||||
optdict["is_save_video"] = True
|
||||
|
||||
|
||||
yrtOut = yolo_resnet_tracker(**optdict)
|
||||
if YoloVersion == "V5":
|
||||
yrtOut = yolo_resnet_tracker(**optdict)
|
||||
elif YoloVersion == "V10":
|
||||
yrtOut = yolov10_resnet_tracker(**optdict)
|
||||
|
||||
|
||||
yrtOut_save = []
|
||||
for frdict in yrtOut:
|
||||
@ -285,21 +287,32 @@ def pipeline(
|
||||
trajpath = os.path.join(savepath_pipeline, "trajectory.png")
|
||||
cv2.imwrite(trajpath, img_cat)
|
||||
|
||||
def main():
|
||||
def execute_pipeline(evtdir = r"D:\datasets\ym\后台数据\unzip",
|
||||
source_type = "video", # video, image,
|
||||
save_path = r"D:\work\result_pipeline",
|
||||
yolo_ver = "V10", # V10, V5
|
||||
|
||||
weight_yolo_v5 = r'./ckpts/best_cls10_0906.pt' ,
|
||||
weight_yolo_v10 = r'./ckpts/best_v10s_width0375_1205.pt',
|
||||
k=0
|
||||
):
|
||||
'''
|
||||
函数:pipeline(),遍历事件文件夹,选择类型 image 或 video,
|
||||
运行函数 pipeline(),遍历事件文件夹,每个文件夹是一个事件
|
||||
'''
|
||||
parmDict = {}
|
||||
evtdir = r"../dataset/backend_20250310"
|
||||
parmDict["SourceType"] = "video" # video, image
|
||||
parmDict["savepath"] = r"../dataset/run"
|
||||
parmDict["weights"] = r'./ckpts/best_cls10_0906.pt'
|
||||
parmDict["SourceType"] = source_type
|
||||
parmDict["savepath"] = save_path
|
||||
parmDict["YoloVersion"] = yolo_ver
|
||||
if parmDict["YoloVersion"] == "V5":
|
||||
parmDict["weights"] = weight_yolo_v5
|
||||
elif parmDict["YoloVersion"] == "V10":
|
||||
parmDict["weights"] = weight_yolo_v10
|
||||
|
||||
evtdir = Path(evtdir)
|
||||
k, errEvents = 0, []
|
||||
errEvents = []
|
||||
for item in evtdir.iterdir():
|
||||
if item.is_dir():
|
||||
# item = evtdir/Path("20250303-103058-074_6914973604223_6914973604223")
|
||||
item = evtdir/Path("20250310-175352-741")
|
||||
parmDict["eventpath"] = item
|
||||
pipeline(**parmDict)
|
||||
# try:
|
||||
@ -307,19 +320,21 @@ def main():
|
||||
# except Exception as e:
|
||||
# errEvents.append(str(item))
|
||||
k+=1
|
||||
if k==5:
|
||||
if k==1:
|
||||
break
|
||||
|
||||
errfile = os.path.join(parmDict["savepath"], f'error_events.txt')
|
||||
errfile = os.path.join(parmDict["savepath"], 'error_events.txt')
|
||||
with open(errfile, 'w', encoding='utf-8') as f:
|
||||
for line in errEvents:
|
||||
f.write(line + '\n')
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
execute_pipeline()
|
||||
|
||||
# spath_v10 = r"D:\work\result_pipeline_v10"
|
||||
# spath_v5 = r"D:\work\result_pipeline_v5"
|
||||
# execute_pipeline(save_path=spath_v10, yolo_ver="V10")
|
||||
# execute_pipeline(save_path=spath_v5, yolo_ver="V5")
|
||||
|
||||
|
||||
|
||||
|
395
pipeline_01.py
Normal file
395
pipeline_01.py
Normal file
@ -0,0 +1,395 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sun Sep 29 08:59:21 2024
|
||||
|
||||
@author: ym
|
||||
"""
|
||||
import os
|
||||
# import sys
|
||||
import cv2
|
||||
import pickle
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
from scipy.spatial.distance import cdist
|
||||
from track_reid import yolo_resnet_tracker, yolov10_resnet_tracker
|
||||
|
||||
from tracking.dotrack.dotracks_back import doBackTracks
|
||||
from tracking.dotrack.dotracks_front import doFrontTracks
|
||||
from tracking.utils.drawtracks import plot_frameID_y2, draw_all_trajectories
|
||||
from utils.getsource import get_image_pairs, get_video_pairs
|
||||
from tracking.utils.read_data import read_similar
|
||||
|
||||
class CameraEvent_:
|
||||
def __init__(self):
|
||||
self.cameraType = '', # "front", "back"
|
||||
self.videoPath = '',
|
||||
self.imagePaths = [],
|
||||
self.yoloResnetTracker =[],
|
||||
self.tracking = None,
|
||||
|
||||
class ShoppingEvent_:
|
||||
def __init__(self):
|
||||
self.eventPath = ''
|
||||
self.eventName = ''
|
||||
self.barcode = ''
|
||||
self.eventType = '', # "input", "output", "other"
|
||||
self.frontCamera = None
|
||||
self.backCamera = None
|
||||
self.one2n = []
|
||||
|
||||
|
||||
|
||||
def save_subimgs(imgdict, boxes, spath, ctype, featdict = None):
|
||||
'''
|
||||
当前 box 特征和该轨迹前一个 box 特征的相似度,可用于和跟踪序列中的相似度进行比较
|
||||
'''
|
||||
boxes = boxes[np.argsort(boxes[:, 7])]
|
||||
for i in range(len(boxes)):
|
||||
simi = None
|
||||
tid, fid, bid = int(boxes[i, 4]), int(boxes[i, 7]), int(boxes[i, 8])
|
||||
|
||||
if i>0:
|
||||
_, fid0, bid0 = int(boxes[i-1, 4]), int(boxes[i-1, 7]), int(boxes[i-1, 8])
|
||||
if f"{fid0}_{bid0}" in featdict.keys() and f"{fid}_{bid}" in featdict.keys():
|
||||
feat0 = featdict[f"{fid0}_{bid0}"]
|
||||
feat1 = featdict[f"{fid}_{bid}"]
|
||||
simi = 1 - np.maximum(0.0, cdist(feat0[None, :], feat1[None, :], "cosine"))[0][0]
|
||||
|
||||
img = imgdict[f"{fid}_{bid}"]
|
||||
imgpath = spath / f"{ctype}_tid{tid}-{fid}-{bid}.png"
|
||||
if simi is not None:
|
||||
imgpath = spath / f"{ctype}_tid{tid}-{fid}-{bid}_sim{simi:.2f}.png"
|
||||
|
||||
cv2.imwrite(imgpath, img)
|
||||
|
||||
|
||||
def save_subimgs_1(imgdict, boxes, spath, ctype, simidict = None):
|
||||
'''
|
||||
当前 box 特征和该轨迹 smooth_feat 特征的相似度, yolo_resnet_tracker 函数中,
|
||||
采用该方式记录特征相似度
|
||||
'''
|
||||
for i in range(len(boxes)):
|
||||
tid, fid, bid = int(boxes[i, 4]), int(boxes[i, 7]), int(boxes[i, 8])
|
||||
|
||||
key = f"{fid}_{bid}"
|
||||
img = imgdict[key]
|
||||
imgpath = spath / f"{ctype}_tid{tid}-{fid}-{bid}.png"
|
||||
if simidict is not None and key in simidict.keys():
|
||||
imgpath = spath / f"{ctype}_tid{tid}-{fid}-{bid}_sim{simidict[key]:.2f}.png"
|
||||
|
||||
cv2.imwrite(imgpath, img)
|
||||
|
||||
def show_result(event_tracks, yrtDict, savepath_pipe):
|
||||
'''保存 Tracking 输出的运动轨迹子图,并记录相似度'''
|
||||
|
||||
savepath_pipe_subimgs = savepath_pipe / Path("subimgs")
|
||||
if not savepath_pipe_subimgs.exists():
|
||||
savepath_pipe_subimgs.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
|
||||
|
||||
|
||||
for CamerType, vts in event_tracks:
|
||||
if len(vts.tracks)==0: continue
|
||||
if CamerType == 'front':
|
||||
# yolos = ShoppingDict["frontCamera"]["yoloResnetTracker"]
|
||||
|
||||
yolos = yrtDict["frontyrt"]
|
||||
ctype = 1
|
||||
if CamerType == 'back':
|
||||
# yolos = ShoppingDict["backCamera"]["yoloResnetTracker"]
|
||||
|
||||
yolos = yrtDict["backyrt"]
|
||||
ctype = 0
|
||||
|
||||
imgdict, featdict, simidict = {}, {}, {}
|
||||
for y in yolos:
|
||||
imgdict.update(y["imgs"])
|
||||
featdict.update(y["feats"])
|
||||
simidict.update(y["featsimi"])
|
||||
|
||||
for track in vts.Residual:
|
||||
if isinstance(track, np.ndarray):
|
||||
save_subimgs(imgdict, track, savepath_pipe_subimgs, ctype, featdict)
|
||||
else:
|
||||
save_subimgs(imgdict, track.slt_boxes, savepath_pipe_subimgs, ctype, featdict)
|
||||
|
||||
'''(3) 轨迹显示与保存'''
|
||||
illus = [None, None]
|
||||
for CamerType, vts in event_tracks:
|
||||
if len(vts.tracks)==0: continue
|
||||
|
||||
if CamerType == 'front':
|
||||
edgeline = cv2.imread("./tracking/shopcart/cart_tempt/board_ftmp_line.png")
|
||||
|
||||
h, w = edgeline.shape[:2]
|
||||
# nh, nw = h//2, w//2
|
||||
# edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA)
|
||||
|
||||
img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipe, CamerType, draw5p=True)
|
||||
illus[0] = img_tracking
|
||||
|
||||
plt = plot_frameID_y2(vts)
|
||||
plt.savefig(os.path.join(savepath_pipe, "front_y2.png"))
|
||||
|
||||
if CamerType == 'back':
|
||||
edgeline = cv2.imread("./tracking/shopcart/cart_tempt/edgeline.png")
|
||||
|
||||
h, w = edgeline.shape[:2]
|
||||
# nh, nw = h//2, w//2
|
||||
# edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA)
|
||||
|
||||
img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipe, CamerType, draw5p=True)
|
||||
illus[1] = img_tracking
|
||||
|
||||
illus = [im for im in illus if im is not None]
|
||||
if len(illus):
|
||||
img_cat = np.concatenate(illus, axis = 1)
|
||||
if len(illus)==2:
|
||||
H, W = img_cat.shape[:2]
|
||||
cv2.line(img_cat, (int(W/2), 0), (int(W/2), int(H)), (128, 128, 255), 3)
|
||||
|
||||
trajpath = os.path.join(savepath_pipe, "trajectory.png")
|
||||
cv2.imwrite(trajpath, img_cat)
|
||||
|
||||
|
||||
|
||||
|
||||
def pipeline(eventpath,
|
||||
SourceType,
|
||||
weights,
|
||||
DataType = "raw", #raw, pkl: images or videos, pkl, pickle file
|
||||
YoloVersion="V5",
|
||||
savepath = None,
|
||||
saveimages = True
|
||||
):
|
||||
|
||||
## 构造购物事件字典
|
||||
evtname = Path(eventpath).stem
|
||||
barcode = evtname.split('_')[-1] if len(evtname.split('_'))>=2 \
|
||||
and len(evtname.split('_')[-1])>=8 \
|
||||
and evtname.split('_')[-1].isdigit() else ''
|
||||
|
||||
'''事件结果存储文件夹: savepath_pipe, savepath_pkl'''
|
||||
if not savepath:
|
||||
savepath = Path(__file__).resolve().parents[0] / "events_result"
|
||||
savepath_pipe = Path(savepath) / Path("yolos_tracking") / evtname
|
||||
|
||||
|
||||
savepath_pkl = Path(savepath) / "shopping_pkl"
|
||||
if not savepath_pkl.exists():
|
||||
savepath_pkl.mkdir(parents=True, exist_ok=True)
|
||||
pklpath = Path(savepath_pkl) / Path(str(evtname)+".pickle")
|
||||
|
||||
yrtDict = {}
|
||||
|
||||
yrt_out = []
|
||||
if DataType == "raw":
|
||||
### 不重复执行已经过yolo-resnet-tracker
|
||||
# if pklpath.exists():
|
||||
# print(f"Pickle file have saved: {evtname}.pickle")
|
||||
# return
|
||||
|
||||
if SourceType == "video":
|
||||
vpaths = get_video_pairs(eventpath)
|
||||
elif SourceType == "image":
|
||||
vpaths = get_image_pairs(eventpath)
|
||||
|
||||
|
||||
|
||||
for vpath in vpaths:
|
||||
'''================= 2. 事件结果存储文件夹 ================='''
|
||||
|
||||
|
||||
if isinstance(vpath, list):
|
||||
savepath_pipe_imgs = savepath_pipe / Path("images")
|
||||
else:
|
||||
savepath_pipe_imgs = savepath_pipe / Path(str(Path(vpath).stem))
|
||||
|
||||
if not savepath_pipe_imgs.exists():
|
||||
savepath_pipe_imgs.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
optdict = {}
|
||||
optdict["weights"] = weights
|
||||
optdict["source"] = vpath
|
||||
optdict["save_dir"] = savepath_pipe_imgs
|
||||
optdict["is_save_img"] = saveimages
|
||||
optdict["is_save_video"] = True
|
||||
|
||||
|
||||
if YoloVersion == "V5":
|
||||
yrtOut = yolo_resnet_tracker(**optdict)
|
||||
elif YoloVersion == "V10":
|
||||
yrtOut = yolov10_resnet_tracker(**optdict)
|
||||
|
||||
yrt_out.append((vpath, yrtOut))
|
||||
|
||||
elif DataType == "pkl":
|
||||
pass
|
||||
|
||||
else:
|
||||
return
|
||||
|
||||
|
||||
|
||||
'''====================== 构造 ShoppingDict 模块 ======================='''
|
||||
ShoppingDict = {"eventPath": eventpath,
|
||||
"eventName": evtname,
|
||||
"barcode": barcode,
|
||||
"eventType": '', # "input", "output", "other"
|
||||
"frontCamera": {},
|
||||
"backCamera": {},
|
||||
"one2n": [] #
|
||||
}
|
||||
procpath = Path(eventpath).joinpath('process.data')
|
||||
if procpath.is_file():
|
||||
SimiDict = read_similar(procpath)
|
||||
ShoppingDict["one2n"] = SimiDict['one2n']
|
||||
|
||||
event_tracks = []
|
||||
for vpath, yrtOut in yrt_out:
|
||||
'''================= 1. 构造相机事件字典 ================='''
|
||||
CameraEvent = {"cameraType": '', # "front", "back"
|
||||
"videoPath": '',
|
||||
"imagePaths": [],
|
||||
"yoloResnetTracker": [],
|
||||
"tracking": [],
|
||||
}
|
||||
|
||||
if isinstance(vpath, list):
|
||||
CameraEvent["imagePaths"] = vpath
|
||||
bname = os.path.basename(vpath[0])
|
||||
if not isinstance(vpath, list):
|
||||
CameraEvent["videoPath"] = vpath
|
||||
bname = os.path.basename(vpath).split('.')[0]
|
||||
if bname.split('_')[0] == "0" or bname.find('back')>=0:
|
||||
CameraEvent["cameraType"] = "back"
|
||||
if bname.split('_')[0] == "1" or bname.find('front')>=0:
|
||||
CameraEvent["cameraType"] = "front"
|
||||
|
||||
|
||||
'''2种保存方式: (1) save images, (2) no save images'''
|
||||
### (1) save images
|
||||
yrtOut_save = []
|
||||
for frdict in yrtOut:
|
||||
fr_dict = {}
|
||||
for k, v in frdict.items():
|
||||
if k != "imgs":
|
||||
fr_dict[k]=v
|
||||
yrtOut_save.append(fr_dict)
|
||||
CameraEvent["yoloResnetTracker"] = yrtOut_save
|
||||
|
||||
### (2) no save images
|
||||
# CameraEvent["yoloResnetTracker"] = yrtOut
|
||||
|
||||
'''================= 4. tracking ================='''
|
||||
'''(1) 生成用于 tracking 模块的 boxes、feats'''
|
||||
bboxes = np.empty((0, 6), dtype=np.float64)
|
||||
trackerboxes = np.empty((0, 9), dtype=np.float64)
|
||||
trackefeats = {}
|
||||
for frameDict in yrtOut:
|
||||
tboxes = frameDict["tboxes"]
|
||||
ffeats = frameDict["feats"]
|
||||
|
||||
boxes = frameDict["bboxes"]
|
||||
bboxes = np.concatenate((bboxes, np.array(boxes)), axis=0)
|
||||
trackerboxes = np.concatenate((trackerboxes, np.array(tboxes)), axis=0)
|
||||
for i in range(len(tboxes)):
|
||||
fid, bid = int(tboxes[i, 7]), int(tboxes[i, 8])
|
||||
trackefeats.update({f"{fid}_{bid}": ffeats[f"{fid}_{bid}"]})
|
||||
|
||||
|
||||
'''(2) tracking, 后摄'''
|
||||
if CameraEvent["cameraType"] == "back":
|
||||
vts = doBackTracks(trackerboxes, trackefeats)
|
||||
vts.classify()
|
||||
event_tracks.append(("back", vts))
|
||||
|
||||
CameraEvent["tracking"] = vts
|
||||
ShoppingDict["backCamera"] = CameraEvent
|
||||
|
||||
yrtDict["backyrt"] = yrtOut
|
||||
|
||||
'''(2) tracking, 前摄'''
|
||||
if CameraEvent["cameraType"] == "front":
|
||||
vts = doFrontTracks(trackerboxes, trackefeats)
|
||||
vts.classify()
|
||||
event_tracks.append(("front", vts))
|
||||
|
||||
CameraEvent["tracking"] = vts
|
||||
ShoppingDict["frontCamera"] = CameraEvent
|
||||
|
||||
yrtDict["frontyrt"] = yrtOut
|
||||
|
||||
'''========================== 保存模块 ================================='''
|
||||
# 保存 ShoppingDict
|
||||
with open(str(pklpath), 'wb') as f:
|
||||
pickle.dump(ShoppingDict, f)
|
||||
|
||||
# 绘制并保存轨迹图
|
||||
show_result(event_tracks, yrtDict, savepath_pipe)
|
||||
|
||||
|
||||
|
||||
def execute_pipeline(evtdir = r"D:\datasets\ym\后台数据\unzip",
|
||||
DataType = "raw", # raw, pkl
|
||||
save_path = r"D:\work\result_pipeline",
|
||||
kk=1,
|
||||
source_type = "video", # video, image,
|
||||
yolo_ver = "V10", # V10, V5
|
||||
weight_yolo_v5 = r'./ckpts/best_cls10_0906.pt' ,
|
||||
weight_yolo_v10 = r'./ckpts/best_v10s_width0375_1205.pt',
|
||||
saveimages = True
|
||||
):
|
||||
'''
|
||||
运行函数 pipeline(),遍历事件文件夹,每个文件夹是一个事件
|
||||
'''
|
||||
parmDict = {}
|
||||
parmDict["DataType"] = DataType
|
||||
parmDict["savepath"] = save_path
|
||||
parmDict["SourceType"] = source_type
|
||||
|
||||
parmDict["YoloVersion"] = yolo_ver
|
||||
if parmDict["YoloVersion"] == "V5":
|
||||
parmDict["weights"] = weight_yolo_v5
|
||||
elif parmDict["YoloVersion"] == "V10":
|
||||
parmDict["weights"] = weight_yolo_v10
|
||||
|
||||
parmDict["saveimages"] = saveimages
|
||||
|
||||
|
||||
evtdir = Path(evtdir)
|
||||
errEvents = []
|
||||
k = 0
|
||||
for item in evtdir.iterdir():
|
||||
if item.is_dir():
|
||||
item = evtdir/Path("20250310-175352-741")
|
||||
parmDict["eventpath"] = item
|
||||
|
||||
pipeline(**parmDict)
|
||||
# try:
|
||||
# pipeline(**parmDict)
|
||||
# except Exception as e:
|
||||
# errEvents.append(str(item))
|
||||
|
||||
k+=1
|
||||
if kk is not None and k==kk:
|
||||
break
|
||||
|
||||
errfile = os.path.join(parmDict["savepath"], 'error_events.txt')
|
||||
with open(errfile, 'w', encoding='utf-8') as f:
|
||||
for line in errEvents:
|
||||
f.write(line + '\n')
|
||||
|
||||
if __name__ == "__main__":
|
||||
execute_pipeline()
|
||||
|
||||
# spath_v10 = r"D:\work\result_pipeline_v10"
|
||||
# spath_v5 = r"D:\work\result_pipeline_v5"
|
||||
# execute_pipeline(save_path=spath_v10, yolo_ver="V10")
|
||||
# execute_pipeline(save_path=spath_v5, yolo_ver="V5")
|
||||
|
||||
|
||||
|
||||
|
||||
|
187
track_reid.py
187
track_reid.py
@ -64,7 +64,10 @@ from hands.hand_inference import hand_pose
|
||||
from contrast.feat_extract.config import config as conf
|
||||
from contrast.feat_extract.inference import FeatsInterface
|
||||
|
||||
from ultralytics import YOLOv10
|
||||
|
||||
ReIDEncoder = FeatsInterface(conf)
|
||||
print(f'load model {conf.testbackbone} in {Path(__file__).stem}')
|
||||
|
||||
IMG_FORMATS = '.bmp', '.dng', '.jpeg', '.jpg', '.mpo', '.png', '.tif', '.tiff', '.webp', '.pfm' # include image suffixes
|
||||
VID_FORMATS = '.asf', '.avi', '.gif', '.m4v', '.mkv', '.mov', '.mp4', '.mpeg', '.mpg', '.ts', '.wmv' # include video suffixes
|
||||
@ -131,12 +134,158 @@ def init_trackers(tracker_yaml = None, bs=1):
|
||||
trackers = []
|
||||
for _ in range(bs):
|
||||
tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30)
|
||||
if cfg.with_reid:
|
||||
tracker.encoder = ReIDEncoder
|
||||
|
||||
trackers.append(tracker)
|
||||
|
||||
return trackers
|
||||
|
||||
'''=============== used in pipeline.py for Yolov10 =================='''
|
||||
def yolov10_resnet_tracker(
|
||||
weights = ROOT / 'ckpts/best_v10s_width0375_1205.pt', # model path or triton URL
|
||||
source = '', # file/dir/URL/glob/screen/0(webcam)
|
||||
save_dir = '',
|
||||
is_save_img = True,
|
||||
is_save_video = True,
|
||||
|
||||
'''=============== used in pipeline.py =================='''
|
||||
tracker_yaml = "./tracking/trackers/cfg/botsort.yaml",
|
||||
line_thickness=3, # bounding box thickness (pixels)
|
||||
hide_labels=False, # hide labels
|
||||
):
|
||||
|
||||
## load a custom model
|
||||
model = YOLOv10(weights)
|
||||
|
||||
custom = {"conf": 0.25, "batch": 1, "save": False, "mode": "predict"}
|
||||
kwargs = {"save": True, "imgsz": 640, "conf": 0.1}
|
||||
args = {**model.overrides, **custom, **kwargs}
|
||||
predictor = model.task_map[model.task]["predictor"](overrides=args, _callbacks=model.callbacks)
|
||||
|
||||
vid_path, vid_writer = None, None
|
||||
tracker = init_trackers(tracker_yaml)[0]
|
||||
yoloResnetTracker = []
|
||||
for i, result in enumerate(predictor.stream_inference(source)):
|
||||
datamode = predictor.dataset.mode
|
||||
|
||||
det = result.boxes.data.cpu().numpy()
|
||||
im0 = result.orig_img
|
||||
names = result.names
|
||||
path = result.path
|
||||
im_array = result.plot()
|
||||
|
||||
|
||||
## to do tracker.update()
|
||||
det_tracking = Boxes(det, im0.shape)
|
||||
tracks, outfeats = tracker.update(det_tracking, im0)
|
||||
|
||||
|
||||
|
||||
if datamode == "video":
|
||||
frameId = predictor.dataset.frame
|
||||
elif datamode == "image":
|
||||
frameId = predictor.dataset.count
|
||||
annotator = Annotator(im0.copy(), line_width=line_thickness, example=str(names))
|
||||
|
||||
simdict, simdict1 = {}, {}
|
||||
for fid, bid, mfeat, cfeat, features in outfeats:
|
||||
if mfeat is not None and cfeat is not None:
|
||||
simi = 1 - np.maximum(0.0, cdist(mfeat[None, :], cfeat[None, :], "cosine"))[0][0]
|
||||
simdict.update({f"{int(frameId)}_{int(bid)}":simi})
|
||||
|
||||
if cfeat is not None and len(features)>=2:
|
||||
mfeat = features[-2]
|
||||
simi = 1 - np.maximum(0.0, cdist(mfeat[None, :], cfeat[None, :], "cosine"))[0][0]
|
||||
simdict1.update({f"{int(frameId)}_{int(bid)}":simi})
|
||||
|
||||
|
||||
if len(tracks) > 0:
|
||||
tracks[:, 7] = frameId
|
||||
# trackerBoxes = np.concatenate([trackerBoxes, tracks], axis=0)
|
||||
'''================== 1. 存储 dets/subimgs/features Dict ============='''
|
||||
imgs, features = ReIDEncoder.inference(im0, tracks)
|
||||
imgdict, featdict = {}, {}
|
||||
for ii, bid in enumerate(tracks[:, 8]):
|
||||
featdict.update({f"{int(frameId)}_{int(bid)}": features[ii, :]}) # [f"feat_{int(bid)}"] = features[i, :]
|
||||
imgdict.update({f"{int(frameId)}_{int(bid)}": imgs[ii]})
|
||||
|
||||
frameDict = {"path": path,
|
||||
"fid": int(frameId),
|
||||
"bboxes": det,
|
||||
"tboxes": tracks,
|
||||
"imgs": imgdict,
|
||||
"feats": featdict,
|
||||
"featsimi": simdict, # 当前 box 特征和该轨迹 smooth_feat 特征的相似度
|
||||
"featsimi1": simdict1 # 当前 box 特征和该轨迹前一个 box 特征的相似度
|
||||
}
|
||||
yoloResnetTracker.append(frameDict)
|
||||
|
||||
# imgs, features = inference_image(im0, tracks)
|
||||
# TrackerFeats = np.concatenate([TrackerFeats, features], axis=0)
|
||||
|
||||
'''================== 2. 提取手势位置 ==================='''
|
||||
for *xyxy, id, conf, cls, fid, bid in reversed(tracks):
|
||||
name = ('' if id==-1 else f'id:{int(id)} ') + names[int(cls)]
|
||||
if f"{int(frameId)}_{int(bid)}" in simdict.keys():
|
||||
sim = simdict[f"{int(frameId)}_{int(bid)}"]
|
||||
label = f"{name} {sim:.2f}"
|
||||
else:
|
||||
label = None if hide_labels else name
|
||||
|
||||
|
||||
# label = None if hide_labels else (name if hide_conf else f'{name} {conf:.1f}')
|
||||
|
||||
if id >=0 and cls==0:
|
||||
color = colors(int(cls), True)
|
||||
elif id >=0 and cls!=0:
|
||||
color = colors(int(id), True)
|
||||
else:
|
||||
color = colors(19, True) # 19为调色板的最后一个元素
|
||||
annotator.box_label(xyxy, label, color=color)
|
||||
|
||||
'''====== Save results (image and video) ======'''
|
||||
# save_path = str(save_dir / Path(path).name) # 带有后缀名
|
||||
im0 = annotator.result()
|
||||
if is_save_img:
|
||||
save_path_img = str(save_dir / Path(path).stem)
|
||||
if datamode == 'image':
|
||||
imgpath = save_path_img + ".png"
|
||||
if datamode == 'video' :
|
||||
imgpath = save_path_img + f"_{frameId}.png"
|
||||
cv2.imwrite(Path(imgpath), im0)
|
||||
|
||||
# if dataset.mode == 'video' and is_save_video:
|
||||
|
||||
if is_save_video:
|
||||
if datamode == 'video':
|
||||
video_path = str(save_dir / Path(path).stem) + '.mp4' # 带有后缀名
|
||||
else:
|
||||
videoname = str(Path(path).stem).split('_')[0] + '.mp4'
|
||||
video_path = str(save_dir / videoname)
|
||||
|
||||
if vid_path != video_path: # new video
|
||||
vid_path = video_path
|
||||
vid_cap = predictor.dataset.cap
|
||||
|
||||
if isinstance(vid_writer, cv2.VideoWriter):
|
||||
vid_writer.release() # release previous video writer
|
||||
if vid_cap: # video
|
||||
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
||||
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
else: # stream
|
||||
fps, w, h = 25, im0.shape[1], im0.shape[0]
|
||||
## for image rotating in dataloader.LoadImages.__next__()
|
||||
w, h = im0.shape[1], im0.shape[0]
|
||||
|
||||
video_path = str(Path(video_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
|
||||
vid_writer = cv2.VideoWriter(video_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
||||
vid_writer.write(im0)
|
||||
|
||||
return yoloResnetTracker
|
||||
|
||||
|
||||
'''=============== used in pipeline.py for Yolov5 =================='''
|
||||
@smart_inference_mode()
|
||||
def yolo_resnet_tracker(
|
||||
weights=ROOT / 'yolov5s.pt', # model path or triton URL
|
||||
@ -660,8 +809,6 @@ def run(
|
||||
|
||||
def parse_opt():
|
||||
modelpath = ROOT / 'ckpts/best_cls10_0906.pt' # 'ckpts/best_15000_0908.pt', 'ckpts/yolov5s.pt', 'ckpts/best_20000_cls30.pt, best_yolov5m_250000'
|
||||
|
||||
|
||||
'''datapath为视频文件目录或视频文件'''
|
||||
datapath = r"D:/datasets/ym/videos/标记视频/" # ROOT/'data/videos', ROOT/'data/images' images
|
||||
# datapath = r"D:\datasets\ym\highvalue\videos"
|
||||
@ -714,7 +861,7 @@ def find_video_imgs(root_dir):
|
||||
|
||||
|
||||
|
||||
def main():
|
||||
def main_v5():
|
||||
'''
|
||||
run(): 单张图像或单个视频文件的推理,不支持图像序列,
|
||||
'''
|
||||
@ -733,10 +880,10 @@ def main():
|
||||
# p = r"D:\exhibition\images\153112511_0_seek_105.mp4"
|
||||
# p = r"D:\exhibition\images\image"
|
||||
|
||||
p = r"D:\全实时\202502\tracker\1_1740891284792.mp4"
|
||||
optdict["project"] = r"D:\全实时\202502\tracker"
|
||||
p = r"D:\datasets\ym\后台数据\unzip\20250310-175352-741"
|
||||
optdict["project"] = r"D:\work\result"
|
||||
|
||||
# optdict["project"] = r"D:\exhibition\result"
|
||||
optdict["weights"] = ROOT / 'ckpts/best_cls10_0906.pt'
|
||||
if os.path.isdir(p):
|
||||
files = find_video_imgs(p)
|
||||
k = 0
|
||||
@ -745,17 +892,39 @@ def main():
|
||||
run(**optdict)
|
||||
|
||||
k += 1
|
||||
if k == 1:
|
||||
if k == 2:
|
||||
break
|
||||
elif os.path.isfile(p):
|
||||
optdict["source"] = p
|
||||
run(**optdict)
|
||||
|
||||
|
||||
def main_v10():
|
||||
datapath = r'D:\datasets\ym\后台数据\unzip\20250310-175352-741\0.mp4'
|
||||
savepath = r'D:\work\result'
|
||||
savepath = savepath / Path(str(Path(datapath).stem))
|
||||
if not savepath.exists():
|
||||
savepath.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
weightpath = ROOT / 'ckpts/best_v10s_width0375_1205.pt'
|
||||
|
||||
optdict = {}
|
||||
optdict["weights"] = weightpath
|
||||
optdict["source"] = datapath
|
||||
optdict["save_dir"] = savepath
|
||||
optdict["is_save_img"] = True
|
||||
optdict["is_save_video"] = True
|
||||
|
||||
yrtOut = yolov10_resnet_tracker(**optdict)
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
# main_v5()
|
||||
|
||||
|
||||
main_v10()
|
||||
|
||||
|
||||
|
||||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -116,11 +116,13 @@ class BOTSORT(BYTETracker):
|
||||
self.proximity_thresh = args.proximity_thresh
|
||||
self.appearance_thresh = args.appearance_thresh
|
||||
|
||||
if args.with_reid:
|
||||
# Haven't supported BoT-SORT(reid) yet
|
||||
# self.encoder = ReIDInterface(config)
|
||||
# if args.with_reid:
|
||||
# # Haven't supported BoT-SORT(reid) yet
|
||||
# # self.encoder = ReIDInterface(config)
|
||||
|
||||
self.encoder = FeatsInterface(conf)
|
||||
# self.encoder = FeatsInterface(conf)
|
||||
|
||||
# print('load model {} in BOTSORT'.format(conf.testbackbone))
|
||||
|
||||
# self.gmc = GMC(method=args.gmc_method) # commented by WQG
|
||||
|
||||
|
180
tracking/tracking_pipeline.py
Normal file
180
tracking/tracking_pipeline.py
Normal file
@ -0,0 +1,180 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Thu Mar 27 16:09:07 2025
|
||||
|
||||
@author: ym
|
||||
"""
|
||||
import os
|
||||
import sys
|
||||
import cv2
|
||||
import pickle
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
from scipy.spatial.distance import cdist
|
||||
|
||||
from .dotrack.dotracks_back import doBackTracks
|
||||
from .dotrack.dotracks_front import doFrontTracks
|
||||
from .utils.drawtracks import plot_frameID_y2, draw_all_trajectories
|
||||
from .utils.read_data import read_similar
|
||||
|
||||
|
||||
|
||||
|
||||
class CameraEvent_:
|
||||
def __init__(self):
|
||||
self.cameraType = '', # "front", "back"
|
||||
self.videoPath = '',
|
||||
self.imagePaths = [],
|
||||
self.yoloResnetTracker =[],
|
||||
self.tracking = None,
|
||||
|
||||
class ShoppingEvent_:
|
||||
def __init__(self):
|
||||
self.eventPath = ''
|
||||
self.eventName = ''
|
||||
self.barcode = ''
|
||||
self.eventType = '', # "input", "output", "other"
|
||||
self.frontCamera = None
|
||||
self.backCamera = None
|
||||
self.one2n = []
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def main():
|
||||
'''
|
||||
将一个对象读取,修改其中一个属性
|
||||
|
||||
'''
|
||||
|
||||
|
||||
evt_pkfile = 'path.pickle'
|
||||
with open(evt_pkfile, 'rb') as f:
|
||||
ShoppingDict = pickle.load(f)
|
||||
|
||||
savepath = ""
|
||||
|
||||
back_camera = ShoppingDict["backCamera"]["cameraType"]
|
||||
back_yrt = ShoppingDict["backCamera"]["yoloResnetTracker"]
|
||||
front_camera = ShoppingDict["frontCamera"]["cameraType"]
|
||||
front_yrt = ShoppingDict["frontCamera"]["yoloResnetTracker"]
|
||||
yrts = [(back_camera, back_yrt), (front_camera, front_yrt)]
|
||||
|
||||
|
||||
shopping_event = ShoppingEvent_()
|
||||
shopping_event.eventPath = ShoppingDict["eventPath"]
|
||||
shopping_event.eventName = ShoppingDict["eventName"]
|
||||
shopping_event.barcode = ShoppingDict["barcode"]
|
||||
|
||||
yrtDict = {}
|
||||
event_tracks = []
|
||||
for camera_type, yrtOut in yrts:
|
||||
'''
|
||||
inputs:
|
||||
yrtOut
|
||||
camera_type
|
||||
outputs:
|
||||
CameraEvent
|
||||
'''
|
||||
|
||||
camera_event = CameraEvent_()
|
||||
|
||||
|
||||
|
||||
'''================= 4. tracking ================='''
|
||||
'''(1) 生成用于 tracking 模块的 boxes、feats'''
|
||||
bboxes = np.empty((0, 6), dtype=np.float64)
|
||||
trackerboxes = np.empty((0, 9), dtype=np.float64)
|
||||
trackefeats = {}
|
||||
for frameDict in yrtOut:
|
||||
tboxes = frameDict["tboxes"]
|
||||
ffeats = frameDict["feats"]
|
||||
|
||||
boxes = frameDict["bboxes"]
|
||||
bboxes = np.concatenate((bboxes, np.array(boxes)), axis=0)
|
||||
trackerboxes = np.concatenate((trackerboxes, np.array(tboxes)), axis=0)
|
||||
for i in range(len(tboxes)):
|
||||
fid, bid = int(tboxes[i, 7]), int(tboxes[i, 8])
|
||||
trackefeats.update({f"{fid}_{bid}": ffeats[f"{fid}_{bid}"]})
|
||||
|
||||
|
||||
'''(2) tracking, 后摄'''
|
||||
if CameraEvent["cameraType"] == "back":
|
||||
vts = doBackTracks(trackerboxes, trackefeats)
|
||||
vts.classify()
|
||||
event_tracks.append(("back", vts))
|
||||
|
||||
|
||||
|
||||
camera_event.camera_type = camera_type
|
||||
camera_event.yoloResnetTracker = yrtOut
|
||||
camera_event.tracking = vts
|
||||
camera_event.videoPath = ShoppingDict["backCamera"]["videoPath"]
|
||||
camera_event.imagePaths = ShoppingDict["backCamera"]["imagePaths"]
|
||||
shopping_event.backCamera = camera_event
|
||||
|
||||
yrtDict["backyrt"] = yrtOut
|
||||
|
||||
'''(2) tracking, 前摄'''
|
||||
if CameraEvent["cameraType"] == "front":
|
||||
vts = doFrontTracks(trackerboxes, trackefeats)
|
||||
vts.classify()
|
||||
event_tracks.append(("front", vts))
|
||||
|
||||
camera_event.camera_type = camera_type
|
||||
camera_event.yoloResnetTracker = yrtOut
|
||||
camera_event.tracking = vts
|
||||
camera_event.videoPath = ShoppingDict["frontCamera"]["videoPath"]
|
||||
camera_event.imagePaths = ShoppingDict["frontCamera"]["imagePaths"]
|
||||
shopping_event.backCamera = camera_event
|
||||
|
||||
yrtDict["frontyrt"] = yrtOut
|
||||
|
||||
|
||||
name = Path(evt_pkfile).stem
|
||||
pf_path = os.path.join(savepath, name+"_new.pickle")
|
||||
with open(str(pf_path), 'wb') as f:
|
||||
pickle.dump(shopping_event, f)
|
||||
|
||||
|
||||
|
||||
illus = [None, None]
|
||||
for CamerType, vts in event_tracks:
|
||||
if len(vts.tracks)==0: continue
|
||||
|
||||
if CamerType == 'front':
|
||||
edgeline = cv2.imread("./tracking/shopcart/cart_tempt/board_ftmp_line.png")
|
||||
|
||||
h, w = edgeline.shape[:2]
|
||||
# nh, nw = h//2, w//2
|
||||
# edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA)
|
||||
|
||||
img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipeline, CamerType, draw5p=True)
|
||||
illus[0] = img_tracking
|
||||
|
||||
plt = plot_frameID_y2(vts)
|
||||
plt.savefig(os.path.join(savepath_pipeline, "front_y2.png"))
|
||||
|
||||
if CamerType == 'back':
|
||||
edgeline = cv2.imread("./tracking/shopcart/cart_tempt/edgeline.png")
|
||||
|
||||
h, w = edgeline.shape[:2]
|
||||
# nh, nw = h//2, w//2
|
||||
# edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA)
|
||||
|
||||
img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipeline, CamerType, draw5p=True)
|
||||
illus[1] = img_tracking
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -1,12 +1,27 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
__version__ = '8.0.173'
|
||||
__version__ = "8.1.34"
|
||||
|
||||
from ultralytics.models import RTDETR, SAM, YOLO
|
||||
from ultralytics.data.explorer.explorer import Explorer
|
||||
from ultralytics.models import RTDETR, SAM, YOLO, YOLOWorld, YOLOv10
|
||||
from ultralytics.models.fastsam import FastSAM
|
||||
from ultralytics.models.nas import NAS
|
||||
from ultralytics.utils import SETTINGS as settings
|
||||
from ultralytics.utils import ASSETS, SETTINGS as settings
|
||||
from ultralytics.utils.checks import check_yolo as checks
|
||||
from ultralytics.utils.downloads import download
|
||||
|
||||
__all__ = '__version__', 'YOLO', 'NAS', 'SAM', 'FastSAM', 'RTDETR', 'checks', 'download', 'settings'
|
||||
__all__ = (
|
||||
"__version__",
|
||||
"ASSETS",
|
||||
"YOLO",
|
||||
"YOLOWorld",
|
||||
"NAS",
|
||||
"SAM",
|
||||
"FastSAM",
|
||||
"RTDETR",
|
||||
"checks",
|
||||
"download",
|
||||
"settings",
|
||||
"Explorer",
|
||||
"YOLOv10"
|
||||
)
|
||||
|
Binary file not shown.
Binary file not shown.
@ -1,34 +1,62 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import contextlib
|
||||
import re
|
||||
import os
|
||||
import shutil
|
||||
import subprocess
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from types import SimpleNamespace
|
||||
from typing import Dict, List, Union
|
||||
import re
|
||||
|
||||
from ultralytics.utils import (ASSETS, DEFAULT_CFG, DEFAULT_CFG_DICT, DEFAULT_CFG_PATH, LOGGER, RANK, SETTINGS,
|
||||
SETTINGS_YAML, IterableSimpleNamespace, __version__, checks, colorstr, deprecation_warn,
|
||||
yaml_load, yaml_print)
|
||||
from ultralytics.utils import (
|
||||
ASSETS,
|
||||
DEFAULT_CFG,
|
||||
DEFAULT_CFG_DICT,
|
||||
DEFAULT_CFG_PATH,
|
||||
LOGGER,
|
||||
RANK,
|
||||
ROOT,
|
||||
RUNS_DIR,
|
||||
SETTINGS,
|
||||
SETTINGS_YAML,
|
||||
TESTS_RUNNING,
|
||||
IterableSimpleNamespace,
|
||||
__version__,
|
||||
checks,
|
||||
colorstr,
|
||||
deprecation_warn,
|
||||
yaml_load,
|
||||
yaml_print,
|
||||
)
|
||||
|
||||
# Define valid tasks and modes
|
||||
MODES = 'train', 'val', 'predict', 'export', 'track', 'benchmark'
|
||||
TASKS = 'detect', 'segment', 'classify', 'pose'
|
||||
TASK2DATA = {'detect': 'coco8.yaml', 'segment': 'coco8-seg.yaml', 'classify': 'imagenet10', 'pose': 'coco8-pose.yaml'}
|
||||
MODES = {"train", "val", "predict", "export", "track", "benchmark"}
|
||||
TASKS = {"detect", "segment", "classify", "pose", "obb"}
|
||||
TASK2DATA = {
|
||||
"detect": "coco8.yaml",
|
||||
"segment": "coco8-seg.yaml",
|
||||
"classify": "imagenet10",
|
||||
"pose": "coco8-pose.yaml",
|
||||
"obb": "dota8.yaml",
|
||||
}
|
||||
TASK2MODEL = {
|
||||
'detect': 'yolov8n.pt',
|
||||
'segment': 'yolov8n-seg.pt',
|
||||
'classify': 'yolov8n-cls.pt',
|
||||
'pose': 'yolov8n-pose.pt'}
|
||||
"detect": "yolov8n.pt",
|
||||
"segment": "yolov8n-seg.pt",
|
||||
"classify": "yolov8n-cls.pt",
|
||||
"pose": "yolov8n-pose.pt",
|
||||
"obb": "yolov8n-obb.pt",
|
||||
}
|
||||
TASK2METRIC = {
|
||||
'detect': 'metrics/mAP50-95(B)',
|
||||
'segment': 'metrics/mAP50-95(M)',
|
||||
'classify': 'metrics/accuracy_top1',
|
||||
'pose': 'metrics/mAP50-95(P)'}
|
||||
"detect": "metrics/mAP50-95(B)",
|
||||
"segment": "metrics/mAP50-95(M)",
|
||||
"classify": "metrics/accuracy_top1",
|
||||
"pose": "metrics/mAP50-95(P)",
|
||||
"obb": "metrics/mAP50-95(B)",
|
||||
}
|
||||
|
||||
CLI_HELP_MSG = \
|
||||
f"""
|
||||
CLI_HELP_MSG = f"""
|
||||
Arguments received: {str(['yolo'] + sys.argv[1:])}. Ultralytics 'yolo' commands use the following syntax:
|
||||
|
||||
yolo TASK MODE ARGS
|
||||
@ -42,7 +70,7 @@ CLI_HELP_MSG = \
|
||||
yolo train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
|
||||
|
||||
2. Predict a YouTube video using a pretrained segmentation model at image size 320:
|
||||
yolo predict model=yolov8n-seg.pt source='https://youtu.be/Zgi9g1ksQHc' imgsz=320
|
||||
yolo predict model=yolov8n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
|
||||
|
||||
3. Val a pretrained detection model at batch-size 1 and image size 640:
|
||||
yolo val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640
|
||||
@ -50,6 +78,9 @@ CLI_HELP_MSG = \
|
||||
4. Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required)
|
||||
yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128
|
||||
|
||||
6. Explore your datasets using semantic search and SQL with a simple GUI powered by Ultralytics Explorer API
|
||||
yolo explorer
|
||||
|
||||
5. Run special commands:
|
||||
yolo help
|
||||
yolo checks
|
||||
@ -64,16 +95,84 @@ CLI_HELP_MSG = \
|
||||
"""
|
||||
|
||||
# Define keys for arg type checks
|
||||
CFG_FLOAT_KEYS = 'warmup_epochs', 'box', 'cls', 'dfl', 'degrees', 'shear'
|
||||
CFG_FRACTION_KEYS = ('dropout', 'iou', 'lr0', 'lrf', 'momentum', 'weight_decay', 'warmup_momentum', 'warmup_bias_lr',
|
||||
'label_smoothing', 'hsv_h', 'hsv_s', 'hsv_v', 'translate', 'scale', 'perspective', 'flipud',
|
||||
'fliplr', 'mosaic', 'mixup', 'copy_paste', 'conf', 'iou', 'fraction') # fraction floats 0.0 - 1.0
|
||||
CFG_INT_KEYS = ('epochs', 'patience', 'batch', 'workers', 'seed', 'close_mosaic', 'mask_ratio', 'max_det', 'vid_stride',
|
||||
'line_width', 'workspace', 'nbs', 'save_period')
|
||||
CFG_BOOL_KEYS = ('save', 'exist_ok', 'verbose', 'deterministic', 'single_cls', 'rect', 'cos_lr', 'overlap_mask', 'val',
|
||||
'save_json', 'save_hybrid', 'half', 'dnn', 'plots', 'show', 'save_txt', 'save_conf', 'save_crop',
|
||||
'show_labels', 'show_conf', 'visualize', 'augment', 'agnostic_nms', 'retina_masks', 'boxes', 'keras',
|
||||
'optimize', 'int8', 'dynamic', 'simplify', 'nms', 'profile')
|
||||
CFG_FLOAT_KEYS = {"warmup_epochs", "box", "cls", "dfl", "degrees", "shear", "time"}
|
||||
CFG_FRACTION_KEYS = {
|
||||
"dropout",
|
||||
"iou",
|
||||
"lr0",
|
||||
"lrf",
|
||||
"momentum",
|
||||
"weight_decay",
|
||||
"warmup_momentum",
|
||||
"warmup_bias_lr",
|
||||
"label_smoothing",
|
||||
"hsv_h",
|
||||
"hsv_s",
|
||||
"hsv_v",
|
||||
"translate",
|
||||
"scale",
|
||||
"perspective",
|
||||
"flipud",
|
||||
"fliplr",
|
||||
"bgr",
|
||||
"mosaic",
|
||||
"mixup",
|
||||
"copy_paste",
|
||||
"conf",
|
||||
"iou",
|
||||
"fraction",
|
||||
} # fraction floats 0.0 - 1.0
|
||||
CFG_INT_KEYS = {
|
||||
"epochs",
|
||||
"patience",
|
||||
"batch",
|
||||
"workers",
|
||||
"seed",
|
||||
"close_mosaic",
|
||||
"mask_ratio",
|
||||
"max_det",
|
||||
"vid_stride",
|
||||
"line_width",
|
||||
"workspace",
|
||||
"nbs",
|
||||
"save_period",
|
||||
}
|
||||
CFG_BOOL_KEYS = {
|
||||
"save",
|
||||
"exist_ok",
|
||||
"verbose",
|
||||
"deterministic",
|
||||
"single_cls",
|
||||
"rect",
|
||||
"cos_lr",
|
||||
"overlap_mask",
|
||||
"val",
|
||||
"save_json",
|
||||
"save_hybrid",
|
||||
"half",
|
||||
"dnn",
|
||||
"plots",
|
||||
"show",
|
||||
"save_txt",
|
||||
"save_conf",
|
||||
"save_crop",
|
||||
"save_frames",
|
||||
"show_labels",
|
||||
"show_conf",
|
||||
"visualize",
|
||||
"augment",
|
||||
"agnostic_nms",
|
||||
"retina_masks",
|
||||
"show_boxes",
|
||||
"keras",
|
||||
"optimize",
|
||||
"int8",
|
||||
"dynamic",
|
||||
"simplify",
|
||||
"nms",
|
||||
"profile",
|
||||
"multi_scale",
|
||||
}
|
||||
|
||||
|
||||
def cfg2dict(cfg):
|
||||
@ -109,53 +208,72 @@ def get_cfg(cfg: Union[str, Path, Dict, SimpleNamespace] = DEFAULT_CFG_DICT, ove
|
||||
# Merge overrides
|
||||
if overrides:
|
||||
overrides = cfg2dict(overrides)
|
||||
if 'save_dir' not in cfg:
|
||||
overrides.pop('save_dir', None) # special override keys to ignore
|
||||
if "save_dir" not in cfg:
|
||||
overrides.pop("save_dir", None) # special override keys to ignore
|
||||
check_dict_alignment(cfg, overrides)
|
||||
cfg = {**cfg, **overrides} # merge cfg and overrides dicts (prefer overrides)
|
||||
|
||||
# Special handling for numeric project/name
|
||||
for k in 'project', 'name':
|
||||
for k in "project", "name":
|
||||
if k in cfg and isinstance(cfg[k], (int, float)):
|
||||
cfg[k] = str(cfg[k])
|
||||
if cfg.get('name') == 'model': # assign model to 'name' arg
|
||||
cfg['name'] = cfg.get('model', '').split('.')[0]
|
||||
if cfg.get("name") == "model": # assign model to 'name' arg
|
||||
cfg["name"] = cfg.get("model", "").split(".")[0]
|
||||
LOGGER.warning(f"WARNING ⚠️ 'name=model' automatically updated to 'name={cfg['name']}'.")
|
||||
|
||||
# Type and Value checks
|
||||
for k, v in cfg.items():
|
||||
if v is not None: # None values may be from optional args
|
||||
if k in CFG_FLOAT_KEYS and not isinstance(v, (int, float)):
|
||||
raise TypeError(f"'{k}={v}' is of invalid type {type(v).__name__}. "
|
||||
f"Valid '{k}' types are int (i.e. '{k}=0') or float (i.e. '{k}=0.5')")
|
||||
elif k in CFG_FRACTION_KEYS:
|
||||
if not isinstance(v, (int, float)):
|
||||
raise TypeError(f"'{k}={v}' is of invalid type {type(v).__name__}. "
|
||||
f"Valid '{k}' types are int (i.e. '{k}=0') or float (i.e. '{k}=0.5')")
|
||||
if not (0.0 <= v <= 1.0):
|
||||
raise ValueError(f"'{k}={v}' is an invalid value. "
|
||||
f"Valid '{k}' values are between 0.0 and 1.0.")
|
||||
elif k in CFG_INT_KEYS and not isinstance(v, int):
|
||||
raise TypeError(f"'{k}={v}' is of invalid type {type(v).__name__}. "
|
||||
f"'{k}' must be an int (i.e. '{k}=8')")
|
||||
elif k in CFG_BOOL_KEYS and not isinstance(v, bool):
|
||||
raise TypeError(f"'{k}={v}' is of invalid type {type(v).__name__}. "
|
||||
f"'{k}' must be a bool (i.e. '{k}=True' or '{k}=False')")
|
||||
check_cfg(cfg)
|
||||
|
||||
# Return instance
|
||||
return IterableSimpleNamespace(**cfg)
|
||||
|
||||
|
||||
def check_cfg(cfg, hard=True):
|
||||
"""Check Ultralytics configuration argument types and values."""
|
||||
for k, v in cfg.items():
|
||||
if v is not None: # None values may be from optional args
|
||||
if k in CFG_FLOAT_KEYS and not isinstance(v, (int, float)):
|
||||
if hard:
|
||||
raise TypeError(
|
||||
f"'{k}={v}' is of invalid type {type(v).__name__}. "
|
||||
f"Valid '{k}' types are int (i.e. '{k}=0') or float (i.e. '{k}=0.5')"
|
||||
)
|
||||
cfg[k] = float(v)
|
||||
elif k in CFG_FRACTION_KEYS:
|
||||
if not isinstance(v, (int, float)):
|
||||
if hard:
|
||||
raise TypeError(
|
||||
f"'{k}={v}' is of invalid type {type(v).__name__}. "
|
||||
f"Valid '{k}' types are int (i.e. '{k}=0') or float (i.e. '{k}=0.5')"
|
||||
)
|
||||
cfg[k] = v = float(v)
|
||||
if not (0.0 <= v <= 1.0):
|
||||
raise ValueError(f"'{k}={v}' is an invalid value. " f"Valid '{k}' values are between 0.0 and 1.0.")
|
||||
elif k in CFG_INT_KEYS and not isinstance(v, int):
|
||||
if hard:
|
||||
raise TypeError(
|
||||
f"'{k}={v}' is of invalid type {type(v).__name__}. " f"'{k}' must be an int (i.e. '{k}=8')"
|
||||
)
|
||||
cfg[k] = int(v)
|
||||
elif k in CFG_BOOL_KEYS and not isinstance(v, bool):
|
||||
if hard:
|
||||
raise TypeError(
|
||||
f"'{k}={v}' is of invalid type {type(v).__name__}. "
|
||||
f"'{k}' must be a bool (i.e. '{k}=True' or '{k}=False')"
|
||||
)
|
||||
cfg[k] = bool(v)
|
||||
|
||||
|
||||
def get_save_dir(args, name=None):
|
||||
"""Return save_dir as created from train/val/predict arguments."""
|
||||
|
||||
if getattr(args, 'save_dir', None):
|
||||
if getattr(args, "save_dir", None):
|
||||
save_dir = args.save_dir
|
||||
else:
|
||||
from ultralytics.utils.files import increment_path
|
||||
|
||||
project = args.project or Path(SETTINGS['runs_dir']) / args.task
|
||||
name = name or args.name or f'{args.mode}'
|
||||
project = args.project or (ROOT.parent / "tests/tmp/runs" if TESTS_RUNNING else RUNS_DIR) / args.task
|
||||
name = name or args.name or f"{args.mode}"
|
||||
save_dir = increment_path(Path(project) / name, exist_ok=args.exist_ok if RANK in (-1, 0) else True)
|
||||
|
||||
return Path(save_dir)
|
||||
@ -165,23 +283,26 @@ def _handle_deprecation(custom):
|
||||
"""Hardcoded function to handle deprecated config keys."""
|
||||
|
||||
for key in custom.copy().keys():
|
||||
if key == 'hide_labels':
|
||||
deprecation_warn(key, 'show_labels')
|
||||
custom['show_labels'] = custom.pop('hide_labels') == 'False'
|
||||
if key == 'hide_conf':
|
||||
deprecation_warn(key, 'show_conf')
|
||||
custom['show_conf'] = custom.pop('hide_conf') == 'False'
|
||||
if key == 'line_thickness':
|
||||
deprecation_warn(key, 'line_width')
|
||||
custom['line_width'] = custom.pop('line_thickness')
|
||||
if key == "boxes":
|
||||
deprecation_warn(key, "show_boxes")
|
||||
custom["show_boxes"] = custom.pop("boxes")
|
||||
if key == "hide_labels":
|
||||
deprecation_warn(key, "show_labels")
|
||||
custom["show_labels"] = custom.pop("hide_labels") == "False"
|
||||
if key == "hide_conf":
|
||||
deprecation_warn(key, "show_conf")
|
||||
custom["show_conf"] = custom.pop("hide_conf") == "False"
|
||||
if key == "line_thickness":
|
||||
deprecation_warn(key, "line_width")
|
||||
custom["line_width"] = custom.pop("line_thickness")
|
||||
|
||||
return custom
|
||||
|
||||
|
||||
def check_dict_alignment(base: Dict, custom: Dict, e=None):
|
||||
"""
|
||||
This function checks for any mismatched keys between a custom configuration list and a base configuration list.
|
||||
If any mismatched keys are found, the function prints out similar keys from the base list and exits the program.
|
||||
This function checks for any mismatched keys between a custom configuration list and a base configuration list. If
|
||||
any mismatched keys are found, the function prints out similar keys from the base list and exits the program.
|
||||
|
||||
Args:
|
||||
custom (dict): a dictionary of custom configuration options
|
||||
@ -194,36 +315,35 @@ def check_dict_alignment(base: Dict, custom: Dict, e=None):
|
||||
if mismatched:
|
||||
from difflib import get_close_matches
|
||||
|
||||
string = ''
|
||||
string = ""
|
||||
for x in mismatched:
|
||||
matches = get_close_matches(x, base_keys) # key list
|
||||
matches = [f'{k}={base[k]}' if base.get(k) is not None else k for k in matches]
|
||||
match_str = f'Similar arguments are i.e. {matches}.' if matches else ''
|
||||
matches = [f"{k}={base[k]}" if base.get(k) is not None else k for k in matches]
|
||||
match_str = f"Similar arguments are i.e. {matches}." if matches else ""
|
||||
string += f"'{colorstr('red', 'bold', x)}' is not a valid YOLO argument. {match_str}\n"
|
||||
raise SyntaxError(string + CLI_HELP_MSG) from e
|
||||
|
||||
|
||||
def merge_equals_args(args: List[str]) -> List[str]:
|
||||
"""
|
||||
Merges arguments around isolated '=' args in a list of strings.
|
||||
The function considers cases where the first argument ends with '=' or the second starts with '=',
|
||||
as well as when the middle one is an equals sign.
|
||||
Merges arguments around isolated '=' args in a list of strings. The function considers cases where the first
|
||||
argument ends with '=' or the second starts with '=', as well as when the middle one is an equals sign.
|
||||
|
||||
Args:
|
||||
args (List[str]): A list of strings where each element is an argument.
|
||||
|
||||
Returns:
|
||||
List[str]: A list of strings where the arguments around isolated '=' are merged.
|
||||
(List[str]): A list of strings where the arguments around isolated '=' are merged.
|
||||
"""
|
||||
new_args = []
|
||||
for i, arg in enumerate(args):
|
||||
if arg == '=' and 0 < i < len(args) - 1: # merge ['arg', '=', 'val']
|
||||
new_args[-1] += f'={args[i + 1]}'
|
||||
if arg == "=" and 0 < i < len(args) - 1: # merge ['arg', '=', 'val']
|
||||
new_args[-1] += f"={args[i + 1]}"
|
||||
del args[i + 1]
|
||||
elif arg.endswith('=') and i < len(args) - 1 and '=' not in args[i + 1]: # merge ['arg=', 'val']
|
||||
new_args.append(f'{arg}{args[i + 1]}')
|
||||
elif arg.endswith("=") and i < len(args) - 1 and "=" not in args[i + 1]: # merge ['arg=', 'val']
|
||||
new_args.append(f"{arg}{args[i + 1]}")
|
||||
del args[i + 1]
|
||||
elif arg.startswith('=') and i > 0: # merge ['arg', '=val']
|
||||
elif arg.startswith("=") and i > 0: # merge ['arg', '=val']
|
||||
new_args[-1] += arg
|
||||
else:
|
||||
new_args.append(arg)
|
||||
@ -247,11 +367,11 @@ def handle_yolo_hub(args: List[str]) -> None:
|
||||
"""
|
||||
from ultralytics import hub
|
||||
|
||||
if args[0] == 'login':
|
||||
key = args[1] if len(args) > 1 else ''
|
||||
if args[0] == "login":
|
||||
key = args[1] if len(args) > 1 else ""
|
||||
# Log in to Ultralytics HUB using the provided API key
|
||||
hub.login(key)
|
||||
elif args[0] == 'logout':
|
||||
elif args[0] == "logout":
|
||||
# Log out from Ultralytics HUB
|
||||
hub.logout()
|
||||
|
||||
@ -271,39 +391,47 @@ def handle_yolo_settings(args: List[str]) -> None:
|
||||
python my_script.py yolo settings reset
|
||||
```
|
||||
"""
|
||||
url = 'https://docs.ultralytics.com/quickstart/#ultralytics-settings' # help URL
|
||||
url = "https://docs.ultralytics.com/quickstart/#ultralytics-settings" # help URL
|
||||
try:
|
||||
if any(args):
|
||||
if args[0] == 'reset':
|
||||
if args[0] == "reset":
|
||||
SETTINGS_YAML.unlink() # delete the settings file
|
||||
SETTINGS.reset() # create new settings
|
||||
LOGGER.info('Settings reset successfully') # inform the user that settings have been reset
|
||||
LOGGER.info("Settings reset successfully") # inform the user that settings have been reset
|
||||
else: # save a new setting
|
||||
new = dict(parse_key_value_pair(a) for a in args)
|
||||
check_dict_alignment(SETTINGS, new)
|
||||
SETTINGS.update(new)
|
||||
|
||||
LOGGER.info(f'💡 Learn about settings at {url}')
|
||||
LOGGER.info(f"💡 Learn about settings at {url}")
|
||||
yaml_print(SETTINGS_YAML) # print the current settings
|
||||
except Exception as e:
|
||||
LOGGER.warning(f"WARNING ⚠️ settings error: '{e}'. Please see {url} for help.")
|
||||
|
||||
|
||||
def handle_explorer():
|
||||
"""Open the Ultralytics Explorer GUI."""
|
||||
checks.check_requirements("streamlit")
|
||||
LOGGER.info("💡 Loading Explorer dashboard...")
|
||||
subprocess.run(["streamlit", "run", ROOT / "data/explorer/gui/dash.py", "--server.maxMessageSize", "2048"])
|
||||
|
||||
|
||||
def parse_key_value_pair(pair):
|
||||
"""Parse one 'key=value' pair and return key and value."""
|
||||
re.sub(r' *= *', '=', pair) # remove spaces around equals sign
|
||||
k, v = pair.split('=', 1) # split on first '=' sign
|
||||
k, v = pair.split("=", 1) # split on first '=' sign
|
||||
k, v = k.strip(), v.strip() # remove spaces
|
||||
assert v, f"missing '{k}' value"
|
||||
return k, smart_value(v)
|
||||
|
||||
|
||||
def smart_value(v):
|
||||
"""Convert a string to an underlying type such as int, float, bool, etc."""
|
||||
if v.lower() == 'none':
|
||||
v_lower = v.lower()
|
||||
if v_lower == "none":
|
||||
return None
|
||||
elif v.lower() == 'true':
|
||||
elif v_lower == "true":
|
||||
return True
|
||||
elif v.lower() == 'false':
|
||||
elif v_lower == "false":
|
||||
return False
|
||||
else:
|
||||
with contextlib.suppress(Exception):
|
||||
@ -311,7 +439,7 @@ def smart_value(v):
|
||||
return v
|
||||
|
||||
|
||||
def entrypoint(debug=''):
|
||||
def entrypoint(debug=""):
|
||||
"""
|
||||
This function is the ultralytics package entrypoint, it's responsible for parsing the command line arguments passed
|
||||
to the package.
|
||||
@ -326,135 +454,160 @@ def entrypoint(debug=''):
|
||||
It uses the package's default cfg and initializes it using the passed overrides.
|
||||
Then it calls the CLI function with the composed cfg
|
||||
"""
|
||||
args = (debug.split(' ') if debug else sys.argv)[1:]
|
||||
args = (debug.split(" ") if debug else sys.argv)[1:]
|
||||
if not args: # no arguments passed
|
||||
LOGGER.info(CLI_HELP_MSG)
|
||||
return
|
||||
|
||||
special = {
|
||||
'help': lambda: LOGGER.info(CLI_HELP_MSG),
|
||||
'checks': checks.check_yolo,
|
||||
'version': lambda: LOGGER.info(__version__),
|
||||
'settings': lambda: handle_yolo_settings(args[1:]),
|
||||
'cfg': lambda: yaml_print(DEFAULT_CFG_PATH),
|
||||
'hub': lambda: handle_yolo_hub(args[1:]),
|
||||
'login': lambda: handle_yolo_hub(args),
|
||||
'copy-cfg': copy_default_cfg}
|
||||
"help": lambda: LOGGER.info(CLI_HELP_MSG),
|
||||
"checks": checks.collect_system_info,
|
||||
"version": lambda: LOGGER.info(__version__),
|
||||
"settings": lambda: handle_yolo_settings(args[1:]),
|
||||
"cfg": lambda: yaml_print(DEFAULT_CFG_PATH),
|
||||
"hub": lambda: handle_yolo_hub(args[1:]),
|
||||
"login": lambda: handle_yolo_hub(args),
|
||||
"copy-cfg": copy_default_cfg,
|
||||
"explorer": lambda: handle_explorer(),
|
||||
}
|
||||
full_args_dict = {**DEFAULT_CFG_DICT, **{k: None for k in TASKS}, **{k: None for k in MODES}, **special}
|
||||
|
||||
# Define common mis-uses of special commands, i.e. -h, -help, --help
|
||||
# Define common misuses of special commands, i.e. -h, -help, --help
|
||||
special.update({k[0]: v for k, v in special.items()}) # singular
|
||||
special.update({k[:-1]: v for k, v in special.items() if len(k) > 1 and k.endswith('s')}) # singular
|
||||
special = {**special, **{f'-{k}': v for k, v in special.items()}, **{f'--{k}': v for k, v in special.items()}}
|
||||
special.update({k[:-1]: v for k, v in special.items() if len(k) > 1 and k.endswith("s")}) # singular
|
||||
special = {**special, **{f"-{k}": v for k, v in special.items()}, **{f"--{k}": v for k, v in special.items()}}
|
||||
|
||||
overrides = {} # basic overrides, i.e. imgsz=320
|
||||
for a in merge_equals_args(args): # merge spaces around '=' sign
|
||||
if a.startswith('--'):
|
||||
LOGGER.warning(f"WARNING ⚠️ '{a}' does not require leading dashes '--', updating to '{a[2:]}'.")
|
||||
if a.startswith("--"):
|
||||
LOGGER.warning(f"WARNING ⚠️ argument '{a}' does not require leading dashes '--', updating to '{a[2:]}'.")
|
||||
a = a[2:]
|
||||
if a.endswith(','):
|
||||
LOGGER.warning(f"WARNING ⚠️ '{a}' does not require trailing comma ',', updating to '{a[:-1]}'.")
|
||||
if a.endswith(","):
|
||||
LOGGER.warning(f"WARNING ⚠️ argument '{a}' does not require trailing comma ',', updating to '{a[:-1]}'.")
|
||||
a = a[:-1]
|
||||
if '=' in a:
|
||||
if "=" in a:
|
||||
try:
|
||||
k, v = parse_key_value_pair(a)
|
||||
if k == 'cfg': # custom.yaml passed
|
||||
LOGGER.info(f'Overriding {DEFAULT_CFG_PATH} with {v}')
|
||||
overrides = {k: val for k, val in yaml_load(checks.check_yaml(v)).items() if k != 'cfg'}
|
||||
if k == "cfg" and v is not None: # custom.yaml passed
|
||||
LOGGER.info(f"Overriding {DEFAULT_CFG_PATH} with {v}")
|
||||
overrides = {k: val for k, val in yaml_load(checks.check_yaml(v)).items() if k != "cfg"}
|
||||
else:
|
||||
overrides[k] = v
|
||||
except (NameError, SyntaxError, ValueError, AssertionError) as e:
|
||||
check_dict_alignment(full_args_dict, {a: ''}, e)
|
||||
check_dict_alignment(full_args_dict, {a: ""}, e)
|
||||
|
||||
elif a in TASKS:
|
||||
overrides['task'] = a
|
||||
overrides["task"] = a
|
||||
elif a in MODES:
|
||||
overrides['mode'] = a
|
||||
overrides["mode"] = a
|
||||
elif a.lower() in special:
|
||||
special[a.lower()]()
|
||||
return
|
||||
elif a in DEFAULT_CFG_DICT and isinstance(DEFAULT_CFG_DICT[a], bool):
|
||||
overrides[a] = True # auto-True for default bool args, i.e. 'yolo show' sets show=True
|
||||
elif a in DEFAULT_CFG_DICT:
|
||||
raise SyntaxError(f"'{colorstr('red', 'bold', a)}' is a valid YOLO argument but is missing an '=' sign "
|
||||
f"to set its value, i.e. try '{a}={DEFAULT_CFG_DICT[a]}'\n{CLI_HELP_MSG}")
|
||||
raise SyntaxError(
|
||||
f"'{colorstr('red', 'bold', a)}' is a valid YOLO argument but is missing an '=' sign "
|
||||
f"to set its value, i.e. try '{a}={DEFAULT_CFG_DICT[a]}'\n{CLI_HELP_MSG}"
|
||||
)
|
||||
else:
|
||||
check_dict_alignment(full_args_dict, {a: ''})
|
||||
check_dict_alignment(full_args_dict, {a: ""})
|
||||
|
||||
# Check keys
|
||||
check_dict_alignment(full_args_dict, overrides)
|
||||
|
||||
# Mode
|
||||
mode = overrides.get('mode')
|
||||
mode = overrides.get("mode")
|
||||
if mode is None:
|
||||
mode = DEFAULT_CFG.mode or 'predict'
|
||||
LOGGER.warning(f"WARNING ⚠️ 'mode' is missing. Valid modes are {MODES}. Using default 'mode={mode}'.")
|
||||
mode = DEFAULT_CFG.mode or "predict"
|
||||
LOGGER.warning(f"WARNING ⚠️ 'mode' argument is missing. Valid modes are {MODES}. Using default 'mode={mode}'.")
|
||||
elif mode not in MODES:
|
||||
raise ValueError(f"Invalid 'mode={mode}'. Valid modes are {MODES}.\n{CLI_HELP_MSG}")
|
||||
|
||||
# Task
|
||||
task = overrides.pop('task', None)
|
||||
task = overrides.pop("task", None)
|
||||
if task:
|
||||
if task not in TASKS:
|
||||
raise ValueError(f"Invalid 'task={task}'. Valid tasks are {TASKS}.\n{CLI_HELP_MSG}")
|
||||
if 'model' not in overrides:
|
||||
overrides['model'] = TASK2MODEL[task]
|
||||
if "model" not in overrides:
|
||||
overrides["model"] = TASK2MODEL[task]
|
||||
|
||||
# Model
|
||||
model = overrides.pop('model', DEFAULT_CFG.model)
|
||||
model = overrides.pop("model", DEFAULT_CFG.model)
|
||||
if model is None:
|
||||
model = 'yolov8n.pt'
|
||||
LOGGER.warning(f"WARNING ⚠️ 'model' is missing. Using default 'model={model}'.")
|
||||
overrides['model'] = model
|
||||
if 'rtdetr' in model.lower(): # guess architecture
|
||||
model = "yolov8n.pt"
|
||||
LOGGER.warning(f"WARNING ⚠️ 'model' argument is missing. Using default 'model={model}'.")
|
||||
overrides["model"] = model
|
||||
# stem = Path(model).stem.lower()
|
||||
stem = model.lower()
|
||||
if "rtdetr" in stem: # guess architecture
|
||||
from ultralytics import RTDETR
|
||||
|
||||
model = RTDETR(model) # no task argument
|
||||
elif 'fastsam' in model.lower():
|
||||
elif "fastsam" in stem:
|
||||
from ultralytics import FastSAM
|
||||
|
||||
model = FastSAM(model)
|
||||
elif 'sam' in model.lower():
|
||||
elif "sam" in stem:
|
||||
from ultralytics import SAM
|
||||
|
||||
model = SAM(model)
|
||||
else:
|
||||
elif re.search("v3|v5|v6|v8|v9", stem):
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO(model, task=task)
|
||||
if isinstance(overrides.get('pretrained'), str):
|
||||
model.load(overrides['pretrained'])
|
||||
else:
|
||||
from ultralytics import YOLOv10
|
||||
|
||||
# Special case for the HuggingFace Hub
|
||||
split_path = model.split('/')
|
||||
if len(split_path) == 2 and (not os.path.exists(model)):
|
||||
model = YOLOv10.from_pretrained(model)
|
||||
else:
|
||||
model = YOLOv10(model)
|
||||
if isinstance(overrides.get("pretrained"), str):
|
||||
model.load(overrides["pretrained"])
|
||||
|
||||
# Task Update
|
||||
if task != model.task:
|
||||
if task:
|
||||
LOGGER.warning(f"WARNING ⚠️ conflicting 'task={task}' passed with 'task={model.task}' model. "
|
||||
f"Ignoring 'task={task}' and updating to 'task={model.task}' to match model.")
|
||||
LOGGER.warning(
|
||||
f"WARNING ⚠️ conflicting 'task={task}' passed with 'task={model.task}' model. "
|
||||
f"Ignoring 'task={task}' and updating to 'task={model.task}' to match model."
|
||||
)
|
||||
task = model.task
|
||||
|
||||
# Mode
|
||||
if mode in ('predict', 'track') and 'source' not in overrides:
|
||||
overrides['source'] = DEFAULT_CFG.source or ASSETS
|
||||
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using default 'source={overrides['source']}'.")
|
||||
elif mode in ('train', 'val'):
|
||||
if 'data' not in overrides and 'resume' not in overrides:
|
||||
overrides['data'] = TASK2DATA.get(task or DEFAULT_CFG.task, DEFAULT_CFG.data)
|
||||
LOGGER.warning(f"WARNING ⚠️ 'data' is missing. Using default 'data={overrides['data']}'.")
|
||||
elif mode == 'export':
|
||||
if 'format' not in overrides:
|
||||
overrides['format'] = DEFAULT_CFG.format or 'torchscript'
|
||||
LOGGER.warning(f"WARNING ⚠️ 'format' is missing. Using default 'format={overrides['format']}'.")
|
||||
if mode in ("predict", "track") and "source" not in overrides:
|
||||
overrides["source"] = DEFAULT_CFG.source or ASSETS
|
||||
LOGGER.warning(f"WARNING ⚠️ 'source' argument is missing. Using default 'source={overrides['source']}'.")
|
||||
elif mode in ("train", "val"):
|
||||
if "data" not in overrides and "resume" not in overrides:
|
||||
overrides["data"] = DEFAULT_CFG.data or TASK2DATA.get(task or DEFAULT_CFG.task, DEFAULT_CFG.data)
|
||||
LOGGER.warning(f"WARNING ⚠️ 'data' argument is missing. Using default 'data={overrides['data']}'.")
|
||||
elif mode == "export":
|
||||
if "format" not in overrides:
|
||||
overrides["format"] = DEFAULT_CFG.format or "torchscript"
|
||||
LOGGER.warning(f"WARNING ⚠️ 'format' argument is missing. Using default 'format={overrides['format']}'.")
|
||||
|
||||
# Run command in python
|
||||
# getattr(model, mode)(**vars(get_cfg(overrides=overrides))) # default args using default.yaml
|
||||
getattr(model, mode)(**overrides) # default args from model
|
||||
|
||||
# Show help
|
||||
LOGGER.info(f"💡 Learn more at https://docs.ultralytics.com/modes/{mode}")
|
||||
|
||||
|
||||
# Special modes --------------------------------------------------------------------------------------------------------
|
||||
def copy_default_cfg():
|
||||
"""Copy and create a new default configuration file with '_copy' appended to its name."""
|
||||
new_file = Path.cwd() / DEFAULT_CFG_PATH.name.replace('.yaml', '_copy.yaml')
|
||||
new_file = Path.cwd() / DEFAULT_CFG_PATH.name.replace(".yaml", "_copy.yaml")
|
||||
shutil.copy2(DEFAULT_CFG_PATH, new_file)
|
||||
LOGGER.info(f'{DEFAULT_CFG_PATH} copied to {new_file}\n'
|
||||
f"Example YOLO command with this new custom cfg:\n yolo cfg='{new_file}' imgsz=320 batch=8")
|
||||
LOGGER.info(
|
||||
f"{DEFAULT_CFG_PATH} copied to {new_file}\n"
|
||||
f"Example YOLO command with this new custom cfg:\n yolo cfg='{new_file}' imgsz=320 batch=8"
|
||||
)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
# Example: entrypoint(debug='yolo predict model=yolov8n.pt')
|
||||
entrypoint(debug='')
|
||||
entrypoint(debug="")
|
||||
|
Binary file not shown.
Binary file not shown.
@ -1,17 +1,17 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
|
||||
# Argoverse-HD dataset (ring-front-center camera) https://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/argoverse/
|
||||
# Example usage: yolo train data=Argoverse.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── Argoverse ← downloads here (31.5 GB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/Argoverse # dataset root dir
|
||||
train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
|
||||
val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
|
||||
test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
|
||||
path: ../datasets/Argoverse # dataset root dir
|
||||
train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
|
||||
val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
|
||||
test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
|
||||
|
||||
# Classes
|
||||
names:
|
||||
@ -24,7 +24,6 @@ names:
|
||||
6: traffic_light
|
||||
7: stop_sign
|
||||
|
||||
|
||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||
download: |
|
||||
import json
|
||||
@ -64,7 +63,9 @@ download: |
|
||||
# Download 'https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip' (deprecated S3 link)
|
||||
dir = Path(yaml['path']) # dataset root dir
|
||||
urls = ['https://drive.google.com/file/d/1st9qW3BeIwQsnR0t8mRpvbsSWIo16ACi/view?usp=drive_link']
|
||||
download(urls, dir=dir)
|
||||
print("\n\nWARNING: Argoverse dataset MUST be downloaded manually, autodownload will NOT work.")
|
||||
print(f"WARNING: Manually download Argoverse dataset '{urls[0]}' to '{dir}' and re-run your command.\n\n")
|
||||
# download(urls, dir=dir)
|
||||
|
||||
# Convert
|
||||
annotations_dir = 'Argoverse-HD/annotations/'
|
||||
|
@ -1,18 +1,19 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# DOTA 2.0 dataset https://captain-whu.github.io/DOTA/index.html for object detection in aerial images by Wuhan University
|
||||
# Example usage: yolo train model=yolov8n-obb.pt data=DOTAv2.yaml
|
||||
# DOTA 1.5 dataset https://captain-whu.github.io/DOTA/index.html for object detection in aerial images by Wuhan University
|
||||
# Documentation: https://docs.ultralytics.com/datasets/obb/dota-v2/
|
||||
# Example usage: yolo train model=yolov8n-obb.pt data=DOTAv1.5.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── dota2 ← downloads here (2GB)
|
||||
# └── dota1.5 ← downloads here (2GB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/DOTAv2 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 1411 images
|
||||
val: images/val # val images (relative to 'path') 458 images
|
||||
test: images/test # test images (optional) 937 images
|
||||
path: ../datasets/DOTAv1.5 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 1411 images
|
||||
val: images/val # val images (relative to 'path') 458 images
|
||||
test: images/test # test images (optional) 937 images
|
||||
|
||||
# Classes for DOTA 2.0
|
||||
# Classes for DOTA 1.5
|
||||
names:
|
||||
0: plane
|
||||
1: ship
|
||||
@ -30,8 +31,6 @@ names:
|
||||
13: soccer ball field
|
||||
14: swimming pool
|
||||
15: container crane
|
||||
16: airport
|
||||
17: helipad
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/yolov5/releases/download/v1.0/DOTAv2.zip
|
||||
download: https://github.com/ultralytics/yolov5/releases/download/v1.0/DOTAv1.5.zip
|
35
ultralytics/cfg/datasets/DOTAv1.yaml
Normal file
35
ultralytics/cfg/datasets/DOTAv1.yaml
Normal file
@ -0,0 +1,35 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# DOTA 1.0 dataset https://captain-whu.github.io/DOTA/index.html for object detection in aerial images by Wuhan University
|
||||
# Documentation: https://docs.ultralytics.com/datasets/obb/dota-v2/
|
||||
# Example usage: yolo train model=yolov8n-obb.pt data=DOTAv1.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── dota1 ← downloads here (2GB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/DOTAv1 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 1411 images
|
||||
val: images/val # val images (relative to 'path') 458 images
|
||||
test: images/test # test images (optional) 937 images
|
||||
|
||||
# Classes for DOTA 1.0
|
||||
names:
|
||||
0: plane
|
||||
1: ship
|
||||
2: storage tank
|
||||
3: baseball diamond
|
||||
4: tennis court
|
||||
5: basketball court
|
||||
6: ground track field
|
||||
7: harbor
|
||||
8: bridge
|
||||
9: large vehicle
|
||||
10: small vehicle
|
||||
11: helicopter
|
||||
12: roundabout
|
||||
13: soccer ball field
|
||||
14: swimming pool
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/yolov5/releases/download/v1.0/DOTAv1.zip
|
@ -1,14 +1,14 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan
|
||||
# Global Wheat 2020 dataset https://www.global-wheat.com/ by University of Saskatchewan
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/globalwheat2020/
|
||||
# Example usage: yolo train data=GlobalWheat2020.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── GlobalWheat2020 ← downloads here (7.0 GB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/GlobalWheat2020 # dataset root dir
|
||||
path: ../datasets/GlobalWheat2020 # dataset root dir
|
||||
train: # train images (relative to 'path') 3422 images
|
||||
- images/arvalis_1
|
||||
- images/arvalis_2
|
||||
@ -29,7 +29,6 @@ test: # test images (optional) 1276 images
|
||||
names:
|
||||
0: wheat_head
|
||||
|
||||
|
||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||
download: |
|
||||
from ultralytics.utils.downloads import download
|
||||
|
@ -1,18 +1,18 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
|
||||
# Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
|
||||
# Documentation: https://docs.ultralytics.com/datasets/classify/imagenet/
|
||||
# Example usage: yolo train task=classify data=imagenet
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── imagenet ← downloads here (144 GB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/imagenet # dataset root dir
|
||||
train: train # train images (relative to 'path') 1281167 images
|
||||
val: val # val images (relative to 'path') 50000 images
|
||||
test: # test images (optional)
|
||||
path: ../datasets/imagenet # dataset root dir
|
||||
train: train # train images (relative to 'path') 1281167 images
|
||||
val: val # val images (relative to 'path') 50000 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes
|
||||
names:
|
||||
@ -2020,6 +2020,5 @@ map:
|
||||
n13133613: ear
|
||||
n15075141: toilet_tissue
|
||||
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: yolo/data/scripts/get_imagenet.sh
|
||||
|
@ -1,17 +1,17 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# Objects365 dataset https://www.objects365.org/ by Megvii
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/objects365/
|
||||
# Example usage: yolo train data=Objects365.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/Objects365 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 1742289 images
|
||||
path: ../datasets/Objects365 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 1742289 images
|
||||
val: images/val # val images (relative to 'path') 80000 images
|
||||
test: # test images (optional)
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes
|
||||
names:
|
||||
@ -381,7 +381,6 @@ names:
|
||||
363: Curling
|
||||
364: Table Tennis
|
||||
|
||||
|
||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||
download: |
|
||||
from tqdm import tqdm
|
||||
|
@ -1,23 +1,22 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/sku-110k/
|
||||
# Example usage: yolo train data=SKU-110K.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── SKU-110K ← downloads here (13.6 GB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/SKU-110K # dataset root dir
|
||||
train: train.txt # train images (relative to 'path') 8219 images
|
||||
val: val.txt # val images (relative to 'path') 588 images
|
||||
test: test.txt # test images (optional) 2936 images
|
||||
path: ../datasets/SKU-110K # dataset root dir
|
||||
train: train.txt # train images (relative to 'path') 8219 images
|
||||
val: val.txt # val images (relative to 'path') 588 images
|
||||
test: test.txt # test images (optional) 2936 images
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: object
|
||||
|
||||
|
||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||
download: |
|
||||
import shutil
|
||||
|
@ -1,12 +1,12 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
|
||||
# Documentation: # Documentation: https://docs.ultralytics.com/datasets/detect/voc/
|
||||
# Example usage: yolo train data=VOC.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── VOC ← downloads here (2.8 GB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/VOC
|
||||
train: # train images (relative to 'path') 16551 images
|
||||
@ -42,7 +42,6 @@ names:
|
||||
18: train
|
||||
19: tvmonitor
|
||||
|
||||
|
||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||
download: |
|
||||
import xml.etree.ElementTree as ET
|
||||
@ -81,7 +80,7 @@ download: |
|
||||
urls = [f'{url}VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images
|
||||
f'{url}VOCtest_06-Nov-2007.zip', # 438MB, 4953 images
|
||||
f'{url}VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images
|
||||
download(urls, dir=dir / 'images', curl=True, threads=3)
|
||||
download(urls, dir=dir / 'images', curl=True, threads=3, exist_ok=True) # download and unzip over existing paths (required)
|
||||
|
||||
# Convert
|
||||
path = dir / 'images/VOCdevkit'
|
||||
|
@ -1,17 +1,17 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/visdrone/
|
||||
# Example usage: yolo train data=VisDrone.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── VisDrone ← downloads here (2.3 GB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/VisDrone # dataset root dir
|
||||
train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
|
||||
val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
|
||||
test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
|
||||
path: ../datasets/VisDrone # dataset root dir
|
||||
train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
|
||||
val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
|
||||
test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
|
||||
|
||||
# Classes
|
||||
names:
|
||||
@ -26,7 +26,6 @@ names:
|
||||
8: bus
|
||||
9: motor
|
||||
|
||||
|
||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||
download: |
|
||||
import os
|
||||
|
24
ultralytics/cfg/datasets/african-wildlife.yaml
Normal file
24
ultralytics/cfg/datasets/african-wildlife.yaml
Normal file
@ -0,0 +1,24 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# African-wildlife dataset by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/african-wildlife/
|
||||
# Example usage: yolo train data=african-wildlife.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── african-wildlife ← downloads here (100 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/african-wildlife # dataset root dir
|
||||
train: train/images # train images (relative to 'path') 1052 images
|
||||
val: valid/images # val images (relative to 'path') 225 images
|
||||
test: test/images # test images (relative to 'path') 227 images
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: buffalo
|
||||
1: elephant
|
||||
2: rhino
|
||||
3: zebra
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://ultralytics.com/assets/african-wildlife.zip
|
22
ultralytics/cfg/datasets/brain-tumor.yaml
Normal file
22
ultralytics/cfg/datasets/brain-tumor.yaml
Normal file
@ -0,0 +1,22 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# Brain-tumor dataset by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/brain-tumor/
|
||||
# Example usage: yolo train data=brain-tumor.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── brain-tumor ← downloads here (4.05 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/brain-tumor # dataset root dir
|
||||
train: train/images # train images (relative to 'path') 893 images
|
||||
val: valid/images # val images (relative to 'path') 223 images
|
||||
test: # test images (relative to 'path')
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: negative
|
||||
1: positive
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://ultralytics.com/assets/brain-tumor.zip
|
43
ultralytics/cfg/datasets/carparts-seg.yaml
Normal file
43
ultralytics/cfg/datasets/carparts-seg.yaml
Normal file
@ -0,0 +1,43 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# Carparts-seg dataset by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/segment/carparts-seg/
|
||||
# Example usage: yolo train data=carparts-seg.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── carparts-seg ← downloads here (132 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/carparts-seg # dataset root dir
|
||||
train: train/images # train images (relative to 'path') 3516 images
|
||||
val: valid/images # val images (relative to 'path') 276 images
|
||||
test: test/images # test images (relative to 'path') 401 images
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: back_bumper
|
||||
1: back_door
|
||||
2: back_glass
|
||||
3: back_left_door
|
||||
4: back_left_light
|
||||
5: back_light
|
||||
6: back_right_door
|
||||
7: back_right_light
|
||||
8: front_bumper
|
||||
9: front_door
|
||||
10: front_glass
|
||||
11: front_left_door
|
||||
12: front_left_light
|
||||
13: front_light
|
||||
14: front_right_door
|
||||
15: front_right_light
|
||||
16: hood
|
||||
17: left_mirror
|
||||
18: object
|
||||
19: right_mirror
|
||||
20: tailgate
|
||||
21: trunk
|
||||
22: wheel
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://ultralytics.com/assets/carparts-seg.zip
|
@ -1,20 +1,20 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# COCO 2017 dataset http://cocodataset.org by Microsoft
|
||||
# COCO 2017 dataset https://cocodataset.org by Microsoft
|
||||
# Documentation: https://docs.ultralytics.com/datasets/pose/coco/
|
||||
# Example usage: yolo train data=coco-pose.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── coco-pose ← downloads here (20.1 GB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/coco-pose # dataset root dir
|
||||
train: train2017.txt # train images (relative to 'path') 118287 images
|
||||
val: val2017.txt # val images (relative to 'path') 5000 images
|
||||
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
|
||||
path: ../datasets/coco-pose # dataset root dir
|
||||
train: train2017.txt # train images (relative to 'path') 118287 images
|
||||
val: val2017.txt # val images (relative to 'path') 5000 images
|
||||
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
|
||||
|
||||
# Keypoints
|
||||
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
|
||||
|
||||
# Classes
|
||||
|
@ -1,17 +1,17 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# COCO 2017 dataset http://cocodataset.org by Microsoft
|
||||
# COCO 2017 dataset https://cocodataset.org by Microsoft
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/
|
||||
# Example usage: yolo train data=coco.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── coco ← downloads here (20.1 GB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/coco # dataset root dir
|
||||
train: train2017.txt # train images (relative to 'path') 118287 images
|
||||
val: val2017.txt # val images (relative to 'path') 5000 images
|
||||
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
|
||||
path: ../datasets/coco # dataset root dir
|
||||
train: train2017.txt # train images (relative to 'path') 118287 images
|
||||
val: val2017.txt # val images (relative to 'path') 5000 images
|
||||
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
|
||||
|
||||
# Classes
|
||||
names:
|
||||
@ -96,7 +96,6 @@ names:
|
||||
78: hair drier
|
||||
79: toothbrush
|
||||
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: |
|
||||
from ultralytics.utils.downloads import download
|
||||
|
@ -1,17 +1,17 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# COCO128-seg dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/segment/coco/
|
||||
# Example usage: yolo train data=coco128.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── coco128-seg ← downloads here (7 MB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/coco128-seg # dataset root dir
|
||||
train: images/train2017 # train images (relative to 'path') 128 images
|
||||
val: images/train2017 # val images (relative to 'path') 128 images
|
||||
test: # test images (optional)
|
||||
path: ../datasets/coco128-seg # dataset root dir
|
||||
train: images/train2017 # train images (relative to 'path') 128 images
|
||||
val: images/train2017 # val images (relative to 'path') 128 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes
|
||||
names:
|
||||
@ -96,6 +96,5 @@ names:
|
||||
78: hair drier
|
||||
79: toothbrush
|
||||
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://ultralytics.com/assets/coco128-seg.zip
|
||||
|
@ -1,17 +1,17 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/
|
||||
# Example usage: yolo train data=coco128.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── coco128 ← downloads here (7 MB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/coco128 # dataset root dir
|
||||
train: images/train2017 # train images (relative to 'path') 128 images
|
||||
val: images/train2017 # val images (relative to 'path') 128 images
|
||||
test: # test images (optional)
|
||||
path: ../datasets/coco128 # dataset root dir
|
||||
train: images/train2017 # train images (relative to 'path') 128 images
|
||||
val: images/train2017 # val images (relative to 'path') 128 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes
|
||||
names:
|
||||
@ -96,6 +96,5 @@ names:
|
||||
78: hair drier
|
||||
79: toothbrush
|
||||
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://ultralytics.com/assets/coco128.zip
|
||||
|
@ -1,20 +1,20 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# COCO8-pose dataset (first 8 images from COCO train2017) by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/pose/coco8-pose/
|
||||
# Example usage: yolo train data=coco8-pose.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── coco8-pose ← downloads here (1 MB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/coco8-pose # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
test: # test images (optional)
|
||||
path: ../datasets/coco8-pose # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Keypoints
|
||||
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
|
||||
|
||||
# Classes
|
||||
|
@ -1,17 +1,17 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# COCO8-seg dataset (first 8 images from COCO train2017) by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/segment/coco8-seg/
|
||||
# Example usage: yolo train data=coco8-seg.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── coco8-seg ← downloads here (1 MB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/coco8-seg # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
test: # test images (optional)
|
||||
path: ../datasets/coco8-seg # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes
|
||||
names:
|
||||
@ -96,6 +96,5 @@ names:
|
||||
78: hair drier
|
||||
79: toothbrush
|
||||
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://ultralytics.com/assets/coco8-seg.zip
|
||||
|
@ -1,17 +1,17 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# COCO8 dataset (first 8 images from COCO train2017) by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/coco8/
|
||||
# Example usage: yolo train data=coco8.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── coco8 ← downloads here (1 MB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/coco8 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
test: # test images (optional)
|
||||
path: ../datasets/coco8 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes
|
||||
names:
|
||||
@ -96,6 +96,5 @@ names:
|
||||
78: hair drier
|
||||
79: toothbrush
|
||||
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://ultralytics.com/assets/coco8.zip
|
||||
|
21
ultralytics/cfg/datasets/crack-seg.yaml
Normal file
21
ultralytics/cfg/datasets/crack-seg.yaml
Normal file
@ -0,0 +1,21 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# Crack-seg dataset by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/segment/crack-seg/
|
||||
# Example usage: yolo train data=crack-seg.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── crack-seg ← downloads here (91.2 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/crack-seg # dataset root dir
|
||||
train: train/images # train images (relative to 'path') 3717 images
|
||||
val: valid/images # val images (relative to 'path') 112 images
|
||||
test: test/images # test images (relative to 'path') 200 images
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: crack
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://ultralytics.com/assets/crack-seg.zip
|
34
ultralytics/cfg/datasets/dota8.yaml
Normal file
34
ultralytics/cfg/datasets/dota8.yaml
Normal file
@ -0,0 +1,34 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# DOTA8 dataset 8 images from split DOTAv1 dataset by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/obb/dota8/
|
||||
# Example usage: yolo train model=yolov8n-obb.pt data=dota8.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── dota8 ← downloads here (1MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/dota8 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
|
||||
# Classes for DOTA 1.0
|
||||
names:
|
||||
0: plane
|
||||
1: ship
|
||||
2: storage tank
|
||||
3: baseball diamond
|
||||
4: tennis court
|
||||
5: basketball court
|
||||
6: ground track field
|
||||
7: harbor
|
||||
8: bridge
|
||||
9: large vehicle
|
||||
10: small vehicle
|
||||
11: helicopter
|
||||
12: roundabout
|
||||
13: soccer ball field
|
||||
14: swimming pool
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/yolov5/releases/download/v1.0/dota8.zip
|
@ -1,17 +1,17 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# Open Images v7 dataset https://storage.googleapis.com/openimages/web/index.html by Google
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/open-images-v7/
|
||||
# Example usage: yolo train data=open-images-v7.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── open-images-v7 ← downloads here (561 GB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/open-images-v7 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 1743042 images
|
||||
val: images/val # val images (relative to 'path') 41620 images
|
||||
test: # test images (optional)
|
||||
path: ../datasets/open-images-v7 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 1743042 images
|
||||
val: images/val # val images (relative to 'path') 41620 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes
|
||||
names:
|
||||
@ -617,7 +617,6 @@ names:
|
||||
599: Zebra
|
||||
600: Zucchini
|
||||
|
||||
|
||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||
download: |
|
||||
from ultralytics.utils import LOGGER, SETTINGS, Path, is_ubuntu, get_ubuntu_version
|
||||
|
21
ultralytics/cfg/datasets/package-seg.yaml
Normal file
21
ultralytics/cfg/datasets/package-seg.yaml
Normal file
@ -0,0 +1,21 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# Package-seg dataset by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/segment/package-seg/
|
||||
# Example usage: yolo train data=package-seg.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── package-seg ← downloads here (102 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/package-seg # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 1920 images
|
||||
val: images/val # val images (relative to 'path') 89 images
|
||||
test: test/images # test images (relative to 'path') 188 images
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: package
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://ultralytics.com/assets/package-seg.zip
|
24
ultralytics/cfg/datasets/tiger-pose.yaml
Normal file
24
ultralytics/cfg/datasets/tiger-pose.yaml
Normal file
@ -0,0 +1,24 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# Tiger Pose dataset by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/pose/tiger-pose/
|
||||
# Example usage: yolo train data=tiger-pose.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── tiger-pose ← downloads here (75.3 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/tiger-pose # dataset root dir
|
||||
train: train # train images (relative to 'path') 210 images
|
||||
val: val # val images (relative to 'path') 53 images
|
||||
|
||||
# Keypoints
|
||||
kpt_shape: [12, 2] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
flip_idx: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: tiger
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://ultralytics.com/assets/tiger-pose.zip
|
@ -1,17 +1,17 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
|
||||
# -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! --------
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/xview/
|
||||
# Example usage: yolo train data=xView.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── xView ← downloads here (20.7 GB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/xView # dataset root dir
|
||||
train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
|
||||
val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
|
||||
path: ../datasets/xView # dataset root dir
|
||||
train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
|
||||
val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
|
||||
|
||||
# Classes
|
||||
names:
|
||||
@ -76,7 +76,6 @@ names:
|
||||
58: Pylon
|
||||
59: Tower
|
||||
|
||||
|
||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||
download: |
|
||||
import json
|
||||
|
@ -1,116 +1,127 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# Default training settings and hyperparameters for medium-augmentation COCO training
|
||||
|
||||
task: detect # (str) YOLO task, i.e. detect, segment, classify, pose
|
||||
mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark
|
||||
task: detect # (str) YOLO task, i.e. detect, segment, classify, pose
|
||||
mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark
|
||||
|
||||
# Train settings -------------------------------------------------------------------------------------------------------
|
||||
model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
|
||||
data: # (str, optional) path to data file, i.e. coco128.yaml
|
||||
epochs: 100 # (int) number of epochs to train for
|
||||
patience: 50 # (int) epochs to wait for no observable improvement for early stopping of training
|
||||
batch: 16 # (int) number of images per batch (-1 for AutoBatch)
|
||||
imgsz: 640 # (int | list) input images size as int for train and val modes, or list[w,h] for predict and export modes
|
||||
save: True # (bool) save train checkpoints and predict results
|
||||
model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
|
||||
data: # (str, optional) path to data file, i.e. coco128.yaml
|
||||
epochs: 100 # (int) number of epochs to train for
|
||||
time: # (float, optional) number of hours to train for, overrides epochs if supplied
|
||||
patience: 100 # (int) epochs to wait for no observable improvement for early stopping of training
|
||||
batch: 16 # (int) number of images per batch (-1 for AutoBatch)
|
||||
imgsz: 640 # (int | list) input images size as int for train and val modes, or list[w,h] for predict and export modes
|
||||
save: True # (bool) save train checkpoints and predict results
|
||||
save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1)
|
||||
cache: False # (bool) True/ram, disk or False. Use cache for data loading
|
||||
device: # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
|
||||
workers: 8 # (int) number of worker threads for data loading (per RANK if DDP)
|
||||
project: # (str, optional) project name
|
||||
name: # (str, optional) experiment name, results saved to 'project/name' directory
|
||||
exist_ok: False # (bool) whether to overwrite existing experiment
|
||||
pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str)
|
||||
optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
|
||||
verbose: True # (bool) whether to print verbose output
|
||||
seed: 0 # (int) random seed for reproducibility
|
||||
deterministic: True # (bool) whether to enable deterministic mode
|
||||
single_cls: False # (bool) train multi-class data as single-class
|
||||
rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val'
|
||||
cos_lr: False # (bool) use cosine learning rate scheduler
|
||||
close_mosaic: 10 # (int) disable mosaic augmentation for final epochs (0 to disable)
|
||||
resume: False # (bool) resume training from last checkpoint
|
||||
amp: True # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check
|
||||
fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set)
|
||||
profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers
|
||||
freeze: None # (int | list, optional) freeze first n layers, or freeze list of layer indices during training
|
||||
val_period: 1 # (int) Validation every x epochs
|
||||
cache: False # (bool) True/ram, disk or False. Use cache for data loading
|
||||
device: # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
|
||||
workers: 8 # (int) number of worker threads for data loading (per RANK if DDP)
|
||||
project: # (str, optional) project name
|
||||
name: # (str, optional) experiment name, results saved to 'project/name' directory
|
||||
exist_ok: False # (bool) whether to overwrite existing experiment
|
||||
pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str)
|
||||
optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
|
||||
verbose: True # (bool) whether to print verbose output
|
||||
seed: 0 # (int) random seed for reproducibility
|
||||
deterministic: True # (bool) whether to enable deterministic mode
|
||||
single_cls: False # (bool) train multi-class data as single-class
|
||||
rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val'
|
||||
cos_lr: False # (bool) use cosine learning rate scheduler
|
||||
close_mosaic: 10 # (int) disable mosaic augmentation for final epochs (0 to disable)
|
||||
resume: False # (bool) resume training from last checkpoint
|
||||
amp: True # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check
|
||||
fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set)
|
||||
profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers
|
||||
freeze: None # (int | list, optional) freeze first n layers, or freeze list of layer indices during training
|
||||
multi_scale: False # (bool) Whether to use multiscale during training
|
||||
# Segmentation
|
||||
overlap_mask: True # (bool) masks should overlap during training (segment train only)
|
||||
mask_ratio: 4 # (int) mask downsample ratio (segment train only)
|
||||
overlap_mask: True # (bool) masks should overlap during training (segment train only)
|
||||
mask_ratio: 4 # (int) mask downsample ratio (segment train only)
|
||||
# Classification
|
||||
dropout: 0.0 # (float) use dropout regularization (classify train only)
|
||||
dropout: 0.0 # (float) use dropout regularization (classify train only)
|
||||
|
||||
# Val/Test settings ----------------------------------------------------------------------------------------------------
|
||||
val: True # (bool) validate/test during training
|
||||
split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train'
|
||||
save_json: False # (bool) save results to JSON file
|
||||
save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions)
|
||||
conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val)
|
||||
iou: 0.7 # (float) intersection over union (IoU) threshold for NMS
|
||||
max_det: 300 # (int) maximum number of detections per image
|
||||
half: False # (bool) use half precision (FP16)
|
||||
dnn: False # (bool) use OpenCV DNN for ONNX inference
|
||||
plots: True # (bool) save plots during train/val
|
||||
val: True # (bool) validate/test during training
|
||||
split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train'
|
||||
save_json: False # (bool) save results to JSON file
|
||||
save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions)
|
||||
conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val)
|
||||
iou: 0.7 # (float) intersection over union (IoU) threshold for NMS
|
||||
max_det: 300 # (int) maximum number of detections per image
|
||||
half: False # (bool) use half precision (FP16)
|
||||
dnn: False # (bool) use OpenCV DNN for ONNX inference
|
||||
plots: True # (bool) save plots and images during train/val
|
||||
|
||||
# Prediction settings --------------------------------------------------------------------------------------------------
|
||||
source: # (str, optional) source directory for images or videos
|
||||
show: False # (bool) show results if possible
|
||||
save_txt: False # (bool) save results as .txt file
|
||||
save_conf: False # (bool) save results with confidence scores
|
||||
save_crop: False # (bool) save cropped images with results
|
||||
show_labels: True # (bool) show object labels in plots
|
||||
show_conf: True # (bool) show object confidence scores in plots
|
||||
vid_stride: 1 # (int) video frame-rate stride
|
||||
stream_buffer: False # (bool) buffer all streaming frames (True) or return the most recent frame (False)
|
||||
line_width: # (int, optional) line width of the bounding boxes, auto if missing
|
||||
visualize: False # (bool) visualize model features
|
||||
augment: False # (bool) apply image augmentation to prediction sources
|
||||
agnostic_nms: False # (bool) class-agnostic NMS
|
||||
classes: # (int | list[int], optional) filter results by class, i.e. classes=0, or classes=[0,2,3]
|
||||
retina_masks: False # (bool) use high-resolution segmentation masks
|
||||
boxes: True # (bool) Show boxes in segmentation predictions
|
||||
# Predict settings -----------------------------------------------------------------------------------------------------
|
||||
source: # (str, optional) source directory for images or videos
|
||||
vid_stride: 1 # (int) video frame-rate stride
|
||||
stream_buffer: False # (bool) buffer all streaming frames (True) or return the most recent frame (False)
|
||||
visualize: False # (bool) visualize model features
|
||||
augment: False # (bool) apply image augmentation to prediction sources
|
||||
agnostic_nms: False # (bool) class-agnostic NMS
|
||||
classes: # (int | list[int], optional) filter results by class, i.e. classes=0, or classes=[0,2,3]
|
||||
retina_masks: False # (bool) use high-resolution segmentation masks
|
||||
embed: # (list[int], optional) return feature vectors/embeddings from given layers
|
||||
|
||||
# Visualize settings ---------------------------------------------------------------------------------------------------
|
||||
show: False # (bool) show predicted images and videos if environment allows
|
||||
save_frames: False # (bool) save predicted individual video frames
|
||||
save_txt: False # (bool) save results as .txt file
|
||||
save_conf: False # (bool) save results with confidence scores
|
||||
save_crop: False # (bool) save cropped images with results
|
||||
show_labels: True # (bool) show prediction labels, i.e. 'person'
|
||||
show_conf: True # (bool) show prediction confidence, i.e. '0.99'
|
||||
show_boxes: True # (bool) show prediction boxes
|
||||
line_width: # (int, optional) line width of the bounding boxes. Scaled to image size if None.
|
||||
|
||||
# Export settings ------------------------------------------------------------------------------------------------------
|
||||
format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats
|
||||
keras: False # (bool) use Kera=s
|
||||
optimize: False # (bool) TorchScript: optimize for mobile
|
||||
int8: False # (bool) CoreML/TF INT8 quantization
|
||||
dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes
|
||||
simplify: False # (bool) ONNX: simplify model
|
||||
opset: # (int, optional) ONNX: opset version
|
||||
workspace: 4 # (int) TensorRT: workspace size (GB)
|
||||
nms: False # (bool) CoreML: add NMS
|
||||
format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats
|
||||
keras: False # (bool) use Kera=s
|
||||
optimize: False # (bool) TorchScript: optimize for mobile
|
||||
int8: False # (bool) CoreML/TF INT8 quantization
|
||||
dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes
|
||||
simplify: False # (bool) ONNX: simplify model using `onnxslim`
|
||||
opset: # (int, optional) ONNX: opset version
|
||||
workspace: 4 # (int) TensorRT: workspace size (GB)
|
||||
nms: False # (bool) CoreML: add NMS
|
||||
|
||||
# Hyperparameters ------------------------------------------------------------------------------------------------------
|
||||
lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
|
||||
lrf: 0.01 # (float) final learning rate (lr0 * lrf)
|
||||
momentum: 0.937 # (float) SGD momentum/Adam beta1
|
||||
weight_decay: 0.0005 # (float) optimizer weight decay 5e-4
|
||||
warmup_epochs: 3.0 # (float) warmup epochs (fractions ok)
|
||||
warmup_momentum: 0.8 # (float) warmup initial momentum
|
||||
warmup_bias_lr: 0.1 # (float) warmup initial bias lr
|
||||
box: 7.5 # (float) box loss gain
|
||||
cls: 0.5 # (float) cls loss gain (scale with pixels)
|
||||
dfl: 1.5 # (float) dfl loss gain
|
||||
pose: 12.0 # (float) pose loss gain
|
||||
kobj: 1.0 # (float) keypoint obj loss gain
|
||||
label_smoothing: 0.0 # (float) label smoothing (fraction)
|
||||
nbs: 64 # (int) nominal batch size
|
||||
hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction)
|
||||
hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction)
|
||||
hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction)
|
||||
degrees: 0.0 # (float) image rotation (+/- deg)
|
||||
translate: 0.1 # (float) image translation (+/- fraction)
|
||||
scale: 0.5 # (float) image scale (+/- gain)
|
||||
shear: 0.0 # (float) image shear (+/- deg)
|
||||
perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001
|
||||
flipud: 0.0 # (float) image flip up-down (probability)
|
||||
fliplr: 0.5 # (float) image flip left-right (probability)
|
||||
mosaic: 1.0 # (float) image mosaic (probability)
|
||||
mixup: 0.0 # (float) image mixup (probability)
|
||||
copy_paste: 0.0 # (float) segment copy-paste (probability)
|
||||
lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
|
||||
lrf: 0.01 # (float) final learning rate (lr0 * lrf)
|
||||
momentum: 0.937 # (float) SGD momentum/Adam beta1
|
||||
weight_decay: 0.0005 # (float) optimizer weight decay 5e-4
|
||||
warmup_epochs: 3.0 # (float) warmup epochs (fractions ok)
|
||||
warmup_momentum: 0.8 # (float) warmup initial momentum
|
||||
warmup_bias_lr: 0.1 # (float) warmup initial bias lr
|
||||
box: 7.5 # (float) box loss gain
|
||||
cls: 0.5 # (float) cls loss gain (scale with pixels)
|
||||
dfl: 1.5 # (float) dfl loss gain
|
||||
pose: 12.0 # (float) pose loss gain
|
||||
kobj: 1.0 # (float) keypoint obj loss gain
|
||||
label_smoothing: 0.0 # (float) label smoothing (fraction)
|
||||
nbs: 64 # (int) nominal batch size
|
||||
hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction)
|
||||
hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction)
|
||||
hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction)
|
||||
degrees: 0.0 # (float) image rotation (+/- deg)
|
||||
translate: 0.1 # (float) image translation (+/- fraction)
|
||||
scale: 0.5 # (float) image scale (+/- gain)
|
||||
shear: 0.0 # (float) image shear (+/- deg)
|
||||
perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001
|
||||
flipud: 0.0 # (float) image flip up-down (probability)
|
||||
fliplr: 0.5 # (float) image flip left-right (probability)
|
||||
bgr: 0.0 # (float) image channel BGR (probability)
|
||||
mosaic: 1.0 # (float) image mosaic (probability)
|
||||
mixup: 0.0 # (float) image mixup (probability)
|
||||
copy_paste: 0.0 # (float) segment copy-paste (probability)
|
||||
auto_augment: randaugment # (str) auto augmentation policy for classification (randaugment, autoaugment, augmix)
|
||||
erasing: 0.4 # (float) probability of random erasing during classification training (0-1)
|
||||
crop_fraction: 1.0 # (float) image crop fraction for classification evaluation/inference (0-1)
|
||||
|
||||
# Custom config.yaml ---------------------------------------------------------------------------------------------------
|
||||
cfg: # (str, optional) for overriding defaults.yaml
|
||||
cfg: # (str, optional) for overriding defaults.yaml
|
||||
|
||||
# Tracker settings ------------------------------------------------------------------------------------------------------
|
||||
tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml]
|
||||
tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml]
|
||||
|
@ -14,8 +14,7 @@ Model `*.yaml` files may be used directly in the Command Line Interface (CLI) wi
|
||||
yolo task=detect mode=train model=yolov8n.yaml data=coco128.yaml epochs=100
|
||||
```
|
||||
|
||||
They may also be used directly in a Python environment, and accepts the same
|
||||
[arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
|
||||
They may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
@ -2,49 +2,49 @@
|
||||
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
l: [1.00, 1.00, 1024]
|
||||
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, HGStem, [32, 48]] # 0-P2/4
|
||||
- [-1, 6, HGBlock, [48, 128, 3]] # stage 1
|
||||
- [-1, 1, HGStem, [32, 48]] # 0-P2/4
|
||||
- [-1, 6, HGBlock, [48, 128, 3]] # stage 1
|
||||
|
||||
- [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
|
||||
- [-1, 6, HGBlock, [96, 512, 3]] # stage 2
|
||||
- [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
|
||||
- [-1, 6, HGBlock, [96, 512, 3]] # stage 2
|
||||
|
||||
- [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P3/16
|
||||
- [-1, 6, HGBlock, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
|
||||
- [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P3/16
|
||||
- [-1, 6, HGBlock, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
|
||||
- [-1, 6, HGBlock, [192, 1024, 5, True, True]]
|
||||
- [-1, 6, HGBlock, [192, 1024, 5, True, True]] # stage 3
|
||||
- [-1, 6, HGBlock, [192, 1024, 5, True, True]] # stage 3
|
||||
|
||||
- [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P4/32
|
||||
- [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4
|
||||
- [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P4/32
|
||||
- [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4
|
||||
|
||||
head:
|
||||
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
|
||||
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
|
||||
- [-1, 1, AIFI, [1024, 8]]
|
||||
- [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0
|
||||
- [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
|
||||
- [[-2, -1], 1, Concat, [1]]
|
||||
- [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
|
||||
- [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1
|
||||
- [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
|
||||
- [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
|
||||
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
|
||||
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
|
||||
- [[-1, 17], 1, Concat, [1]] # cat Y4
|
||||
- [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
|
||||
- [[-1, 17], 1, Concat, [1]] # cat Y4
|
||||
- [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
|
||||
- [[-1, 12], 1, Concat, [1]] # cat Y5
|
||||
- [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
|
||||
- [[-1, 12], 1, Concat, [1]] # cat Y5
|
||||
- [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1
|
||||
|
||||
- [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
|
||||
- [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
|
||||
|
42
ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml
Normal file
42
ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml
Normal file
@ -0,0 +1,42 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# RT-DETR-ResNet101 object detection model with P3-P5 outputs.
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
l: [1.00, 1.00, 1024]
|
||||
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, ResNetLayer, [3, 64, 1, True, 1]] # 0
|
||||
- [-1, 1, ResNetLayer, [64, 64, 1, False, 3]] # 1
|
||||
- [-1, 1, ResNetLayer, [256, 128, 2, False, 4]] # 2
|
||||
- [-1, 1, ResNetLayer, [512, 256, 2, False, 23]] # 3
|
||||
- [-1, 1, ResNetLayer, [1024, 512, 2, False, 3]] # 4
|
||||
|
||||
head:
|
||||
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5
|
||||
- [-1, 1, AIFI, [1024, 8]]
|
||||
- [-1, 1, Conv, [256, 1, 1]] # 7
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9
|
||||
- [[-2, -1], 1, Concat, [1]]
|
||||
- [-1, 3, RepC3, [256]] # 11
|
||||
- [-1, 1, Conv, [256, 1, 1]] # 12
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14
|
||||
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0
|
||||
- [[-1, 12], 1, Concat, [1]] # cat Y4
|
||||
- [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1
|
||||
- [[-1, 7], 1, Concat, [1]] # cat Y5
|
||||
- [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1
|
||||
|
||||
- [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
|
42
ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml
Normal file
42
ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml
Normal file
@ -0,0 +1,42 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
l: [1.00, 1.00, 1024]
|
||||
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, ResNetLayer, [3, 64, 1, True, 1]] # 0
|
||||
- [-1, 1, ResNetLayer, [64, 64, 1, False, 3]] # 1
|
||||
- [-1, 1, ResNetLayer, [256, 128, 2, False, 4]] # 2
|
||||
- [-1, 1, ResNetLayer, [512, 256, 2, False, 6]] # 3
|
||||
- [-1, 1, ResNetLayer, [1024, 512, 2, False, 3]] # 4
|
||||
|
||||
head:
|
||||
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5
|
||||
- [-1, 1, AIFI, [1024, 8]]
|
||||
- [-1, 1, Conv, [256, 1, 1]] # 7
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9
|
||||
- [[-2, -1], 1, Concat, [1]]
|
||||
- [-1, 3, RepC3, [256]] # 11
|
||||
- [-1, 1, Conv, [256, 1, 1]] # 12
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14
|
||||
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0
|
||||
- [[-1, 12], 1, Concat, [1]] # cat Y4
|
||||
- [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1
|
||||
- [[-1, 7], 1, Concat, [1]] # cat Y5
|
||||
- [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1
|
||||
|
||||
- [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
|
@ -2,53 +2,53 @@
|
||||
# RT-DETR-x object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
x: [1.00, 1.00, 2048]
|
||||
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, HGStem, [32, 64]] # 0-P2/4
|
||||
- [-1, 6, HGBlock, [64, 128, 3]] # stage 1
|
||||
- [-1, 1, HGStem, [32, 64]] # 0-P2/4
|
||||
- [-1, 6, HGBlock, [64, 128, 3]] # stage 1
|
||||
|
||||
- [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
|
||||
- [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
|
||||
- [-1, 6, HGBlock, [128, 512, 3]]
|
||||
- [-1, 6, HGBlock, [128, 512, 3, False, True]] # 4-stage 2
|
||||
- [-1, 6, HGBlock, [128, 512, 3, False, True]] # 4-stage 2
|
||||
|
||||
- [-1, 1, DWConv, [512, 3, 2, 1, False]] # 5-P3/16
|
||||
- [-1, 6, HGBlock, [256, 1024, 5, True, False]] # cm, c2, k, light, shortcut
|
||||
- [-1, 1, DWConv, [512, 3, 2, 1, False]] # 5-P3/16
|
||||
- [-1, 6, HGBlock, [256, 1024, 5, True, False]] # cm, c2, k, light, shortcut
|
||||
- [-1, 6, HGBlock, [256, 1024, 5, True, True]]
|
||||
- [-1, 6, HGBlock, [256, 1024, 5, True, True]]
|
||||
- [-1, 6, HGBlock, [256, 1024, 5, True, True]]
|
||||
- [-1, 6, HGBlock, [256, 1024, 5, True, True]] # 10-stage 3
|
||||
- [-1, 6, HGBlock, [256, 1024, 5, True, True]] # 10-stage 3
|
||||
|
||||
- [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 11-P4/32
|
||||
- [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 11-P4/32
|
||||
- [-1, 6, HGBlock, [512, 2048, 5, True, False]]
|
||||
- [-1, 6, HGBlock, [512, 2048, 5, True, True]] # 13-stage 4
|
||||
- [-1, 6, HGBlock, [512, 2048, 5, True, True]] # 13-stage 4
|
||||
|
||||
head:
|
||||
- [-1, 1, Conv, [384, 1, 1, None, 1, 1, False]] # 14 input_proj.2
|
||||
- [-1, 1, Conv, [384, 1, 1, None, 1, 1, False]] # 14 input_proj.2
|
||||
- [-1, 1, AIFI, [2048, 8]]
|
||||
- [-1, 1, Conv, [384, 1, 1]] # 16, Y5, lateral_convs.0
|
||||
- [-1, 1, Conv, [384, 1, 1]] # 16, Y5, lateral_convs.0
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [10, 1, Conv, [384, 1, 1, None, 1, 1, False]] # 18 input_proj.1
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [10, 1, Conv, [384, 1, 1, None, 1, 1, False]] # 18 input_proj.1
|
||||
- [[-2, -1], 1, Concat, [1]]
|
||||
- [-1, 3, RepC3, [384]] # 20, fpn_blocks.0
|
||||
- [-1, 1, Conv, [384, 1, 1]] # 21, Y4, lateral_convs.1
|
||||
- [-1, 3, RepC3, [384]] # 20, fpn_blocks.0
|
||||
- [-1, 1, Conv, [384, 1, 1]] # 21, Y4, lateral_convs.1
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [4, 1, Conv, [384, 1, 1, None, 1, 1, False]] # 23 input_proj.0
|
||||
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, RepC3, [384]] # X3 (25), fpn_blocks.1
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [4, 1, Conv, [384, 1, 1, None, 1, 1, False]] # 23 input_proj.0
|
||||
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, RepC3, [384]] # X3 (25), fpn_blocks.1
|
||||
|
||||
- [-1, 1, Conv, [384, 3, 2]] # 26, downsample_convs.0
|
||||
- [[-1, 21], 1, Concat, [1]] # cat Y4
|
||||
- [-1, 3, RepC3, [384]] # F4 (28), pan_blocks.0
|
||||
- [-1, 1, Conv, [384, 3, 2]] # 26, downsample_convs.0
|
||||
- [[-1, 21], 1, Concat, [1]] # cat Y4
|
||||
- [-1, 3, RepC3, [384]] # F4 (28), pan_blocks.0
|
||||
|
||||
- [-1, 1, Conv, [384, 3, 2]] # 29, downsample_convs.1
|
||||
- [[-1, 16], 1, Concat, [1]] # cat Y5
|
||||
- [-1, 3, RepC3, [384]] # F5 (31), pan_blocks.1
|
||||
- [-1, 1, Conv, [384, 3, 2]] # 29, downsample_convs.1
|
||||
- [[-1, 16], 1, Concat, [1]] # cat Y5
|
||||
- [-1, 3, RepC3, [384]] # F5 (31), pan_blocks.1
|
||||
|
||||
- [[25, 28, 31], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
|
||||
- [[25, 28, 31], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
|
||||
|
40
ultralytics/cfg/models/v10/yolov10b.yaml
Normal file
40
ultralytics/cfg/models/v10/yolov10b.yaml
Normal file
@ -0,0 +1,40 @@
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
b: [0.67, 1.00, 512]
|
||||
|
||||
# YOLOv8.0n backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C2f, [128, True]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C2f, [256, True]]
|
||||
- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C2f, [512, True]]
|
||||
- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C2fCIB, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
- [-1, 1, PSA, [1024]] # 10
|
||||
|
||||
# YOLOv8.0n head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2fCIB, [512, True]] # 13
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2f, [256]] # 16 (P3/8-small)
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]]
|
||||
- [[-1, 13], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2fCIB, [512, True]] # 19 (P4/16-medium)
|
||||
|
||||
- [-1, 1, SCDown, [512, 3, 2]]
|
||||
- [[-1, 10], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2fCIB, [1024, True]] # 22 (P5/32-large)
|
||||
|
||||
- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
|
40
ultralytics/cfg/models/v10/yolov10l.yaml
Normal file
40
ultralytics/cfg/models/v10/yolov10l.yaml
Normal file
@ -0,0 +1,40 @@
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
|
||||
|
||||
# YOLOv8.0n backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C2f, [128, True]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C2f, [256, True]]
|
||||
- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C2f, [512, True]]
|
||||
- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C2fCIB, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
- [-1, 1, PSA, [1024]] # 10
|
||||
|
||||
# YOLOv8.0n head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2fCIB, [512, True]] # 13
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2f, [256]] # 16 (P3/8-small)
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]]
|
||||
- [[-1, 13], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2fCIB, [512, True]] # 19 (P4/16-medium)
|
||||
|
||||
- [-1, 1, SCDown, [512, 3, 2]]
|
||||
- [[-1, 10], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2fCIB, [1024, True]] # 22 (P5/32-large)
|
||||
|
||||
- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
|
43
ultralytics/cfg/models/v10/yolov10m.yaml
Normal file
43
ultralytics/cfg/models/v10/yolov10m.yaml
Normal file
@ -0,0 +1,43 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
|
||||
|
||||
# YOLOv8.0n backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C2f, [128, True]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C2f, [256, True]]
|
||||
- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C2f, [512, True]]
|
||||
- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C2fCIB, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
- [-1, 1, PSA, [1024]] # 10
|
||||
|
||||
# YOLOv8.0n head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2f, [512]] # 13
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2f, [256]] # 16 (P3/8-small)
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]]
|
||||
- [[-1, 13], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2fCIB, [512, True]] # 19 (P4/16-medium)
|
||||
|
||||
- [-1, 1, SCDown, [512, 3, 2]]
|
||||
- [[-1, 10], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2fCIB, [1024, True]] # 22 (P5/32-large)
|
||||
|
||||
- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
|
40
ultralytics/cfg/models/v10/yolov10n.yaml
Normal file
40
ultralytics/cfg/models/v10/yolov10n.yaml
Normal file
@ -0,0 +1,40 @@
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024]
|
||||
|
||||
# YOLOv8.0n backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C2f, [128, True]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C2f, [256, True]]
|
||||
- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C2f, [512, True]]
|
||||
- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C2f, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
- [-1, 1, PSA, [1024]] # 10
|
||||
|
||||
# YOLOv8.0n head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2f, [512]] # 13
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2f, [256]] # 16 (P3/8-small)
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]]
|
||||
- [[-1, 13], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2f, [512]] # 19 (P4/16-medium)
|
||||
|
||||
- [-1, 1, SCDown, [512, 3, 2]]
|
||||
- [[-1, 10], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)
|
||||
|
||||
- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
|
39
ultralytics/cfg/models/v10/yolov10s.yaml
Normal file
39
ultralytics/cfg/models/v10/yolov10s.yaml
Normal file
@ -0,0 +1,39 @@
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
s: [0.33, 0.50, 1024]
|
||||
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C2f, [128, True]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C2f, [256, True]]
|
||||
- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C2f, [512, True]]
|
||||
- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C2fCIB, [1024, True, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
- [-1, 1, PSA, [1024]] # 10
|
||||
|
||||
# YOLOv8.0n head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2f, [512]] # 13
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2f, [256]] # 16 (P3/8-small)
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]]
|
||||
- [[-1, 13], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2f, [512]] # 19 (P4/16-medium)
|
||||
|
||||
- [-1, 1, SCDown, [512, 3, 2]]
|
||||
- [[-1, 10], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)
|
||||
|
||||
- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
|
40
ultralytics/cfg/models/v10/yolov10x.yaml
Normal file
40
ultralytics/cfg/models/v10/yolov10x.yaml
Normal file
@ -0,0 +1,40 @@
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
x: [1.00, 1.25, 512]
|
||||
|
||||
# YOLOv8.0n backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C2f, [128, True]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C2f, [256, True]]
|
||||
- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C2fCIB, [512, True]]
|
||||
- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C2fCIB, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
- [-1, 1, PSA, [1024]] # 10
|
||||
|
||||
# YOLOv8.0n head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2fCIB, [512, True]] # 13
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2f, [256]] # 16 (P3/8-small)
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]]
|
||||
- [[-1, 13], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2fCIB, [512, True]] # 19 (P4/16-medium)
|
||||
|
||||
- [-1, 1, SCDown, [512, 3, 2]]
|
||||
- [[-1, 10], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2fCIB, [1024, True]] # 22 (P5/32-large)
|
||||
|
||||
- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
|
@ -2,47 +2,45 @@
|
||||
# YOLOv3-SPP object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov3
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple
|
||||
width_multiple: 1.0 # layer channel multiple
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple
|
||||
width_multiple: 1.0 # layer channel multiple
|
||||
|
||||
# darknet53 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[[-1, 1, Conv, [32, 3, 1]], # 0
|
||||
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
||||
[-1, 1, Bottleneck, [64]],
|
||||
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
||||
[-1, 2, Bottleneck, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
||||
[-1, 8, Bottleneck, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
||||
[-1, 8, Bottleneck, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
||||
[-1, 4, Bottleneck, [1024]], # 10
|
||||
]
|
||||
- [-1, 1, Conv, [32, 3, 1]] # 0
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
|
||||
- [-1, 1, Bottleneck, [64]]
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 3-P2/4
|
||||
- [-1, 2, Bottleneck, [128]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 5-P3/8
|
||||
- [-1, 8, Bottleneck, [256]]
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 7-P4/16
|
||||
- [-1, 8, Bottleneck, [512]]
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 9-P5/32
|
||||
- [-1, 4, Bottleneck, [1024]] # 10
|
||||
|
||||
# YOLOv3-SPP head
|
||||
head:
|
||||
[[-1, 1, Bottleneck, [1024, False]],
|
||||
[-1, 1, SPP, [512, [5, 9, 13]]],
|
||||
[-1, 1, Conv, [1024, 3, 1]],
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
|
||||
- [-1, 1, Bottleneck, [1024, False]]
|
||||
- [-1, 1, SPP, [512, [5, 9, 13]]]
|
||||
- [-1, 1, Conv, [1024, 3, 1]]
|
||||
- [-1, 1, Conv, [512, 1, 1]]
|
||||
- [-1, 1, Conv, [1024, 3, 1]] # 15 (P5/32-large)
|
||||
|
||||
[-2, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 1, Bottleneck, [512, False]],
|
||||
[-1, 1, Bottleneck, [512, False]],
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
|
||||
- [-2, 1, Conv, [256, 1, 1]]
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 8], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 1, Bottleneck, [512, False]]
|
||||
- [-1, 1, Bottleneck, [512, False]]
|
||||
- [-1, 1, Conv, [256, 1, 1]]
|
||||
- [-1, 1, Conv, [512, 3, 1]] # 22 (P4/16-medium)
|
||||
|
||||
[-2, 1, Conv, [128, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 1, Bottleneck, [256, False]],
|
||||
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
|
||||
- [-2, 1, Conv, [128, 1, 1]]
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 1, Bottleneck, [256, False]]
|
||||
- [-1, 2, Bottleneck, [256, False]] # 27 (P3/8-small)
|
||||
|
||||
[[27, 22, 15], 1, Detect, [nc]], # Detect(P3, P4, P5)
|
||||
]
|
||||
- [[27, 22, 15], 1, Detect, [nc]] # Detect(P3, P4, P5)
|
||||
|
@ -2,38 +2,36 @@
|
||||
# YOLOv3-tiny object detection model with P4-P5 outputs. For details see https://docs.ultralytics.com/models/yolov3
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple
|
||||
width_multiple: 1.0 # layer channel multiple
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple
|
||||
width_multiple: 1.0 # layer channel multiple
|
||||
|
||||
# YOLOv3-tiny backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[[-1, 1, Conv, [16, 3, 1]], # 0
|
||||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
|
||||
[-1, 1, Conv, [32, 3, 1]],
|
||||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
|
||||
[-1, 1, Conv, [64, 3, 1]],
|
||||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
|
||||
[-1, 1, Conv, [128, 3, 1]],
|
||||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
|
||||
[-1, 1, Conv, [256, 3, 1]],
|
||||
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
|
||||
[-1, 1, Conv, [512, 3, 1]],
|
||||
[-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
|
||||
[-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
|
||||
]
|
||||
- [-1, 1, Conv, [16, 3, 1]] # 0
|
||||
- [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 1-P1/2
|
||||
- [-1, 1, Conv, [32, 3, 1]]
|
||||
- [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 3-P2/4
|
||||
- [-1, 1, Conv, [64, 3, 1]]
|
||||
- [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 5-P3/8
|
||||
- [-1, 1, Conv, [128, 3, 1]]
|
||||
- [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 7-P4/16
|
||||
- [-1, 1, Conv, [256, 3, 1]]
|
||||
- [-1, 1, nn.MaxPool2d, [2, 2, 0]] # 9-P5/32
|
||||
- [-1, 1, Conv, [512, 3, 1]]
|
||||
- [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]] # 11
|
||||
- [-1, 1, nn.MaxPool2d, [2, 1, 0]] # 12
|
||||
|
||||
# YOLOv3-tiny head
|
||||
head:
|
||||
[[-1, 1, Conv, [1024, 3, 1]],
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
|
||||
- [-1, 1, Conv, [1024, 3, 1]]
|
||||
- [-1, 1, Conv, [256, 1, 1]]
|
||||
- [-1, 1, Conv, [512, 3, 1]] # 15 (P5/32-large)
|
||||
|
||||
[-2, 1, Conv, [128, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
|
||||
- [-2, 1, Conv, [128, 1, 1]]
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 8], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 1, Conv, [256, 3, 1]] # 19 (P4/16-medium)
|
||||
|
||||
[[19, 15], 1, Detect, [nc]], # Detect(P4, P5)
|
||||
]
|
||||
- [[19, 15], 1, Detect, [nc]] # Detect(P4, P5)
|
||||
|
@ -2,47 +2,45 @@
|
||||
# YOLOv3 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov3
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple
|
||||
width_multiple: 1.0 # layer channel multiple
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple
|
||||
width_multiple: 1.0 # layer channel multiple
|
||||
|
||||
# darknet53 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[[-1, 1, Conv, [32, 3, 1]], # 0
|
||||
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
||||
[-1, 1, Bottleneck, [64]],
|
||||
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
||||
[-1, 2, Bottleneck, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
||||
[-1, 8, Bottleneck, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
||||
[-1, 8, Bottleneck, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
||||
[-1, 4, Bottleneck, [1024]], # 10
|
||||
]
|
||||
- [-1, 1, Conv, [32, 3, 1]] # 0
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
|
||||
- [-1, 1, Bottleneck, [64]]
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 3-P2/4
|
||||
- [-1, 2, Bottleneck, [128]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 5-P3/8
|
||||
- [-1, 8, Bottleneck, [256]]
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 7-P4/16
|
||||
- [-1, 8, Bottleneck, [512]]
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 9-P5/32
|
||||
- [-1, 4, Bottleneck, [1024]] # 10
|
||||
|
||||
# YOLOv3 head
|
||||
head:
|
||||
[[-1, 1, Bottleneck, [1024, False]],
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, Conv, [1024, 3, 1]],
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
|
||||
- [-1, 1, Bottleneck, [1024, False]]
|
||||
- [-1, 1, Conv, [512, 1, 1]]
|
||||
- [-1, 1, Conv, [1024, 3, 1]]
|
||||
- [-1, 1, Conv, [512, 1, 1]]
|
||||
- [-1, 1, Conv, [1024, 3, 1]] # 15 (P5/32-large)
|
||||
|
||||
[-2, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 1, Bottleneck, [512, False]],
|
||||
[-1, 1, Bottleneck, [512, False]],
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
|
||||
- [-2, 1, Conv, [256, 1, 1]]
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 8], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 1, Bottleneck, [512, False]]
|
||||
- [-1, 1, Bottleneck, [512, False]]
|
||||
- [-1, 1, Conv, [256, 1, 1]]
|
||||
- [-1, 1, Conv, [512, 3, 1]] # 22 (P4/16-medium)
|
||||
|
||||
[-2, 1, Conv, [128, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 1, Bottleneck, [256, False]],
|
||||
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
|
||||
- [-2, 1, Conv, [128, 1, 1]]
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 1, Bottleneck, [256, False]]
|
||||
- [-1, 2, Bottleneck, [256, False]] # 27 (P3/8-small)
|
||||
|
||||
[[27, 22, 15], 1, Detect, [nc]], # Detect(P3, P4, P5)
|
||||
]
|
||||
- [[27, 22, 15], 1, Detect, [nc]] # Detect(P3, P4, P5)
|
||||
|
@ -2,7 +2,7 @@
|
||||
# YOLOv5 object detection model with P3-P6 outputs. For details see https://docs.ultralytics.com/models/yolov5
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov5n-p6.yaml' will call yolov5-p6.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024]
|
||||
@ -14,48 +14,46 @@ scales: # model compound scaling constants, i.e. 'model=yolov5n-p6.yaml' will ca
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [768]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 11
|
||||
]
|
||||
- [-1, 1, Conv, [64, 6, 2, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C3, [128]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C3, [256]]
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 9, C3, [512]]
|
||||
- [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C3, [768]]
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
|
||||
- [-1, 3, C3, [1024]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 11
|
||||
|
||||
# YOLOv5 v6.0 head
|
||||
head:
|
||||
[[-1, 1, Conv, [768, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
||||
[-1, 3, C3, [768, False]], # 15
|
||||
- [-1, 1, Conv, [768, 1, 1]]
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 8], 1, Concat, [1]] # cat backbone P5
|
||||
- [-1, 3, C3, [768, False]] # 15
|
||||
|
||||
[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 19
|
||||
- [-1, 1, Conv, [512, 1, 1]]
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C3, [512, False]] # 19
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
||||
- [-1, 1, Conv, [256, 1, 1]]
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C3, [256, False]] # 23 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 20], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
||||
- [-1, 1, Conv, [256, 3, 2]]
|
||||
- [[-1, 20], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C3, [512, False]] # 26 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 16], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
||||
- [-1, 1, Conv, [512, 3, 2]]
|
||||
- [[-1, 16], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C3, [768, False]] # 29 (P5/32-large)
|
||||
|
||||
[-1, 1, Conv, [768, 3, 2]],
|
||||
[[-1, 12], 1, Concat, [1]], # cat head P6
|
||||
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
||||
- [-1, 1, Conv, [768, 3, 2]]
|
||||
- [[-1, 12], 1, Concat, [1]] # cat head P6
|
||||
- [-1, 3, C3, [1024, False]] # 32 (P6/64-xlarge)
|
||||
|
||||
[[23, 26, 29, 32], 1, Detect, [nc]], # Detect(P3, P4, P5, P6)
|
||||
]
|
||||
- [[23, 26, 29, 32], 1, Detect, [nc]] # Detect(P3, P4, P5, P6)
|
||||
|
@ -2,7 +2,7 @@
|
||||
# YOLOv5 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov5
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024]
|
||||
@ -14,37 +14,35 @@ scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 9
|
||||
]
|
||||
- [-1, 1, Conv, [64, 6, 2, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C3, [128]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C3, [256]]
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 9, C3, [512]]
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C3, [1024]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
|
||||
# YOLOv5 v6.0 head
|
||||
head:
|
||||
[[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 13
|
||||
- [-1, 1, Conv, [512, 1, 1]]
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C3, [512, False]] # 13
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||
- [-1, 1, Conv, [256, 1, 1]]
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C3, [256, False]] # 17 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||
- [-1, 1, Conv, [256, 3, 2]]
|
||||
- [[-1, 14], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C3, [512, False]] # 20 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||
- [-1, 1, Conv, [512, 3, 2]]
|
||||
- [[-1, 10], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C3, [1024, False]] # 23 (P5/32-large)
|
||||
|
||||
[[17, 20, 23], 1, Detect, [nc]], # Detect(P3, P4, P5)
|
||||
]
|
||||
- [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)
|
||||
|
@ -2,8 +2,8 @@
|
||||
# YOLOv6 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/models/yolov6
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
activation: nn.ReLU() # (optional) model default activation function
|
||||
nc: 80 # number of classes
|
||||
activation: nn.ReLU() # (optional) model default activation function
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov6n.yaml' will call yolov8.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024]
|
||||
@ -15,39 +15,39 @@ scales: # model compound scaling constants, i.e. 'model=yolov6n.yaml' will call
|
||||
# YOLOv6-3.0s backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 6, Conv, [128, 3, 1]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 12, Conv, [256, 3, 1]]
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 18, Conv, [512, 3, 1]]
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 6, Conv, [1024, 3, 1]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
|
||||
# YOLOv6-3.0s head
|
||||
head:
|
||||
- [-1, 1, Conv, [256, 1, 1]]
|
||||
- [-1, 1, nn.ConvTranspose2d, [256, 2, 2, 0]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 1, Conv, [256, 3, 1]]
|
||||
- [-1, 9, Conv, [256, 3, 1]] # 14
|
||||
- [-1, 9, Conv, [256, 3, 1]] # 14
|
||||
|
||||
- [-1, 1, Conv, [128, 1, 1]]
|
||||
- [-1, 1, nn.ConvTranspose2d, [128, 2, 2, 0]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 1, Conv, [128, 3, 1]]
|
||||
- [-1, 9, Conv, [128, 3, 1]] # 19
|
||||
- [-1, 9, Conv, [128, 3, 1]] # 19
|
||||
|
||||
- [-1, 1, Conv, [128, 3, 2]]
|
||||
- [[-1, 15], 1, Concat, [1]] # cat head P4
|
||||
- [[-1, 15], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 1, Conv, [256, 3, 1]]
|
||||
- [-1, 9, Conv, [256, 3, 1]] # 23
|
||||
- [-1, 9, Conv, [256, 3, 1]] # 23
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]]
|
||||
- [[-1, 10], 1, Concat, [1]] # cat head P5
|
||||
- [[-1, 10], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 1, Conv, [512, 3, 1]]
|
||||
- [-1, 9, Conv, [512, 3, 1]] # 27
|
||||
- [-1, 9, Conv, [512, 3, 1]] # 27
|
||||
|
||||
- [[19, 23, 27], 1, Detect, [nc]] # Detect(P3, P4, P5)
|
||||
- [[19, 23, 27], 1, Detect, [nc]] # Detect(P3, P4, P5)
|
||||
|
25
ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml
Normal file
25
ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml
Normal file
@ -0,0 +1,25 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# YOLOv8-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify
|
||||
|
||||
# Parameters
|
||||
nc: 1000 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024]
|
||||
s: [0.33, 0.50, 1024]
|
||||
m: [0.67, 0.75, 1024]
|
||||
l: [1.00, 1.00, 1024]
|
||||
x: [1.00, 1.25, 1024]
|
||||
|
||||
# YOLOv8.0n backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, ResNetLayer, [3, 64, 1, True, 1]] # 0-P1/2
|
||||
- [-1, 1, ResNetLayer, [64, 64, 1, False, 3]] # 1-P2/4
|
||||
- [-1, 1, ResNetLayer, [256, 128, 2, False, 4]] # 2-P3/8
|
||||
- [-1, 1, ResNetLayer, [512, 256, 2, False, 23]] # 3-P4/16
|
||||
- [-1, 1, ResNetLayer, [1024, 512, 2, False, 3]] # 4-P5/32
|
||||
|
||||
# YOLOv8.0n head
|
||||
head:
|
||||
- [-1, 1, Classify, [nc]] # Classify
|
25
ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml
Normal file
25
ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml
Normal file
@ -0,0 +1,25 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# YOLOv8-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify
|
||||
|
||||
# Parameters
|
||||
nc: 1000 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024]
|
||||
s: [0.33, 0.50, 1024]
|
||||
m: [0.67, 0.75, 1024]
|
||||
l: [1.00, 1.00, 1024]
|
||||
x: [1.00, 1.25, 1024]
|
||||
|
||||
# YOLOv8.0n backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, ResNetLayer, [3, 64, 1, True, 1]] # 0-P1/2
|
||||
- [-1, 1, ResNetLayer, [64, 64, 1, False, 3]] # 1-P2/4
|
||||
- [-1, 1, ResNetLayer, [256, 128, 2, False, 4]] # 2-P3/8
|
||||
- [-1, 1, ResNetLayer, [512, 256, 2, False, 6]] # 3-P4/16
|
||||
- [-1, 1, ResNetLayer, [1024, 512, 2, False, 3]] # 4-P5/32
|
||||
|
||||
# YOLOv8.0n head
|
||||
head:
|
||||
- [-1, 1, Classify, [nc]] # Classify
|
@ -2,7 +2,7 @@
|
||||
# YOLOv8-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify
|
||||
|
||||
# Parameters
|
||||
nc: 1000 # number of classes
|
||||
nc: 1000 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024]
|
||||
@ -14,16 +14,16 @@ scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will c
|
||||
# YOLOv8.0n backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C2f, [128, True]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C2f, [256, True]]
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C2f, [512, True]]
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C2f, [1024, True]]
|
||||
|
||||
# YOLOv8.0n head
|
||||
head:
|
||||
- [-1, 1, Classify, [nc]] # Classify
|
||||
- [-1, 1, Classify, [nc]] # Classify
|
||||
|
54
ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml
Normal file
54
ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml
Normal file
@ -0,0 +1,54 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# YOLOv8 object detection model with P2-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024] # YOLOv8n-ghost-p2 summary: 491 layers, 2033944 parameters, 2033928 gradients, 13.8 GFLOPs
|
||||
s: [0.33, 0.50, 1024] # YOLOv8s-ghost-p2 summary: 491 layers, 5562080 parameters, 5562064 gradients, 25.1 GFLOPs
|
||||
m: [0.67, 0.75, 768] # YOLOv8m-ghost-p2 summary: 731 layers, 9031728 parameters, 9031712 gradients, 42.8 GFLOPs
|
||||
l: [1.00, 1.00, 512] # YOLOv8l-ghost-p2 summary: 971 layers, 12214448 parameters, 12214432 gradients, 69.1 GFLOPs
|
||||
x: [1.00, 1.25, 512] # YOLOv8x-ghost-p2 summary: 971 layers, 18664776 parameters, 18664760 gradients, 103.3 GFLOPs
|
||||
|
||||
# YOLOv8.0-ghost backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, GhostConv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C3Ghost, [128, True]]
|
||||
- [-1, 1, GhostConv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C3Ghost, [256, True]]
|
||||
- [-1, 1, GhostConv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C3Ghost, [512, True]]
|
||||
- [-1, 1, GhostConv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C3Ghost, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
|
||||
# YOLOv8.0-ghost-p2 head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C3Ghost, [512]] # 12
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C3Ghost, [256]] # 15 (P3/8-small)
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 2], 1, Concat, [1]] # cat backbone P2
|
||||
- [-1, 3, C3Ghost, [128]] # 18 (P2/4-xsmall)
|
||||
|
||||
- [-1, 1, GhostConv, [128, 3, 2]]
|
||||
- [[-1, 15], 1, Concat, [1]] # cat head P3
|
||||
- [-1, 3, C3Ghost, [256]] # 21 (P3/8-small)
|
||||
|
||||
- [-1, 1, GhostConv, [256, 3, 2]]
|
||||
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C3Ghost, [512]] # 24 (P4/16-medium)
|
||||
|
||||
- [-1, 1, GhostConv, [512, 3, 2]]
|
||||
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C3Ghost, [1024]] # 27 (P5/32-large)
|
||||
|
||||
- [[18, 21, 24, 27], 1, Detect, [nc]] # Detect(P2, P3, P4, P5)
|
56
ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml
Normal file
56
ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml
Normal file
@ -0,0 +1,56 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# YOLOv8 object detection model with P3-P6 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will call yolov8-p6.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024] # YOLOv8n-ghost-p6 summary: 529 layers, 2901100 parameters, 2901084 gradients, 5.8 GFLOPs
|
||||
s: [0.33, 0.50, 1024] # YOLOv8s-ghost-p6 summary: 529 layers, 9520008 parameters, 9519992 gradients, 16.4 GFLOPs
|
||||
m: [0.67, 0.75, 768] # YOLOv8m-ghost-p6 summary: 789 layers, 18002904 parameters, 18002888 gradients, 34.4 GFLOPs
|
||||
l: [1.00, 1.00, 512] # YOLOv8l-ghost-p6 summary: 1049 layers, 21227584 parameters, 21227568 gradients, 55.3 GFLOPs
|
||||
x: [1.00, 1.25, 512] # YOLOv8x-ghost-p6 summary: 1049 layers, 33057852 parameters, 33057836 gradients, 85.7 GFLOPs
|
||||
|
||||
# YOLOv8.0-ghost backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, GhostConv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C3Ghost, [128, True]]
|
||||
- [-1, 1, GhostConv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C3Ghost, [256, True]]
|
||||
- [-1, 1, GhostConv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C3Ghost, [512, True]]
|
||||
- [-1, 1, GhostConv, [768, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C3Ghost, [768, True]]
|
||||
- [-1, 1, GhostConv, [1024, 3, 2]] # 9-P6/64
|
||||
- [-1, 3, C3Ghost, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 11
|
||||
|
||||
# YOLOv8.0-ghost-p6 head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 8], 1, Concat, [1]] # cat backbone P5
|
||||
- [-1, 3, C3Ghost, [768]] # 14
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C3Ghost, [512]] # 17
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C3Ghost, [256]] # 20 (P3/8-small)
|
||||
|
||||
- [-1, 1, GhostConv, [256, 3, 2]]
|
||||
- [[-1, 17], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C3Ghost, [512]] # 23 (P4/16-medium)
|
||||
|
||||
- [-1, 1, GhostConv, [512, 3, 2]]
|
||||
- [[-1, 14], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C3Ghost, [768]] # 26 (P5/32-large)
|
||||
|
||||
- [-1, 1, GhostConv, [768, 3, 2]]
|
||||
- [[-1, 11], 1, Concat, [1]] # cat head P6
|
||||
- [-1, 3, C3Ghost, [1024]] # 29 (P6/64-xlarge)
|
||||
|
||||
- [[20, 23, 26, 29], 1, Detect, [nc]] # Detect(P3, P4, P5, P6)
|
47
ultralytics/cfg/models/v8/yolov8-ghost.yaml
Normal file
47
ultralytics/cfg/models/v8/yolov8-ghost.yaml
Normal file
@ -0,0 +1,47 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
|
||||
# Employs Ghost convolutions and modules proposed in Huawei's GhostNet in https://arxiv.org/abs/1911.11907v2
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024] # YOLOv8n-ghost summary: 403 layers, 1865316 parameters, 1865300 gradients, 5.8 GFLOPs
|
||||
s: [0.33, 0.50, 1024] # YOLOv8s-ghost summary: 403 layers, 5960072 parameters, 5960056 gradients, 16.4 GFLOPs
|
||||
m: [0.67, 0.75, 768] # YOLOv8m-ghost summary: 603 layers, 10336312 parameters, 10336296 gradients, 32.7 GFLOPs
|
||||
l: [1.00, 1.00, 512] # YOLOv8l-ghost summary: 803 layers, 14277872 parameters, 14277856 gradients, 53.7 GFLOPs
|
||||
x: [1.00, 1.25, 512] # YOLOv8x-ghost summary: 803 layers, 22229308 parameters, 22229292 gradients, 83.3 GFLOPs
|
||||
|
||||
# YOLOv8.0n-ghost backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, GhostConv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C3Ghost, [128, True]]
|
||||
- [-1, 1, GhostConv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C3Ghost, [256, True]]
|
||||
- [-1, 1, GhostConv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C3Ghost, [512, True]]
|
||||
- [-1, 1, GhostConv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C3Ghost, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
|
||||
# YOLOv8.0n head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C3Ghost, [512]] # 12
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C3Ghost, [256]] # 15 (P3/8-small)
|
||||
|
||||
- [-1, 1, GhostConv, [256, 3, 2]]
|
||||
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C3Ghost, [512]] # 18 (P4/16-medium)
|
||||
|
||||
- [-1, 1, GhostConv, [512, 3, 2]]
|
||||
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C3Ghost, [1024]] # 21 (P5/32-large)
|
||||
|
||||
- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
|
46
ultralytics/cfg/models/v8/yolov8-obb.yaml
Normal file
46
ultralytics/cfg/models/v8/yolov8-obb.yaml
Normal file
@ -0,0 +1,46 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# YOLOv8 Oriented Bounding Boxes (OBB) model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
|
||||
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
|
||||
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
|
||||
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
|
||||
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
|
||||
|
||||
# YOLOv8.0n backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C2f, [128, True]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C2f, [256, True]]
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C2f, [512, True]]
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C2f, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
|
||||
# YOLOv8.0n head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2f, [512]] # 12
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]]
|
||||
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
|
||||
|
||||
- [-1, 1, Conv, [512, 3, 2]]
|
||||
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
|
||||
|
||||
- [[15, 18, 21], 1, OBB, [nc, 1]] # OBB(P3, P4, P5)
|
@ -2,7 +2,7 @@
|
||||
# YOLOv8 object detection model with P2-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024]
|
||||
@ -14,41 +14,41 @@ scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call
|
||||
# YOLOv8.0 backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C2f, [128, True]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C2f, [256, True]]
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C2f, [512, True]]
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C2f, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
|
||||
# YOLOv8.0-p2 head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2f, [512]] # 12
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2f, [512]] # 12
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 2], 1, Concat, [1]] # cat backbone P2
|
||||
- [-1, 3, C2f, [128]] # 18 (P2/4-xsmall)
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 2], 1, Concat, [1]] # cat backbone P2
|
||||
- [-1, 3, C2f, [128]] # 18 (P2/4-xsmall)
|
||||
|
||||
- [-1, 1, Conv, [128, 3, 2]]
|
||||
- [[-1, 15], 1, Concat, [1]] # cat head P3
|
||||
- [-1, 3, C2f, [256]] # 21 (P3/8-small)
|
||||
- [[-1, 15], 1, Concat, [1]] # cat head P3
|
||||
- [-1, 3, C2f, [256]] # 21 (P3/8-small)
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]]
|
||||
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2f, [512]] # 24 (P4/16-medium)
|
||||
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2f, [512]] # 24 (P4/16-medium)
|
||||
|
||||
- [-1, 1, Conv, [512, 3, 2]]
|
||||
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2f, [1024]] # 27 (P5/32-large)
|
||||
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2f, [1024]] # 27 (P5/32-large)
|
||||
|
||||
- [[18, 21, 24, 27], 1, Detect, [nc]] # Detect(P2, P3, P4, P5)
|
||||
- [[18, 21, 24, 27], 1, Detect, [nc]] # Detect(P2, P3, P4, P5)
|
||||
|
@ -2,7 +2,7 @@
|
||||
# YOLOv8 object detection model with P3-P6 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will call yolov8-p6.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024]
|
||||
@ -14,43 +14,43 @@ scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will ca
|
||||
# YOLOv8.0x6 backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C2f, [128, True]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C2f, [256, True]]
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C2f, [512, True]]
|
||||
- [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
|
||||
- [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C2f, [768, True]]
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
|
||||
- [-1, 3, C2f, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 11
|
||||
- [-1, 1, SPPF, [1024, 5]] # 11
|
||||
|
||||
# YOLOv8.0x6 head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 8], 1, Concat, [1]] # cat backbone P5
|
||||
- [-1, 3, C2, [768, False]] # 14
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 8], 1, Concat, [1]] # cat backbone P5
|
||||
- [-1, 3, C2, [768, False]] # 14
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2, [512, False]] # 17
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2, [512, False]] # 17
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2, [256, False]] # 20 (P3/8-small)
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2, [256, False]] # 20 (P3/8-small)
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]]
|
||||
- [[-1, 17], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2, [512, False]] # 23 (P4/16-medium)
|
||||
- [[-1, 17], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2, [512, False]] # 23 (P4/16-medium)
|
||||
|
||||
- [-1, 1, Conv, [512, 3, 2]]
|
||||
- [[-1, 14], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2, [768, False]] # 26 (P5/32-large)
|
||||
- [[-1, 14], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2, [768, False]] # 26 (P5/32-large)
|
||||
|
||||
- [-1, 1, Conv, [768, 3, 2]]
|
||||
- [[-1, 11], 1, Concat, [1]] # cat head P6
|
||||
- [-1, 3, C2, [1024, False]] # 29 (P6/64-xlarge)
|
||||
- [[-1, 11], 1, Concat, [1]] # cat head P6
|
||||
- [-1, 3, C2, [1024, False]] # 29 (P6/64-xlarge)
|
||||
|
||||
- [[20, 23, 26, 29], 1, Detect, [nc]] # Detect(P3, P4, P5, P6)
|
||||
- [[20, 23, 26, 29], 1, Detect, [nc]] # Detect(P3, P4, P5, P6)
|
||||
|
@ -2,8 +2,8 @@
|
||||
# YOLOv8-pose-p6 keypoints/pose estimation model. For Usage examples see https://docs.ultralytics.com/tasks/pose
|
||||
|
||||
# Parameters
|
||||
nc: 1 # number of classes
|
||||
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
nc: 1 # number of classes
|
||||
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will call yolov8-p6.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024]
|
||||
@ -15,43 +15,43 @@ scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will ca
|
||||
# YOLOv8.0x6 backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C2f, [128, True]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C2f, [256, True]]
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C2f, [512, True]]
|
||||
- [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
|
||||
- [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C2f, [768, True]]
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
|
||||
- [-1, 3, C2f, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 11
|
||||
- [-1, 1, SPPF, [1024, 5]] # 11
|
||||
|
||||
# YOLOv8.0x6 head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 8], 1, Concat, [1]] # cat backbone P5
|
||||
- [-1, 3, C2, [768, False]] # 14
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 8], 1, Concat, [1]] # cat backbone P5
|
||||
- [-1, 3, C2, [768, False]] # 14
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2, [512, False]] # 17
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2, [512, False]] # 17
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2, [256, False]] # 20 (P3/8-small)
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2, [256, False]] # 20 (P3/8-small)
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]]
|
||||
- [[-1, 17], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2, [512, False]] # 23 (P4/16-medium)
|
||||
- [[-1, 17], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2, [512, False]] # 23 (P4/16-medium)
|
||||
|
||||
- [-1, 1, Conv, [512, 3, 2]]
|
||||
- [[-1, 14], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2, [768, False]] # 26 (P5/32-large)
|
||||
- [[-1, 14], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2, [768, False]] # 26 (P5/32-large)
|
||||
|
||||
- [-1, 1, Conv, [768, 3, 2]]
|
||||
- [[-1, 11], 1, Concat, [1]] # cat head P6
|
||||
- [-1, 3, C2, [1024, False]] # 29 (P6/64-xlarge)
|
||||
- [[-1, 11], 1, Concat, [1]] # cat head P6
|
||||
- [-1, 3, C2, [1024, False]] # 29 (P6/64-xlarge)
|
||||
|
||||
- [[20, 23, 26, 29], 1, Pose, [nc, kpt_shape]] # Pose(P3, P4, P5, P6)
|
||||
- [[20, 23, 26, 29], 1, Pose, [nc, kpt_shape]] # Pose(P3, P4, P5, P6)
|
||||
|
@ -2,8 +2,8 @@
|
||||
# YOLOv8-pose keypoints/pose estimation model. For Usage examples see https://docs.ultralytics.com/tasks/pose
|
||||
|
||||
# Parameters
|
||||
nc: 1 # number of classes
|
||||
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
nc: 1 # number of classes
|
||||
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n-pose.yaml' will call yolov8-pose.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024]
|
||||
@ -15,33 +15,33 @@ scales: # model compound scaling constants, i.e. 'model=yolov8n-pose.yaml' will
|
||||
# YOLOv8.0n backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C2f, [128, True]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C2f, [256, True]]
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C2f, [512, True]]
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C2f, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
|
||||
# YOLOv8.0n head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2f, [512]] # 12
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2f, [512]] # 12
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]]
|
||||
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
|
||||
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
|
||||
|
||||
- [-1, 1, Conv, [512, 3, 2]]
|
||||
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
|
||||
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
|
||||
|
||||
- [[15, 18, 21], 1, Pose, [nc, kpt_shape]] # Pose(P3, P4, P5)
|
||||
- [[15, 18, 21], 1, Pose, [nc, kpt_shape]] # Pose(P3, P4, P5)
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user