add yolo v10 and modify pipeline

This commit is contained in:
王庆刚
2025-03-28 13:19:54 +08:00
parent 183299c06b
commit 798c596acc
471 changed files with 19109 additions and 7342 deletions

View File

@ -4,7 +4,7 @@ import numpy as np
import scipy
from scipy.spatial.distance import cdist
from ultralytics.utils.metrics import bbox_ioa
from ultralytics.utils.metrics import bbox_ioa, batch_probiou
try:
import lap # for linear_assignment
@ -13,11 +13,11 @@ try:
except (ImportError, AssertionError, AttributeError):
from ultralytics.utils.checks import check_requirements
check_requirements('lapx>=0.5.2') # update to lap package from https://github.com/rathaROG/lapx
check_requirements("lapx>=0.5.2") # update to lap package from https://github.com/rathaROG/lapx
import lap
def linear_assignment(cost_matrix, thresh, use_lap=True):
def linear_assignment(cost_matrix: np.ndarray, thresh: float, use_lap: bool = True) -> tuple:
"""
Perform linear assignment using scipy or lap.lapjv.
@ -27,19 +27,24 @@ def linear_assignment(cost_matrix, thresh, use_lap=True):
use_lap (bool, optional): Whether to use lap.lapjv. Defaults to True.
Returns:
(tuple): Tuple containing matched indices, unmatched indices from 'a', and unmatched indices from 'b'.
Tuple with:
- matched indices
- unmatched indices from 'a'
- unmatched indices from 'b'
"""
if cost_matrix.size == 0:
return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1]))
if use_lap:
# Use lap.lapjv
# https://github.com/gatagat/lap
_, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh)
matches = [[ix, mx] for ix, mx in enumerate(x) if mx >= 0]
unmatched_a = np.where(x < 0)[0]
unmatched_b = np.where(y < 0)[0]
else:
# Use scipy.optimize.linear_sum_assignment
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
x, y = scipy.optimize.linear_sum_assignment(cost_matrix) # row x, col y
matches = np.asarray([[x[i], y[i]] for i in range(len(x)) if cost_matrix[x[i], y[i]] <= thresh])
@ -53,7 +58,7 @@ def linear_assignment(cost_matrix, thresh, use_lap=True):
return matches, unmatched_a, unmatched_b
def iou_distance(atracks, btracks):
def iou_distance(atracks: list, btracks: list) -> np.ndarray:
"""
Compute cost based on Intersection over Union (IoU) between tracks.
@ -65,23 +70,30 @@ def iou_distance(atracks, btracks):
(np.ndarray): Cost matrix computed based on IoU.
"""
if (len(atracks) > 0 and isinstance(atracks[0], np.ndarray)) \
or (len(btracks) > 0 and isinstance(btracks[0], np.ndarray)):
if atracks and isinstance(atracks[0], np.ndarray) or btracks and isinstance(btracks[0], np.ndarray):
atlbrs = atracks
btlbrs = btracks
else:
atlbrs = [track.tlbr for track in atracks]
btlbrs = [track.tlbr for track in btracks]
atlbrs = [track.xywha if track.angle is not None else track.xyxy for track in atracks]
btlbrs = [track.xywha if track.angle is not None else track.xyxy for track in btracks]
ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float32)
if len(atlbrs) and len(btlbrs):
ious = bbox_ioa(np.ascontiguousarray(atlbrs, dtype=np.float32),
np.ascontiguousarray(btlbrs, dtype=np.float32),
iou=True)
if len(atlbrs[0]) == 5 and len(btlbrs[0]) == 5:
ious = batch_probiou(
np.ascontiguousarray(atlbrs, dtype=np.float32),
np.ascontiguousarray(btlbrs, dtype=np.float32),
).numpy()
else:
ious = bbox_ioa(
np.ascontiguousarray(atlbrs, dtype=np.float32),
np.ascontiguousarray(btlbrs, dtype=np.float32),
iou=True,
)
return 1 - ious # cost matrix
def embedding_distance(tracks, detections, metric='cosine'):
def embedding_distance(tracks: list, detections: list, metric: str = "cosine") -> np.ndarray:
"""
Compute distance between tracks and detections based on embeddings.
@ -105,7 +117,7 @@ def embedding_distance(tracks, detections, metric='cosine'):
return cost_matrix
def fuse_score(cost_matrix, detections):
def fuse_score(cost_matrix: np.ndarray, detections: list) -> np.ndarray:
"""
Fuses cost matrix with detection scores to produce a single similarity matrix.