add yolo v10 and modify pipeline
This commit is contained in:
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -9,67 +9,121 @@ from ultralytics.utils import LOGGER
|
||||
|
||||
|
||||
class GMC:
|
||||
"""
|
||||
Generalized Motion Compensation (GMC) class for tracking and object detection in video frames.
|
||||
|
||||
def __init__(self, method='sparseOptFlow', downscale=2):
|
||||
"""Initialize a video tracker with specified parameters."""
|
||||
This class provides methods for tracking and detecting objects based on several tracking algorithms including ORB,
|
||||
SIFT, ECC, and Sparse Optical Flow. It also supports downscaling of frames for computational efficiency.
|
||||
|
||||
Attributes:
|
||||
method (str): The method used for tracking. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.
|
||||
downscale (int): Factor by which to downscale the frames for processing.
|
||||
prevFrame (np.ndarray): Stores the previous frame for tracking.
|
||||
prevKeyPoints (list): Stores the keypoints from the previous frame.
|
||||
prevDescriptors (np.ndarray): Stores the descriptors from the previous frame.
|
||||
initializedFirstFrame (bool): Flag to indicate if the first frame has been processed.
|
||||
|
||||
Methods:
|
||||
__init__(self, method='sparseOptFlow', downscale=2): Initializes a GMC object with the specified method
|
||||
and downscale factor.
|
||||
apply(self, raw_frame, detections=None): Applies the chosen method to a raw frame and optionally uses
|
||||
provided detections.
|
||||
applyEcc(self, raw_frame, detections=None): Applies the ECC algorithm to a raw frame.
|
||||
applyFeatures(self, raw_frame, detections=None): Applies feature-based methods like ORB or SIFT to a raw frame.
|
||||
applySparseOptFlow(self, raw_frame, detections=None): Applies the Sparse Optical Flow method to a raw frame.
|
||||
"""
|
||||
|
||||
def __init__(self, method: str = "sparseOptFlow", downscale: int = 2) -> None:
|
||||
"""
|
||||
Initialize a video tracker with specified parameters.
|
||||
|
||||
Args:
|
||||
method (str): The method used for tracking. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.
|
||||
downscale (int): Downscale factor for processing frames.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.method = method
|
||||
self.downscale = max(1, int(downscale))
|
||||
|
||||
if self.method == 'orb':
|
||||
if self.method == "orb":
|
||||
self.detector = cv2.FastFeatureDetector_create(20)
|
||||
self.extractor = cv2.ORB_create()
|
||||
self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING)
|
||||
|
||||
elif self.method == 'sift':
|
||||
elif self.method == "sift":
|
||||
self.detector = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
|
||||
self.extractor = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
|
||||
self.matcher = cv2.BFMatcher(cv2.NORM_L2)
|
||||
|
||||
elif self.method == 'ecc':
|
||||
elif self.method == "ecc":
|
||||
number_of_iterations = 5000
|
||||
termination_eps = 1e-6
|
||||
self.warp_mode = cv2.MOTION_EUCLIDEAN
|
||||
self.criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, number_of_iterations, termination_eps)
|
||||
|
||||
elif self.method == 'sparseOptFlow':
|
||||
self.feature_params = dict(maxCorners=1000,
|
||||
qualityLevel=0.01,
|
||||
minDistance=1,
|
||||
blockSize=3,
|
||||
useHarrisDetector=False,
|
||||
k=0.04)
|
||||
elif self.method == "sparseOptFlow":
|
||||
self.feature_params = dict(
|
||||
maxCorners=1000, qualityLevel=0.01, minDistance=1, blockSize=3, useHarrisDetector=False, k=0.04
|
||||
)
|
||||
|
||||
elif self.method in ['none', 'None', None]:
|
||||
elif self.method in {"none", "None", None}:
|
||||
self.method = None
|
||||
else:
|
||||
raise ValueError(f'Error: Unknown GMC method:{method}')
|
||||
raise ValueError(f"Error: Unknown GMC method:{method}")
|
||||
|
||||
self.prevFrame = None
|
||||
self.prevKeyPoints = None
|
||||
self.prevDescriptors = None
|
||||
|
||||
self.initializedFirstFrame = False
|
||||
|
||||
def apply(self, raw_frame, detections=None):
|
||||
"""Apply object detection on a raw frame using specified method."""
|
||||
if self.method in ['orb', 'sift']:
|
||||
def apply(self, raw_frame: np.array, detections: list = None) -> np.array:
|
||||
"""
|
||||
Apply object detection on a raw frame using specified method.
|
||||
|
||||
Args:
|
||||
raw_frame (np.ndarray): The raw frame to be processed.
|
||||
detections (list): List of detections to be used in the processing.
|
||||
|
||||
Returns:
|
||||
(np.ndarray): Processed frame.
|
||||
|
||||
Examples:
|
||||
>>> gmc = GMC()
|
||||
>>> gmc.apply(np.array([[1, 2, 3], [4, 5, 6]]))
|
||||
array([[1, 2, 3],
|
||||
[4, 5, 6]])
|
||||
"""
|
||||
if self.method in ["orb", "sift"]:
|
||||
return self.applyFeatures(raw_frame, detections)
|
||||
elif self.method == 'ecc':
|
||||
return self.applyEcc(raw_frame, detections)
|
||||
elif self.method == 'sparseOptFlow':
|
||||
return self.applySparseOptFlow(raw_frame, detections)
|
||||
elif self.method == "ecc":
|
||||
return self.applyEcc(raw_frame)
|
||||
elif self.method == "sparseOptFlow":
|
||||
return self.applySparseOptFlow(raw_frame)
|
||||
else:
|
||||
return np.eye(2, 3)
|
||||
|
||||
def applyEcc(self, raw_frame, detections=None):
|
||||
"""Initialize."""
|
||||
def applyEcc(self, raw_frame: np.array) -> np.array:
|
||||
"""
|
||||
Apply ECC algorithm to a raw frame.
|
||||
|
||||
Args:
|
||||
raw_frame (np.ndarray): The raw frame to be processed.
|
||||
|
||||
Returns:
|
||||
(np.ndarray): Processed frame.
|
||||
|
||||
Examples:
|
||||
>>> gmc = GMC()
|
||||
>>> gmc.applyEcc(np.array([[1, 2, 3], [4, 5, 6]]))
|
||||
array([[1, 2, 3],
|
||||
[4, 5, 6]])
|
||||
"""
|
||||
height, width, _ = raw_frame.shape
|
||||
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
|
||||
H = np.eye(2, 3, dtype=np.float32)
|
||||
|
||||
# Downscale image (TODO: consider using pyramids)
|
||||
# Downscale image
|
||||
if self.downscale > 1.0:
|
||||
frame = cv2.GaussianBlur(frame, (3, 3), 1.5)
|
||||
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
|
||||
@ -89,33 +143,46 @@ class GMC:
|
||||
# Run the ECC algorithm. The results are stored in warp_matrix.
|
||||
# (cc, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria)
|
||||
try:
|
||||
(cc, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria, None, 1)
|
||||
(_, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria, None, 1)
|
||||
except Exception as e:
|
||||
LOGGER.warning(f'WARNING: find transform failed. Set warp as identity {e}')
|
||||
LOGGER.warning(f"WARNING: find transform failed. Set warp as identity {e}")
|
||||
|
||||
return H
|
||||
|
||||
def applyFeatures(self, raw_frame, detections=None):
|
||||
"""Initialize."""
|
||||
def applyFeatures(self, raw_frame: np.array, detections: list = None) -> np.array:
|
||||
"""
|
||||
Apply feature-based methods like ORB or SIFT to a raw frame.
|
||||
|
||||
Args:
|
||||
raw_frame (np.ndarray): The raw frame to be processed.
|
||||
detections (list): List of detections to be used in the processing.
|
||||
|
||||
Returns:
|
||||
(np.ndarray): Processed frame.
|
||||
|
||||
Examples:
|
||||
>>> gmc = GMC()
|
||||
>>> gmc.applyFeatures(np.array([[1, 2, 3], [4, 5, 6]]))
|
||||
array([[1, 2, 3],
|
||||
[4, 5, 6]])
|
||||
"""
|
||||
height, width, _ = raw_frame.shape
|
||||
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
|
||||
H = np.eye(2, 3)
|
||||
|
||||
# Downscale image (TODO: consider using pyramids)
|
||||
# Downscale image
|
||||
if self.downscale > 1.0:
|
||||
# frame = cv2.GaussianBlur(frame, (3, 3), 1.5)
|
||||
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
|
||||
width = width // self.downscale
|
||||
height = height // self.downscale
|
||||
|
||||
# Find the keypoints
|
||||
mask = np.zeros_like(frame)
|
||||
# mask[int(0.05 * height): int(0.95 * height), int(0.05 * width): int(0.95 * width)] = 255
|
||||
mask[int(0.02 * height):int(0.98 * height), int(0.02 * width):int(0.98 * width)] = 255
|
||||
mask[int(0.02 * height) : int(0.98 * height), int(0.02 * width) : int(0.98 * width)] = 255
|
||||
if detections is not None:
|
||||
for det in detections:
|
||||
tlbr = (det[:4] / self.downscale).astype(np.int_)
|
||||
mask[tlbr[1]:tlbr[3], tlbr[0]:tlbr[2]] = 0
|
||||
mask[tlbr[1] : tlbr[3], tlbr[0] : tlbr[2]] = 0
|
||||
|
||||
keypoints = self.detector.detect(frame, mask)
|
||||
|
||||
@ -134,10 +201,10 @@ class GMC:
|
||||
|
||||
return H
|
||||
|
||||
# Match descriptors.
|
||||
# Match descriptors
|
||||
knnMatches = self.matcher.knnMatch(self.prevDescriptors, descriptors, 2)
|
||||
|
||||
# Filtered matches based on smallest spatial distance
|
||||
# Filter matches based on smallest spatial distance
|
||||
matches = []
|
||||
spatialDistances = []
|
||||
|
||||
@ -157,11 +224,14 @@ class GMC:
|
||||
prevKeyPointLocation = self.prevKeyPoints[m.queryIdx].pt
|
||||
currKeyPointLocation = keypoints[m.trainIdx].pt
|
||||
|
||||
spatialDistance = (prevKeyPointLocation[0] - currKeyPointLocation[0],
|
||||
prevKeyPointLocation[1] - currKeyPointLocation[1])
|
||||
spatialDistance = (
|
||||
prevKeyPointLocation[0] - currKeyPointLocation[0],
|
||||
prevKeyPointLocation[1] - currKeyPointLocation[1],
|
||||
)
|
||||
|
||||
if (np.abs(spatialDistance[0]) < maxSpatialDistance[0]) and \
|
||||
(np.abs(spatialDistance[1]) < maxSpatialDistance[1]):
|
||||
if (np.abs(spatialDistance[0]) < maxSpatialDistance[0]) and (
|
||||
np.abs(spatialDistance[1]) < maxSpatialDistance[1]
|
||||
):
|
||||
spatialDistances.append(spatialDistance)
|
||||
matches.append(m)
|
||||
|
||||
@ -187,7 +257,7 @@ class GMC:
|
||||
# import matplotlib.pyplot as plt
|
||||
# matches_img = np.hstack((self.prevFrame, frame))
|
||||
# matches_img = cv2.cvtColor(matches_img, cv2.COLOR_GRAY2BGR)
|
||||
# W = np.size(self.prevFrame, 1)
|
||||
# W = self.prevFrame.shape[1]
|
||||
# for m in goodMatches:
|
||||
# prev_pt = np.array(self.prevKeyPoints[m.queryIdx].pt, dtype=np.int_)
|
||||
# curr_pt = np.array(keypoints[m.trainIdx].pt, dtype=np.int_)
|
||||
@ -204,7 +274,7 @@ class GMC:
|
||||
# plt.show()
|
||||
|
||||
# Find rigid matrix
|
||||
if (np.size(prevPoints, 0) > 4) and (np.size(prevPoints, 0) == np.size(prevPoints, 0)):
|
||||
if prevPoints.shape[0] > 4:
|
||||
H, inliers = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)
|
||||
|
||||
# Handle downscale
|
||||
@ -212,7 +282,7 @@ class GMC:
|
||||
H[0, 2] *= self.downscale
|
||||
H[1, 2] *= self.downscale
|
||||
else:
|
||||
LOGGER.warning('WARNING: not enough matching points')
|
||||
LOGGER.warning("WARNING: not enough matching points")
|
||||
|
||||
# Store to next iteration
|
||||
self.prevFrame = frame.copy()
|
||||
@ -221,15 +291,28 @@ class GMC:
|
||||
|
||||
return H
|
||||
|
||||
def applySparseOptFlow(self, raw_frame, detections=None):
|
||||
"""Initialize."""
|
||||
def applySparseOptFlow(self, raw_frame: np.array) -> np.array:
|
||||
"""
|
||||
Apply Sparse Optical Flow method to a raw frame.
|
||||
|
||||
Args:
|
||||
raw_frame (np.ndarray): The raw frame to be processed.
|
||||
|
||||
Returns:
|
||||
(np.ndarray): Processed frame.
|
||||
|
||||
Examples:
|
||||
>>> gmc = GMC()
|
||||
>>> gmc.applySparseOptFlow(np.array([[1, 2, 3], [4, 5, 6]]))
|
||||
array([[1, 2, 3],
|
||||
[4, 5, 6]])
|
||||
"""
|
||||
height, width, _ = raw_frame.shape
|
||||
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
|
||||
H = np.eye(2, 3)
|
||||
|
||||
# Downscale image
|
||||
if self.downscale > 1.0:
|
||||
# frame = cv2.GaussianBlur(frame, (3, 3), 1.5)
|
||||
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
|
||||
|
||||
# Find the keypoints
|
||||
@ -237,17 +320,13 @@ class GMC:
|
||||
|
||||
# Handle first frame
|
||||
if not self.initializedFirstFrame:
|
||||
# Initialize data
|
||||
self.prevFrame = frame.copy()
|
||||
self.prevKeyPoints = copy.copy(keypoints)
|
||||
|
||||
# Initialization done
|
||||
self.initializedFirstFrame = True
|
||||
|
||||
return H
|
||||
|
||||
# Find correspondences
|
||||
matchedKeypoints, status, err = cv2.calcOpticalFlowPyrLK(self.prevFrame, frame, self.prevKeyPoints, None)
|
||||
matchedKeypoints, status, _ = cv2.calcOpticalFlowPyrLK(self.prevFrame, frame, self.prevKeyPoints, None)
|
||||
|
||||
# Leave good correspondences only
|
||||
prevPoints = []
|
||||
@ -262,18 +341,23 @@ class GMC:
|
||||
currPoints = np.array(currPoints)
|
||||
|
||||
# Find rigid matrix
|
||||
if (np.size(prevPoints, 0) > 4) and (np.size(prevPoints, 0) == np.size(prevPoints, 0)):
|
||||
H, inliers = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)
|
||||
if (prevPoints.shape[0] > 4) and (prevPoints.shape[0] == prevPoints.shape[0]):
|
||||
H, _ = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)
|
||||
|
||||
# Handle downscale
|
||||
if self.downscale > 1.0:
|
||||
H[0, 2] *= self.downscale
|
||||
H[1, 2] *= self.downscale
|
||||
else:
|
||||
LOGGER.warning('WARNING: not enough matching points')
|
||||
LOGGER.warning("WARNING: not enough matching points")
|
||||
|
||||
# Store to next iteration
|
||||
self.prevFrame = frame.copy()
|
||||
self.prevKeyPoints = copy.copy(keypoints)
|
||||
|
||||
return H
|
||||
|
||||
def reset_params(self) -> None:
|
||||
"""Reset parameters."""
|
||||
self.prevFrame = None
|
||||
self.prevKeyPoints = None
|
||||
self.prevDescriptors = None
|
||||
self.initializedFirstFrame = False
|
||||
|
@ -8,8 +8,8 @@ class KalmanFilterXYAH:
|
||||
"""
|
||||
For bytetrack. A simple Kalman filter for tracking bounding boxes in image space.
|
||||
|
||||
The 8-dimensional state space (x, y, a, h, vx, vy, va, vh) contains the bounding box center position (x, y),
|
||||
aspect ratio a, height h, and their respective velocities.
|
||||
The 8-dimensional state space (x, y, a, h, vx, vy, va, vh) contains the bounding box center position (x, y), aspect
|
||||
ratio a, height h, and their respective velocities.
|
||||
|
||||
Object motion follows a constant velocity model. The bounding box location (x, y, a, h) is taken as direct
|
||||
observation of the state space (linear observation model).
|
||||
@ -17,126 +17,126 @@ class KalmanFilterXYAH:
|
||||
|
||||
def __init__(self):
|
||||
"""Initialize Kalman filter model matrices with motion and observation uncertainty weights."""
|
||||
ndim, dt = 4, 1.
|
||||
ndim, dt = 4, 1.0
|
||||
|
||||
# Create Kalman filter model matrices.
|
||||
# Create Kalman filter model matrices
|
||||
self._motion_mat = np.eye(2 * ndim, 2 * ndim)
|
||||
for i in range(ndim):
|
||||
self._motion_mat[i, ndim + i] = dt
|
||||
self._update_mat = np.eye(ndim, 2 * ndim)
|
||||
|
||||
# Motion and observation uncertainty are chosen relative to the current state estimate. These weights control
|
||||
# the amount of uncertainty in the model. This is a bit hacky.
|
||||
self._std_weight_position = 1. / 20
|
||||
self._std_weight_velocity = 1. / 160
|
||||
# the amount of uncertainty in the model.
|
||||
self._std_weight_position = 1.0 / 20
|
||||
self._std_weight_velocity = 1.0 / 160
|
||||
|
||||
def initiate(self, measurement):
|
||||
def initiate(self, measurement: np.ndarray) -> tuple:
|
||||
"""
|
||||
Create track from unassociated measurement.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
measurement : ndarray
|
||||
Bounding box coordinates (x, y, a, h) with center position (x, y),
|
||||
aspect ratio a, and height h.
|
||||
Args:
|
||||
measurement (ndarray): Bounding box coordinates (x, y, a, h) with center position (x, y), aspect ratio a,
|
||||
and height h.
|
||||
|
||||
Returns
|
||||
-------
|
||||
(ndarray, ndarray)
|
||||
Returns the mean vector (8 dimensional) and covariance matrix (8x8
|
||||
dimensional) of the new track. Unobserved velocities are initialized
|
||||
to 0 mean.
|
||||
Returns:
|
||||
(tuple[ndarray, ndarray]): Returns the mean vector (8 dimensional) and covariance matrix (8x8 dimensional) of
|
||||
the new track. Unobserved velocities are initialized to 0 mean.
|
||||
"""
|
||||
mean_pos = measurement
|
||||
mean_vel = np.zeros_like(mean_pos)
|
||||
mean = np.r_[mean_pos, mean_vel]
|
||||
|
||||
std = [
|
||||
2 * self._std_weight_position * measurement[3], 2 * self._std_weight_position * measurement[3], 1e-2,
|
||||
2 * self._std_weight_position * measurement[3], 10 * self._std_weight_velocity * measurement[3],
|
||||
10 * self._std_weight_velocity * measurement[3], 1e-5, 10 * self._std_weight_velocity * measurement[3]]
|
||||
2 * self._std_weight_position * measurement[3],
|
||||
2 * self._std_weight_position * measurement[3],
|
||||
1e-2,
|
||||
2 * self._std_weight_position * measurement[3],
|
||||
10 * self._std_weight_velocity * measurement[3],
|
||||
10 * self._std_weight_velocity * measurement[3],
|
||||
1e-5,
|
||||
10 * self._std_weight_velocity * measurement[3],
|
||||
]
|
||||
covariance = np.diag(np.square(std))
|
||||
return mean, covariance
|
||||
|
||||
def predict(self, mean, covariance):
|
||||
def predict(self, mean: np.ndarray, covariance: np.ndarray) -> tuple:
|
||||
"""
|
||||
Run Kalman filter prediction step.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mean : ndarray
|
||||
The 8 dimensional mean vector of the object state at the previous time step.
|
||||
covariance : ndarray
|
||||
The 8x8 dimensional covariance matrix of the object state at the previous time step.
|
||||
Args:
|
||||
mean (ndarray): The 8 dimensional mean vector of the object state at the previous time step.
|
||||
covariance (ndarray): The 8x8 dimensional covariance matrix of the object state at the previous time step.
|
||||
|
||||
Returns
|
||||
-------
|
||||
(ndarray, ndarray)
|
||||
Returns the mean vector and covariance matrix of the predicted state. Unobserved velocities are
|
||||
initialized to 0 mean.
|
||||
Returns:
|
||||
(tuple[ndarray, ndarray]): Returns the mean vector and covariance matrix of the predicted state. Unobserved
|
||||
velocities are initialized to 0 mean.
|
||||
"""
|
||||
std_pos = [
|
||||
self._std_weight_position * mean[3], self._std_weight_position * mean[3], 1e-2,
|
||||
self._std_weight_position * mean[3]]
|
||||
self._std_weight_position * mean[3],
|
||||
self._std_weight_position * mean[3],
|
||||
1e-2,
|
||||
self._std_weight_position * mean[3],
|
||||
]
|
||||
std_vel = [
|
||||
self._std_weight_velocity * mean[3], self._std_weight_velocity * mean[3], 1e-5,
|
||||
self._std_weight_velocity * mean[3]]
|
||||
self._std_weight_velocity * mean[3],
|
||||
self._std_weight_velocity * mean[3],
|
||||
1e-5,
|
||||
self._std_weight_velocity * mean[3],
|
||||
]
|
||||
motion_cov = np.diag(np.square(np.r_[std_pos, std_vel]))
|
||||
|
||||
# mean = np.dot(self._motion_mat, mean)
|
||||
mean = np.dot(mean, self._motion_mat.T)
|
||||
covariance = np.linalg.multi_dot((self._motion_mat, covariance, self._motion_mat.T)) + motion_cov
|
||||
|
||||
return mean, covariance
|
||||
|
||||
def project(self, mean, covariance):
|
||||
def project(self, mean: np.ndarray, covariance: np.ndarray) -> tuple:
|
||||
"""
|
||||
Project state distribution to measurement space.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mean : ndarray
|
||||
The state's mean vector (8 dimensional array).
|
||||
covariance : ndarray
|
||||
The state's covariance matrix (8x8 dimensional).
|
||||
Args:
|
||||
mean (ndarray): The state's mean vector (8 dimensional array).
|
||||
covariance (ndarray): The state's covariance matrix (8x8 dimensional).
|
||||
|
||||
Returns
|
||||
-------
|
||||
(ndarray, ndarray)
|
||||
Returns the projected mean and covariance matrix of the given state estimate.
|
||||
Returns:
|
||||
(tuple[ndarray, ndarray]): Returns the projected mean and covariance matrix of the given state estimate.
|
||||
"""
|
||||
std = [
|
||||
self._std_weight_position * mean[3], self._std_weight_position * mean[3], 1e-1,
|
||||
self._std_weight_position * mean[3]]
|
||||
self._std_weight_position * mean[3],
|
||||
self._std_weight_position * mean[3],
|
||||
1e-1,
|
||||
self._std_weight_position * mean[3],
|
||||
]
|
||||
innovation_cov = np.diag(np.square(std))
|
||||
|
||||
mean = np.dot(self._update_mat, mean)
|
||||
covariance = np.linalg.multi_dot((self._update_mat, covariance, self._update_mat.T))
|
||||
return mean, covariance + innovation_cov
|
||||
|
||||
def multi_predict(self, mean, covariance):
|
||||
def multi_predict(self, mean: np.ndarray, covariance: np.ndarray) -> tuple:
|
||||
"""
|
||||
Run Kalman filter prediction step (Vectorized version).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mean : ndarray
|
||||
The Nx8 dimensional mean matrix of the object states at the previous time step.
|
||||
covariance : ndarray
|
||||
The Nx8x8 dimensional covariance matrix of the object states at the previous time step.
|
||||
Args:
|
||||
mean (ndarray): The Nx8 dimensional mean matrix of the object states at the previous time step.
|
||||
covariance (ndarray): The Nx8x8 covariance matrix of the object states at the previous time step.
|
||||
|
||||
Returns
|
||||
-------
|
||||
(ndarray, ndarray)
|
||||
Returns the mean vector and covariance matrix of the predicted state. Unobserved velocities are
|
||||
initialized to 0 mean.
|
||||
Returns:
|
||||
(tuple[ndarray, ndarray]): Returns the mean vector and covariance matrix of the predicted state. Unobserved
|
||||
velocities are initialized to 0 mean.
|
||||
"""
|
||||
std_pos = [
|
||||
self._std_weight_position * mean[:, 3], self._std_weight_position * mean[:, 3],
|
||||
1e-2 * np.ones_like(mean[:, 3]), self._std_weight_position * mean[:, 3]]
|
||||
self._std_weight_position * mean[:, 3],
|
||||
self._std_weight_position * mean[:, 3],
|
||||
1e-2 * np.ones_like(mean[:, 3]),
|
||||
self._std_weight_position * mean[:, 3],
|
||||
]
|
||||
std_vel = [
|
||||
self._std_weight_velocity * mean[:, 3], self._std_weight_velocity * mean[:, 3],
|
||||
1e-5 * np.ones_like(mean[:, 3]), self._std_weight_velocity * mean[:, 3]]
|
||||
self._std_weight_velocity * mean[:, 3],
|
||||
self._std_weight_velocity * mean[:, 3],
|
||||
1e-5 * np.ones_like(mean[:, 3]),
|
||||
self._std_weight_velocity * mean[:, 3],
|
||||
]
|
||||
sqr = np.square(np.r_[std_pos, std_vel]).T
|
||||
|
||||
motion_cov = [np.diag(sqr[i]) for i in range(len(mean))]
|
||||
@ -148,60 +148,57 @@ class KalmanFilterXYAH:
|
||||
|
||||
return mean, covariance
|
||||
|
||||
def update(self, mean, covariance, measurement):
|
||||
def update(self, mean: np.ndarray, covariance: np.ndarray, measurement: np.ndarray) -> tuple:
|
||||
"""
|
||||
Run Kalman filter correction step.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mean : ndarray
|
||||
The predicted state's mean vector (8 dimensional).
|
||||
covariance : ndarray
|
||||
The state's covariance matrix (8x8 dimensional).
|
||||
measurement : ndarray
|
||||
The 4 dimensional measurement vector (x, y, a, h), where (x, y) is the center position, a the aspect
|
||||
ratio, and h the height of the bounding box.
|
||||
Args:
|
||||
mean (ndarray): The predicted state's mean vector (8 dimensional).
|
||||
covariance (ndarray): The state's covariance matrix (8x8 dimensional).
|
||||
measurement (ndarray): The 4 dimensional measurement vector (x, y, a, h), where (x, y) is the center
|
||||
position, a the aspect ratio, and h the height of the bounding box.
|
||||
|
||||
Returns
|
||||
-------
|
||||
(ndarray, ndarray)
|
||||
Returns the measurement-corrected state distribution.
|
||||
Returns:
|
||||
(tuple[ndarray, ndarray]): Returns the measurement-corrected state distribution.
|
||||
"""
|
||||
projected_mean, projected_cov = self.project(mean, covariance)
|
||||
|
||||
chol_factor, lower = scipy.linalg.cho_factor(projected_cov, lower=True, check_finite=False)
|
||||
kalman_gain = scipy.linalg.cho_solve((chol_factor, lower),
|
||||
np.dot(covariance, self._update_mat.T).T,
|
||||
check_finite=False).T
|
||||
kalman_gain = scipy.linalg.cho_solve(
|
||||
(chol_factor, lower), np.dot(covariance, self._update_mat.T).T, check_finite=False
|
||||
).T
|
||||
innovation = measurement - projected_mean
|
||||
|
||||
new_mean = mean + np.dot(innovation, kalman_gain.T)
|
||||
new_covariance = covariance - np.linalg.multi_dot((kalman_gain, projected_cov, kalman_gain.T))
|
||||
return new_mean, new_covariance
|
||||
|
||||
def gating_distance(self, mean, covariance, measurements, only_position=False, metric='maha'):
|
||||
def gating_distance(
|
||||
self,
|
||||
mean: np.ndarray,
|
||||
covariance: np.ndarray,
|
||||
measurements: np.ndarray,
|
||||
only_position: bool = False,
|
||||
metric: str = "maha",
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Compute gating distance between state distribution and measurements. A suitable distance threshold can be
|
||||
obtained from `chi2inv95`. If `only_position` is False, the chi-square distribution has 4 degrees of
|
||||
freedom, otherwise 2.
|
||||
obtained from `chi2inv95`. If `only_position` is False, the chi-square distribution has 4 degrees of freedom,
|
||||
otherwise 2.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mean : ndarray
|
||||
Mean vector over the state distribution (8 dimensional).
|
||||
covariance : ndarray
|
||||
Covariance of the state distribution (8x8 dimensional).
|
||||
measurements : ndarray
|
||||
An Nx4 dimensional matrix of N measurements, each in format (x, y, a, h) where (x, y) is the bounding box
|
||||
center position, a the aspect ratio, and h the height.
|
||||
only_position : Optional[bool]
|
||||
If True, distance computation is done with respect to the bounding box center position only.
|
||||
Args:
|
||||
mean (ndarray): Mean vector over the state distribution (8 dimensional).
|
||||
covariance (ndarray): Covariance of the state distribution (8x8 dimensional).
|
||||
measurements (ndarray): An Nx4 matrix of N measurements, each in format (x, y, a, h) where (x, y)
|
||||
is the bounding box center position, a the aspect ratio, and h the height.
|
||||
only_position (bool, optional): If True, distance computation is done with respect to the bounding box
|
||||
center position only. Defaults to False.
|
||||
metric (str, optional): The metric to use for calculating the distance. Options are 'gaussian' for the
|
||||
squared Euclidean distance and 'maha' for the squared Mahalanobis distance. Defaults to 'maha'.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray
|
||||
Returns an array of length N, where the i-th element contains the squared Mahalanobis distance between
|
||||
(mean, covariance) and `measurements[i]`.
|
||||
Returns:
|
||||
(np.ndarray): Returns an array of length N, where the i-th element contains the squared distance between
|
||||
(mean, covariance) and `measurements[i]`.
|
||||
"""
|
||||
mean, covariance = self.project(mean, covariance)
|
||||
if only_position:
|
||||
@ -209,77 +206,79 @@ class KalmanFilterXYAH:
|
||||
measurements = measurements[:, :2]
|
||||
|
||||
d = measurements - mean
|
||||
if metric == 'gaussian':
|
||||
if metric == "gaussian":
|
||||
return np.sum(d * d, axis=1)
|
||||
elif metric == 'maha':
|
||||
elif metric == "maha":
|
||||
cholesky_factor = np.linalg.cholesky(covariance)
|
||||
z = scipy.linalg.solve_triangular(cholesky_factor, d.T, lower=True, check_finite=False, overwrite_b=True)
|
||||
return np.sum(z * z, axis=0) # square maha
|
||||
else:
|
||||
raise ValueError('invalid distance metric')
|
||||
raise ValueError("Invalid distance metric")
|
||||
|
||||
|
||||
class KalmanFilterXYWH(KalmanFilterXYAH):
|
||||
"""
|
||||
For BoT-SORT. A simple Kalman filter for tracking bounding boxes in image space.
|
||||
|
||||
The 8-dimensional state space (x, y, w, h, vx, vy, vw, vh) contains the bounding box center position (x, y),
|
||||
width w, height h, and their respective velocities.
|
||||
The 8-dimensional state space (x, y, w, h, vx, vy, vw, vh) contains the bounding box center position (x, y), width
|
||||
w, height h, and their respective velocities.
|
||||
|
||||
Object motion follows a constant velocity model. The bounding box location (x, y, w, h) is taken as direct
|
||||
observation of the state space (linear observation model).
|
||||
"""
|
||||
|
||||
def initiate(self, measurement):
|
||||
def initiate(self, measurement: np.ndarray) -> tuple:
|
||||
"""
|
||||
Create track from unassociated measurement.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
measurement : ndarray
|
||||
Bounding box coordinates (x, y, w, h) with center position (x, y), width w, and height h.
|
||||
Args:
|
||||
measurement (ndarray): Bounding box coordinates (x, y, w, h) with center position (x, y), width, and height.
|
||||
|
||||
Returns
|
||||
-------
|
||||
(ndarray, ndarray)
|
||||
Returns the mean vector (8 dimensional) and covariance matrix (8x8 dimensional) of the new track.
|
||||
Unobserved velocities are initialized to 0 mean.
|
||||
Returns:
|
||||
(tuple[ndarray, ndarray]): Returns the mean vector (8 dimensional) and covariance matrix (8x8 dimensional) of
|
||||
the new track. Unobserved velocities are initialized to 0 mean.
|
||||
"""
|
||||
mean_pos = measurement
|
||||
mean_vel = np.zeros_like(mean_pos)
|
||||
mean = np.r_[mean_pos, mean_vel]
|
||||
|
||||
std = [
|
||||
2 * self._std_weight_position * measurement[2], 2 * self._std_weight_position * measurement[3],
|
||||
2 * self._std_weight_position * measurement[2], 2 * self._std_weight_position * measurement[3],
|
||||
10 * self._std_weight_velocity * measurement[2], 10 * self._std_weight_velocity * measurement[3],
|
||||
10 * self._std_weight_velocity * measurement[2], 10 * self._std_weight_velocity * measurement[3]]
|
||||
2 * self._std_weight_position * measurement[2],
|
||||
2 * self._std_weight_position * measurement[3],
|
||||
2 * self._std_weight_position * measurement[2],
|
||||
2 * self._std_weight_position * measurement[3],
|
||||
10 * self._std_weight_velocity * measurement[2],
|
||||
10 * self._std_weight_velocity * measurement[3],
|
||||
10 * self._std_weight_velocity * measurement[2],
|
||||
10 * self._std_weight_velocity * measurement[3],
|
||||
]
|
||||
covariance = np.diag(np.square(std))
|
||||
return mean, covariance
|
||||
|
||||
def predict(self, mean, covariance):
|
||||
def predict(self, mean, covariance) -> tuple:
|
||||
"""
|
||||
Run Kalman filter prediction step.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mean : ndarray
|
||||
The 8 dimensional mean vector of the object state at the previous time step.
|
||||
covariance : ndarray
|
||||
The 8x8 dimensional covariance matrix of the object state at the previous time step.
|
||||
Args:
|
||||
mean (ndarray): The 8 dimensional mean vector of the object state at the previous time step.
|
||||
covariance (ndarray): The 8x8 dimensional covariance matrix of the object state at the previous time step.
|
||||
|
||||
Returns
|
||||
-------
|
||||
(ndarray, ndarray)
|
||||
Returns the mean vector and covariance matrix of the predicted state. Unobserved velocities are
|
||||
initialized to 0 mean.
|
||||
Returns:
|
||||
(tuple[ndarray, ndarray]): Returns the mean vector and covariance matrix of the predicted state. Unobserved
|
||||
velocities are initialized to 0 mean.
|
||||
"""
|
||||
std_pos = [
|
||||
self._std_weight_position * mean[2], self._std_weight_position * mean[3],
|
||||
self._std_weight_position * mean[2], self._std_weight_position * mean[3]]
|
||||
self._std_weight_position * mean[2],
|
||||
self._std_weight_position * mean[3],
|
||||
self._std_weight_position * mean[2],
|
||||
self._std_weight_position * mean[3],
|
||||
]
|
||||
std_vel = [
|
||||
self._std_weight_velocity * mean[2], self._std_weight_velocity * mean[3],
|
||||
self._std_weight_velocity * mean[2], self._std_weight_velocity * mean[3]]
|
||||
self._std_weight_velocity * mean[2],
|
||||
self._std_weight_velocity * mean[3],
|
||||
self._std_weight_velocity * mean[2],
|
||||
self._std_weight_velocity * mean[3],
|
||||
]
|
||||
motion_cov = np.diag(np.square(np.r_[std_pos, std_vel]))
|
||||
|
||||
mean = np.dot(mean, self._motion_mat.T)
|
||||
@ -287,54 +286,53 @@ class KalmanFilterXYWH(KalmanFilterXYAH):
|
||||
|
||||
return mean, covariance
|
||||
|
||||
def project(self, mean, covariance):
|
||||
def project(self, mean, covariance) -> tuple:
|
||||
"""
|
||||
Project state distribution to measurement space.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mean : ndarray
|
||||
The state's mean vector (8 dimensional array).
|
||||
covariance : ndarray
|
||||
The state's covariance matrix (8x8 dimensional).
|
||||
Args:
|
||||
mean (ndarray): The state's mean vector (8 dimensional array).
|
||||
covariance (ndarray): The state's covariance matrix (8x8 dimensional).
|
||||
|
||||
Returns
|
||||
-------
|
||||
(ndarray, ndarray)
|
||||
Returns the projected mean and covariance matrix of the given state estimate.
|
||||
Returns:
|
||||
(tuple[ndarray, ndarray]): Returns the projected mean and covariance matrix of the given state estimate.
|
||||
"""
|
||||
std = [
|
||||
self._std_weight_position * mean[2], self._std_weight_position * mean[3],
|
||||
self._std_weight_position * mean[2], self._std_weight_position * mean[3]]
|
||||
self._std_weight_position * mean[2],
|
||||
self._std_weight_position * mean[3],
|
||||
self._std_weight_position * mean[2],
|
||||
self._std_weight_position * mean[3],
|
||||
]
|
||||
innovation_cov = np.diag(np.square(std))
|
||||
|
||||
mean = np.dot(self._update_mat, mean)
|
||||
covariance = np.linalg.multi_dot((self._update_mat, covariance, self._update_mat.T))
|
||||
return mean, covariance + innovation_cov
|
||||
|
||||
def multi_predict(self, mean, covariance):
|
||||
def multi_predict(self, mean, covariance) -> tuple:
|
||||
"""
|
||||
Run Kalman filter prediction step (Vectorized version).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mean : ndarray
|
||||
The Nx8 dimensional mean matrix of the object states at the previous time step.
|
||||
covariance : ndarray
|
||||
The Nx8x8 dimensional covariance matrix of the object states at the previous time step.
|
||||
Args:
|
||||
mean (ndarray): The Nx8 dimensional mean matrix of the object states at the previous time step.
|
||||
covariance (ndarray): The Nx8x8 covariance matrix of the object states at the previous time step.
|
||||
|
||||
Returns
|
||||
-------
|
||||
(ndarray, ndarray)
|
||||
Returns the mean vector and covariance matrix of the predicted state. Unobserved velocities are
|
||||
initialized to 0 mean.
|
||||
Returns:
|
||||
(tuple[ndarray, ndarray]): Returns the mean vector and covariance matrix of the predicted state. Unobserved
|
||||
velocities are initialized to 0 mean.
|
||||
"""
|
||||
std_pos = [
|
||||
self._std_weight_position * mean[:, 2], self._std_weight_position * mean[:, 3],
|
||||
self._std_weight_position * mean[:, 2], self._std_weight_position * mean[:, 3]]
|
||||
self._std_weight_position * mean[:, 2],
|
||||
self._std_weight_position * mean[:, 3],
|
||||
self._std_weight_position * mean[:, 2],
|
||||
self._std_weight_position * mean[:, 3],
|
||||
]
|
||||
std_vel = [
|
||||
self._std_weight_velocity * mean[:, 2], self._std_weight_velocity * mean[:, 3],
|
||||
self._std_weight_velocity * mean[:, 2], self._std_weight_velocity * mean[:, 3]]
|
||||
self._std_weight_velocity * mean[:, 2],
|
||||
self._std_weight_velocity * mean[:, 3],
|
||||
self._std_weight_velocity * mean[:, 2],
|
||||
self._std_weight_velocity * mean[:, 3],
|
||||
]
|
||||
sqr = np.square(np.r_[std_pos, std_vel]).T
|
||||
|
||||
motion_cov = [np.diag(sqr[i]) for i in range(len(mean))]
|
||||
@ -346,23 +344,17 @@ class KalmanFilterXYWH(KalmanFilterXYAH):
|
||||
|
||||
return mean, covariance
|
||||
|
||||
def update(self, mean, covariance, measurement):
|
||||
def update(self, mean, covariance, measurement) -> tuple:
|
||||
"""
|
||||
Run Kalman filter correction step.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mean : ndarray
|
||||
The predicted state's mean vector (8 dimensional).
|
||||
covariance : ndarray
|
||||
The state's covariance matrix (8x8 dimensional).
|
||||
measurement : ndarray
|
||||
The 4 dimensional measurement vector (x, y, w, h), where (x, y) is the center position, w the width,
|
||||
and h the height of the bounding box.
|
||||
Args:
|
||||
mean (ndarray): The predicted state's mean vector (8 dimensional).
|
||||
covariance (ndarray): The state's covariance matrix (8x8 dimensional).
|
||||
measurement (ndarray): The 4 dimensional measurement vector (x, y, w, h), where (x, y) is the center
|
||||
position, w the width, and h the height of the bounding box.
|
||||
|
||||
Returns
|
||||
-------
|
||||
(ndarray, ndarray)
|
||||
Returns the measurement-corrected state distribution.
|
||||
Returns:
|
||||
(tuple[ndarray, ndarray]): Returns the measurement-corrected state distribution.
|
||||
"""
|
||||
return super().update(mean, covariance, measurement)
|
||||
|
@ -4,7 +4,7 @@ import numpy as np
|
||||
import scipy
|
||||
from scipy.spatial.distance import cdist
|
||||
|
||||
from ultralytics.utils.metrics import bbox_ioa
|
||||
from ultralytics.utils.metrics import bbox_ioa, batch_probiou
|
||||
|
||||
try:
|
||||
import lap # for linear_assignment
|
||||
@ -13,11 +13,11 @@ try:
|
||||
except (ImportError, AssertionError, AttributeError):
|
||||
from ultralytics.utils.checks import check_requirements
|
||||
|
||||
check_requirements('lapx>=0.5.2') # update to lap package from https://github.com/rathaROG/lapx
|
||||
check_requirements("lapx>=0.5.2") # update to lap package from https://github.com/rathaROG/lapx
|
||||
import lap
|
||||
|
||||
|
||||
def linear_assignment(cost_matrix, thresh, use_lap=True):
|
||||
def linear_assignment(cost_matrix: np.ndarray, thresh: float, use_lap: bool = True) -> tuple:
|
||||
"""
|
||||
Perform linear assignment using scipy or lap.lapjv.
|
||||
|
||||
@ -27,19 +27,24 @@ def linear_assignment(cost_matrix, thresh, use_lap=True):
|
||||
use_lap (bool, optional): Whether to use lap.lapjv. Defaults to True.
|
||||
|
||||
Returns:
|
||||
(tuple): Tuple containing matched indices, unmatched indices from 'a', and unmatched indices from 'b'.
|
||||
Tuple with:
|
||||
- matched indices
|
||||
- unmatched indices from 'a'
|
||||
- unmatched indices from 'b'
|
||||
"""
|
||||
|
||||
if cost_matrix.size == 0:
|
||||
return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1]))
|
||||
|
||||
if use_lap:
|
||||
# Use lap.lapjv
|
||||
# https://github.com/gatagat/lap
|
||||
_, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh)
|
||||
matches = [[ix, mx] for ix, mx in enumerate(x) if mx >= 0]
|
||||
unmatched_a = np.where(x < 0)[0]
|
||||
unmatched_b = np.where(y < 0)[0]
|
||||
else:
|
||||
# Use scipy.optimize.linear_sum_assignment
|
||||
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
|
||||
x, y = scipy.optimize.linear_sum_assignment(cost_matrix) # row x, col y
|
||||
matches = np.asarray([[x[i], y[i]] for i in range(len(x)) if cost_matrix[x[i], y[i]] <= thresh])
|
||||
@ -53,7 +58,7 @@ def linear_assignment(cost_matrix, thresh, use_lap=True):
|
||||
return matches, unmatched_a, unmatched_b
|
||||
|
||||
|
||||
def iou_distance(atracks, btracks):
|
||||
def iou_distance(atracks: list, btracks: list) -> np.ndarray:
|
||||
"""
|
||||
Compute cost based on Intersection over Union (IoU) between tracks.
|
||||
|
||||
@ -65,23 +70,30 @@ def iou_distance(atracks, btracks):
|
||||
(np.ndarray): Cost matrix computed based on IoU.
|
||||
"""
|
||||
|
||||
if (len(atracks) > 0 and isinstance(atracks[0], np.ndarray)) \
|
||||
or (len(btracks) > 0 and isinstance(btracks[0], np.ndarray)):
|
||||
if atracks and isinstance(atracks[0], np.ndarray) or btracks and isinstance(btracks[0], np.ndarray):
|
||||
atlbrs = atracks
|
||||
btlbrs = btracks
|
||||
else:
|
||||
atlbrs = [track.tlbr for track in atracks]
|
||||
btlbrs = [track.tlbr for track in btracks]
|
||||
atlbrs = [track.xywha if track.angle is not None else track.xyxy for track in atracks]
|
||||
btlbrs = [track.xywha if track.angle is not None else track.xyxy for track in btracks]
|
||||
|
||||
ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float32)
|
||||
if len(atlbrs) and len(btlbrs):
|
||||
ious = bbox_ioa(np.ascontiguousarray(atlbrs, dtype=np.float32),
|
||||
np.ascontiguousarray(btlbrs, dtype=np.float32),
|
||||
iou=True)
|
||||
if len(atlbrs[0]) == 5 and len(btlbrs[0]) == 5:
|
||||
ious = batch_probiou(
|
||||
np.ascontiguousarray(atlbrs, dtype=np.float32),
|
||||
np.ascontiguousarray(btlbrs, dtype=np.float32),
|
||||
).numpy()
|
||||
else:
|
||||
ious = bbox_ioa(
|
||||
np.ascontiguousarray(atlbrs, dtype=np.float32),
|
||||
np.ascontiguousarray(btlbrs, dtype=np.float32),
|
||||
iou=True,
|
||||
)
|
||||
return 1 - ious # cost matrix
|
||||
|
||||
|
||||
def embedding_distance(tracks, detections, metric='cosine'):
|
||||
def embedding_distance(tracks: list, detections: list, metric: str = "cosine") -> np.ndarray:
|
||||
"""
|
||||
Compute distance between tracks and detections based on embeddings.
|
||||
|
||||
@ -105,7 +117,7 @@ def embedding_distance(tracks, detections, metric='cosine'):
|
||||
return cost_matrix
|
||||
|
||||
|
||||
def fuse_score(cost_matrix, detections):
|
||||
def fuse_score(cost_matrix: np.ndarray, detections: list) -> np.ndarray:
|
||||
"""
|
||||
Fuses cost matrix with detection scores to produce a single similarity matrix.
|
||||
|
||||
|
Reference in New Issue
Block a user