add yolo v10 and modify pipeline
This commit is contained in:
@ -1,19 +1,20 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from functools import partial
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.utils import IterableSimpleNamespace, yaml_load
|
||||
from ultralytics.utils.checks import check_yaml
|
||||
|
||||
from .bot_sort import BOTSORT
|
||||
from .byte_tracker import BYTETracker
|
||||
|
||||
TRACKER_MAP = {'bytetrack': BYTETracker, 'botsort': BOTSORT}
|
||||
# A mapping of tracker types to corresponding tracker classes
|
||||
TRACKER_MAP = {"bytetrack": BYTETracker, "botsort": BOTSORT}
|
||||
|
||||
|
||||
def on_predict_start(predictor, persist=False):
|
||||
def on_predict_start(predictor: object, persist: bool = False) -> None:
|
||||
"""
|
||||
Initialize trackers for object tracking during prediction.
|
||||
|
||||
@ -24,43 +25,65 @@ def on_predict_start(predictor, persist=False):
|
||||
Raises:
|
||||
AssertionError: If the tracker_type is not 'bytetrack' or 'botsort'.
|
||||
"""
|
||||
if hasattr(predictor, 'trackers') and persist:
|
||||
if hasattr(predictor, "trackers") and persist:
|
||||
return
|
||||
|
||||
tracker = check_yaml(predictor.args.tracker)
|
||||
cfg = IterableSimpleNamespace(**yaml_load(tracker))
|
||||
assert cfg.tracker_type in ['bytetrack', 'botsort'], \
|
||||
f"Only support 'bytetrack' and 'botsort' for now, but got '{cfg.tracker_type}'"
|
||||
|
||||
if cfg.tracker_type not in ["bytetrack", "botsort"]:
|
||||
raise AssertionError(f"Only 'bytetrack' and 'botsort' are supported for now, but got '{cfg.tracker_type}'")
|
||||
|
||||
trackers = []
|
||||
for _ in range(predictor.dataset.bs):
|
||||
tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30)
|
||||
trackers.append(tracker)
|
||||
if predictor.dataset.mode != "stream": # only need one tracker for other modes.
|
||||
break
|
||||
predictor.trackers = trackers
|
||||
predictor.vid_path = [None] * predictor.dataset.bs # for determining when to reset tracker on new video
|
||||
|
||||
|
||||
def on_predict_postprocess_end(predictor):
|
||||
"""Postprocess detected boxes and update with object tracking."""
|
||||
bs = predictor.dataset.bs
|
||||
im0s = predictor.batch[1]
|
||||
for i in range(bs):
|
||||
det = predictor.results[i].boxes.cpu().numpy()
|
||||
def on_predict_postprocess_end(predictor: object, persist: bool = False) -> None:
|
||||
"""
|
||||
Postprocess detected boxes and update with object tracking.
|
||||
|
||||
Args:
|
||||
predictor (object): The predictor object containing the predictions.
|
||||
persist (bool, optional): Whether to persist the trackers if they already exist. Defaults to False.
|
||||
"""
|
||||
path, im0s = predictor.batch[:2]
|
||||
|
||||
is_obb = predictor.args.task == "obb"
|
||||
is_stream = predictor.dataset.mode == "stream"
|
||||
for i in range(len(im0s)):
|
||||
tracker = predictor.trackers[i if is_stream else 0]
|
||||
vid_path = predictor.save_dir / Path(path[i]).name
|
||||
if not persist and predictor.vid_path[i if is_stream else 0] != vid_path:
|
||||
tracker.reset()
|
||||
predictor.vid_path[i if is_stream else 0] = vid_path
|
||||
|
||||
det = (predictor.results[i].obb if is_obb else predictor.results[i].boxes).cpu().numpy()
|
||||
if len(det) == 0:
|
||||
continue
|
||||
tracks = predictor.trackers[i].update(det, im0s[i])
|
||||
tracks = tracker.update(det, im0s[i])
|
||||
if len(tracks) == 0:
|
||||
continue
|
||||
idx = tracks[:, -1].astype(int)
|
||||
predictor.results[i] = predictor.results[i][idx]
|
||||
predictor.results[i].update(boxes=torch.as_tensor(tracks[:, :-1]))
|
||||
|
||||
update_args = dict()
|
||||
update_args["obb" if is_obb else "boxes"] = torch.as_tensor(tracks[:, :-1])
|
||||
predictor.results[i].update(**update_args)
|
||||
|
||||
|
||||
def register_tracker(model, persist):
|
||||
def register_tracker(model: object, persist: bool) -> None:
|
||||
"""
|
||||
Register tracking callbacks to the model for object tracking during prediction.
|
||||
|
||||
Args:
|
||||
model (object): The model object to register tracking callbacks for.
|
||||
persist (bool): Whether to persist the trackers if they already exist.
|
||||
|
||||
"""
|
||||
model.add_callback('on_predict_start', partial(on_predict_start, persist=persist))
|
||||
model.add_callback('on_predict_postprocess_end', on_predict_postprocess_end)
|
||||
model.add_callback("on_predict_start", partial(on_predict_start, persist=persist))
|
||||
model.add_callback("on_predict_postprocess_end", partial(on_predict_postprocess_end, persist=persist))
|
||||
|
Reference in New Issue
Block a user