add yolo v10 and modify pipeline
This commit is contained in:
@ -1,7 +1,5 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Transformer modules
|
||||
"""
|
||||
"""Transformer modules."""
|
||||
|
||||
import math
|
||||
|
||||
@ -13,19 +11,32 @@ from torch.nn.init import constant_, xavier_uniform_
|
||||
from .conv import Conv
|
||||
from .utils import _get_clones, inverse_sigmoid, multi_scale_deformable_attn_pytorch
|
||||
|
||||
__all__ = ('TransformerEncoderLayer', 'TransformerLayer', 'TransformerBlock', 'MLPBlock', 'LayerNorm2d', 'AIFI',
|
||||
'DeformableTransformerDecoder', 'DeformableTransformerDecoderLayer', 'MSDeformAttn', 'MLP')
|
||||
__all__ = (
|
||||
"TransformerEncoderLayer",
|
||||
"TransformerLayer",
|
||||
"TransformerBlock",
|
||||
"MLPBlock",
|
||||
"LayerNorm2d",
|
||||
"AIFI",
|
||||
"DeformableTransformerDecoder",
|
||||
"DeformableTransformerDecoderLayer",
|
||||
"MSDeformAttn",
|
||||
"MLP",
|
||||
)
|
||||
|
||||
|
||||
class TransformerEncoderLayer(nn.Module):
|
||||
"""Transformer Encoder."""
|
||||
"""Defines a single layer of the transformer encoder."""
|
||||
|
||||
def __init__(self, c1, cm=2048, num_heads=8, dropout=0.0, act=nn.GELU(), normalize_before=False):
|
||||
"""Initialize the TransformerEncoderLayer with specified parameters."""
|
||||
super().__init__()
|
||||
from ...utils.torch_utils import TORCH_1_9
|
||||
|
||||
if not TORCH_1_9:
|
||||
raise ModuleNotFoundError(
|
||||
'TransformerEncoderLayer() requires torch>=1.9 to use nn.MultiheadAttention(batch_first=True).')
|
||||
"TransformerEncoderLayer() requires torch>=1.9 to use nn.MultiheadAttention(batch_first=True)."
|
||||
)
|
||||
self.ma = nn.MultiheadAttention(c1, num_heads, dropout=dropout, batch_first=True)
|
||||
# Implementation of Feedforward model
|
||||
self.fc1 = nn.Linear(c1, cm)
|
||||
@ -40,11 +51,13 @@ class TransformerEncoderLayer(nn.Module):
|
||||
self.act = act
|
||||
self.normalize_before = normalize_before
|
||||
|
||||
def with_pos_embed(self, tensor, pos=None):
|
||||
"""Add position embeddings if given."""
|
||||
@staticmethod
|
||||
def with_pos_embed(tensor, pos=None):
|
||||
"""Add position embeddings to the tensor if provided."""
|
||||
return tensor if pos is None else tensor + pos
|
||||
|
||||
def forward_post(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
|
||||
"""Performs forward pass with post-normalization."""
|
||||
q = k = self.with_pos_embed(src, pos)
|
||||
src2 = self.ma(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
||||
src = src + self.dropout1(src2)
|
||||
@ -54,6 +67,7 @@ class TransformerEncoderLayer(nn.Module):
|
||||
return self.norm2(src)
|
||||
|
||||
def forward_pre(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
|
||||
"""Performs forward pass with pre-normalization."""
|
||||
src2 = self.norm1(src)
|
||||
q = k = self.with_pos_embed(src2, pos)
|
||||
src2 = self.ma(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
||||
@ -70,27 +84,30 @@ class TransformerEncoderLayer(nn.Module):
|
||||
|
||||
|
||||
class AIFI(TransformerEncoderLayer):
|
||||
"""Defines the AIFI transformer layer."""
|
||||
|
||||
def __init__(self, c1, cm=2048, num_heads=8, dropout=0, act=nn.GELU(), normalize_before=False):
|
||||
"""Initialize the AIFI instance with specified parameters."""
|
||||
super().__init__(c1, cm, num_heads, dropout, act, normalize_before)
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass for the AIFI transformer layer."""
|
||||
c, h, w = x.shape[1:]
|
||||
pos_embed = self.build_2d_sincos_position_embedding(w, h, c)
|
||||
# flatten [B, C, H, W] to [B, HxW, C]
|
||||
# Flatten [B, C, H, W] to [B, HxW, C]
|
||||
x = super().forward(x.flatten(2).permute(0, 2, 1), pos=pos_embed.to(device=x.device, dtype=x.dtype))
|
||||
return x.permute(0, 2, 1).view([-1, c, h, w]).contiguous()
|
||||
|
||||
@staticmethod
|
||||
def build_2d_sincos_position_embedding(w, h, embed_dim=256, temperature=10000.):
|
||||
grid_w = torch.arange(int(w), dtype=torch.float32)
|
||||
grid_h = torch.arange(int(h), dtype=torch.float32)
|
||||
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing='ij')
|
||||
assert embed_dim % 4 == 0, \
|
||||
'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'
|
||||
def build_2d_sincos_position_embedding(w, h, embed_dim=256, temperature=10000.0):
|
||||
"""Builds 2D sine-cosine position embedding."""
|
||||
assert embed_dim % 4 == 0, "Embed dimension must be divisible by 4 for 2D sin-cos position embedding"
|
||||
grid_w = torch.arange(w, dtype=torch.float32)
|
||||
grid_h = torch.arange(h, dtype=torch.float32)
|
||||
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing="ij")
|
||||
pos_dim = embed_dim // 4
|
||||
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
|
||||
omega = 1. / (temperature ** omega)
|
||||
omega = 1.0 / (temperature**omega)
|
||||
|
||||
out_w = grid_w.flatten()[..., None] @ omega[None]
|
||||
out_h = grid_h.flatten()[..., None] @ omega[None]
|
||||
@ -140,27 +157,32 @@ class TransformerBlock(nn.Module):
|
||||
|
||||
|
||||
class MLPBlock(nn.Module):
|
||||
"""Implements a single block of a multi-layer perceptron."""
|
||||
|
||||
def __init__(self, embedding_dim, mlp_dim, act=nn.GELU):
|
||||
"""Initialize the MLPBlock with specified embedding dimension, MLP dimension, and activation function."""
|
||||
super().__init__()
|
||||
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
||||
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
||||
self.act = act()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Forward pass for the MLPBlock."""
|
||||
return self.lin2(self.act(self.lin1(x)))
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
""" Very simple multi-layer perceptron (also called FFN)"""
|
||||
"""Implements a simple multi-layer perceptron (also called FFN)."""
|
||||
|
||||
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
|
||||
"""Initialize the MLP with specified input, hidden, output dimensions and number of layers."""
|
||||
super().__init__()
|
||||
self.num_layers = num_layers
|
||||
h = [hidden_dim] * (num_layers - 1)
|
||||
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass for the entire MLP."""
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
||||
return x
|
||||
@ -168,17 +190,23 @@ class MLP(nn.Module):
|
||||
|
||||
class LayerNorm2d(nn.Module):
|
||||
"""
|
||||
LayerNorm2d module from https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py
|
||||
https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119
|
||||
2D Layer Normalization module inspired by Detectron2 and ConvNeXt implementations.
|
||||
|
||||
Original implementations in
|
||||
https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py
|
||||
and
|
||||
https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py.
|
||||
"""
|
||||
|
||||
def __init__(self, num_channels, eps=1e-6):
|
||||
"""Initialize LayerNorm2d with the given parameters."""
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.ones(num_channels))
|
||||
self.bias = nn.Parameter(torch.zeros(num_channels))
|
||||
self.eps = eps
|
||||
|
||||
def forward(self, x):
|
||||
"""Perform forward pass for 2D layer normalization."""
|
||||
u = x.mean(1, keepdim=True)
|
||||
s = (x - u).pow(2).mean(1, keepdim=True)
|
||||
x = (x - u) / torch.sqrt(s + self.eps)
|
||||
@ -187,17 +215,19 @@ class LayerNorm2d(nn.Module):
|
||||
|
||||
class MSDeformAttn(nn.Module):
|
||||
"""
|
||||
Original Multi-Scale Deformable Attention Module.
|
||||
Multiscale Deformable Attention Module based on Deformable-DETR and PaddleDetection implementations.
|
||||
|
||||
https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py
|
||||
"""
|
||||
|
||||
def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4):
|
||||
"""Initialize MSDeformAttn with the given parameters."""
|
||||
super().__init__()
|
||||
if d_model % n_heads != 0:
|
||||
raise ValueError(f'd_model must be divisible by n_heads, but got {d_model} and {n_heads}')
|
||||
raise ValueError(f"d_model must be divisible by n_heads, but got {d_model} and {n_heads}")
|
||||
_d_per_head = d_model // n_heads
|
||||
# you'd better set _d_per_head to a power of 2 which is more efficient in our CUDA implementation
|
||||
assert _d_per_head * n_heads == d_model, '`d_model` must be divisible by `n_heads`'
|
||||
# Better to set _d_per_head to a power of 2 which is more efficient in a CUDA implementation
|
||||
assert _d_per_head * n_heads == d_model, "`d_model` must be divisible by `n_heads`"
|
||||
|
||||
self.im2col_step = 64
|
||||
|
||||
@ -214,25 +244,32 @@ class MSDeformAttn(nn.Module):
|
||||
self._reset_parameters()
|
||||
|
||||
def _reset_parameters(self):
|
||||
constant_(self.sampling_offsets.weight.data, 0.)
|
||||
"""Reset module parameters."""
|
||||
constant_(self.sampling_offsets.weight.data, 0.0)
|
||||
thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads)
|
||||
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
|
||||
grid_init = (grid_init / grid_init.abs().max(-1, keepdim=True)[0]).view(self.n_heads, 1, 1, 2).repeat(
|
||||
1, self.n_levels, self.n_points, 1)
|
||||
grid_init = (
|
||||
(grid_init / grid_init.abs().max(-1, keepdim=True)[0])
|
||||
.view(self.n_heads, 1, 1, 2)
|
||||
.repeat(1, self.n_levels, self.n_points, 1)
|
||||
)
|
||||
for i in range(self.n_points):
|
||||
grid_init[:, :, i, :] *= i + 1
|
||||
with torch.no_grad():
|
||||
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
|
||||
constant_(self.attention_weights.weight.data, 0.)
|
||||
constant_(self.attention_weights.bias.data, 0.)
|
||||
constant_(self.attention_weights.weight.data, 0.0)
|
||||
constant_(self.attention_weights.bias.data, 0.0)
|
||||
xavier_uniform_(self.value_proj.weight.data)
|
||||
constant_(self.value_proj.bias.data, 0.)
|
||||
constant_(self.value_proj.bias.data, 0.0)
|
||||
xavier_uniform_(self.output_proj.weight.data)
|
||||
constant_(self.output_proj.bias.data, 0.)
|
||||
constant_(self.output_proj.bias.data, 0.0)
|
||||
|
||||
def forward(self, query, refer_bbox, value, value_shapes, value_mask=None):
|
||||
"""
|
||||
Perform forward pass for multiscale deformable attention.
|
||||
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
|
||||
|
||||
Args:
|
||||
query (torch.Tensor): [bs, query_length, C]
|
||||
refer_bbox (torch.Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0),
|
||||
@ -265,31 +302,34 @@ class MSDeformAttn(nn.Module):
|
||||
add = sampling_offsets / self.n_points * refer_bbox[:, :, None, :, None, 2:] * 0.5
|
||||
sampling_locations = refer_bbox[:, :, None, :, None, :2] + add
|
||||
else:
|
||||
raise ValueError(f'Last dim of reference_points must be 2 or 4, but got {num_points}.')
|
||||
raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {num_points}.")
|
||||
output = multi_scale_deformable_attn_pytorch(value, value_shapes, sampling_locations, attention_weights)
|
||||
return self.output_proj(output)
|
||||
|
||||
|
||||
class DeformableTransformerDecoderLayer(nn.Module):
|
||||
"""
|
||||
Deformable Transformer Decoder Layer inspired by PaddleDetection and Deformable-DETR implementations.
|
||||
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
|
||||
https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/deformable_transformer.py
|
||||
"""
|
||||
|
||||
def __init__(self, d_model=256, n_heads=8, d_ffn=1024, dropout=0., act=nn.ReLU(), n_levels=4, n_points=4):
|
||||
def __init__(self, d_model=256, n_heads=8, d_ffn=1024, dropout=0.0, act=nn.ReLU(), n_levels=4, n_points=4):
|
||||
"""Initialize the DeformableTransformerDecoderLayer with the given parameters."""
|
||||
super().__init__()
|
||||
|
||||
# self attention
|
||||
# Self attention
|
||||
self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.norm1 = nn.LayerNorm(d_model)
|
||||
|
||||
# cross attention
|
||||
# Cross attention
|
||||
self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
self.norm2 = nn.LayerNorm(d_model)
|
||||
|
||||
# ffn
|
||||
# FFN
|
||||
self.linear1 = nn.Linear(d_model, d_ffn)
|
||||
self.act = act
|
||||
self.dropout3 = nn.Dropout(dropout)
|
||||
@ -299,37 +339,46 @@ class DeformableTransformerDecoderLayer(nn.Module):
|
||||
|
||||
@staticmethod
|
||||
def with_pos_embed(tensor, pos):
|
||||
"""Add positional embeddings to the input tensor, if provided."""
|
||||
return tensor if pos is None else tensor + pos
|
||||
|
||||
def forward_ffn(self, tgt):
|
||||
"""Perform forward pass through the Feed-Forward Network part of the layer."""
|
||||
tgt2 = self.linear2(self.dropout3(self.act(self.linear1(tgt))))
|
||||
tgt = tgt + self.dropout4(tgt2)
|
||||
return self.norm3(tgt)
|
||||
|
||||
def forward(self, embed, refer_bbox, feats, shapes, padding_mask=None, attn_mask=None, query_pos=None):
|
||||
# self attention
|
||||
"""Perform the forward pass through the entire decoder layer."""
|
||||
|
||||
# Self attention
|
||||
q = k = self.with_pos_embed(embed, query_pos)
|
||||
tgt = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), embed.transpose(0, 1),
|
||||
attn_mask=attn_mask)[0].transpose(0, 1)
|
||||
tgt = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), embed.transpose(0, 1), attn_mask=attn_mask)[
|
||||
0
|
||||
].transpose(0, 1)
|
||||
embed = embed + self.dropout1(tgt)
|
||||
embed = self.norm1(embed)
|
||||
|
||||
# cross attention
|
||||
tgt = self.cross_attn(self.with_pos_embed(embed, query_pos), refer_bbox.unsqueeze(2), feats, shapes,
|
||||
padding_mask)
|
||||
# Cross attention
|
||||
tgt = self.cross_attn(
|
||||
self.with_pos_embed(embed, query_pos), refer_bbox.unsqueeze(2), feats, shapes, padding_mask
|
||||
)
|
||||
embed = embed + self.dropout2(tgt)
|
||||
embed = self.norm2(embed)
|
||||
|
||||
# ffn
|
||||
# FFN
|
||||
return self.forward_ffn(embed)
|
||||
|
||||
|
||||
class DeformableTransformerDecoder(nn.Module):
|
||||
"""
|
||||
Implementation of Deformable Transformer Decoder based on PaddleDetection.
|
||||
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
|
||||
"""
|
||||
|
||||
def __init__(self, hidden_dim, decoder_layer, num_layers, eval_idx=-1):
|
||||
"""Initialize the DeformableTransformerDecoder with the given parameters."""
|
||||
super().__init__()
|
||||
self.layers = _get_clones(decoder_layer, num_layers)
|
||||
self.num_layers = num_layers
|
||||
@ -337,16 +386,18 @@ class DeformableTransformerDecoder(nn.Module):
|
||||
self.eval_idx = eval_idx if eval_idx >= 0 else num_layers + eval_idx
|
||||
|
||||
def forward(
|
||||
self,
|
||||
embed, # decoder embeddings
|
||||
refer_bbox, # anchor
|
||||
feats, # image features
|
||||
shapes, # feature shapes
|
||||
bbox_head,
|
||||
score_head,
|
||||
pos_mlp,
|
||||
attn_mask=None,
|
||||
padding_mask=None):
|
||||
self,
|
||||
embed, # decoder embeddings
|
||||
refer_bbox, # anchor
|
||||
feats, # image features
|
||||
shapes, # feature shapes
|
||||
bbox_head,
|
||||
score_head,
|
||||
pos_mlp,
|
||||
attn_mask=None,
|
||||
padding_mask=None,
|
||||
):
|
||||
"""Perform the forward pass through the entire decoder."""
|
||||
output = embed
|
||||
dec_bboxes = []
|
||||
dec_cls = []
|
||||
|
Reference in New Issue
Block a user