add yolo v10 and modify pipeline
This commit is contained in:
@ -1,9 +1,29 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from .tasks import (BaseModel, ClassificationModel, DetectionModel, SegmentationModel, attempt_load_one_weight,
|
||||
attempt_load_weights, guess_model_scale, guess_model_task, parse_model, torch_safe_load,
|
||||
yaml_model_load)
|
||||
from .tasks import (
|
||||
BaseModel,
|
||||
ClassificationModel,
|
||||
DetectionModel,
|
||||
SegmentationModel,
|
||||
attempt_load_one_weight,
|
||||
attempt_load_weights,
|
||||
guess_model_scale,
|
||||
guess_model_task,
|
||||
parse_model,
|
||||
torch_safe_load,
|
||||
yaml_model_load,
|
||||
)
|
||||
|
||||
__all__ = ('attempt_load_one_weight', 'attempt_load_weights', 'parse_model', 'yaml_model_load', 'guess_model_task',
|
||||
'guess_model_scale', 'torch_safe_load', 'DetectionModel', 'SegmentationModel', 'ClassificationModel',
|
||||
'BaseModel')
|
||||
__all__ = (
|
||||
"attempt_load_one_weight",
|
||||
"attempt_load_weights",
|
||||
"parse_model",
|
||||
"yaml_model_load",
|
||||
"guess_model_task",
|
||||
"guess_model_scale",
|
||||
"torch_safe_load",
|
||||
"DetectionModel",
|
||||
"SegmentationModel",
|
||||
"ClassificationModel",
|
||||
"BaseModel",
|
||||
)
|
||||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -7,7 +7,6 @@ import platform
|
||||
import zipfile
|
||||
from collections import OrderedDict, namedtuple
|
||||
from pathlib import Path
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
@ -21,7 +20,11 @@ from ultralytics.utils.downloads import attempt_download_asset, is_url
|
||||
|
||||
|
||||
def check_class_names(names):
|
||||
"""Check class names. Map imagenet class codes to human-readable names if required. Convert lists to dicts."""
|
||||
"""
|
||||
Check class names.
|
||||
|
||||
Map imagenet class codes to human-readable names if required. Convert lists to dicts.
|
||||
"""
|
||||
if isinstance(names, list): # names is a list
|
||||
names = dict(enumerate(names)) # convert to dict
|
||||
if isinstance(names, dict):
|
||||
@ -29,44 +32,39 @@ def check_class_names(names):
|
||||
names = {int(k): str(v) for k, v in names.items()}
|
||||
n = len(names)
|
||||
if max(names.keys()) >= n:
|
||||
raise KeyError(f'{n}-class dataset requires class indices 0-{n - 1}, but you have invalid class indices '
|
||||
f'{min(names.keys())}-{max(names.keys())} defined in your dataset YAML.')
|
||||
if isinstance(names[0], str) and names[0].startswith('n0'): # imagenet class codes, i.e. 'n01440764'
|
||||
map = yaml_load(ROOT / 'cfg/datasets/ImageNet.yaml')['map'] # human-readable names
|
||||
names = {k: map[v] for k, v in names.items()}
|
||||
raise KeyError(
|
||||
f"{n}-class dataset requires class indices 0-{n - 1}, but you have invalid class indices "
|
||||
f"{min(names.keys())}-{max(names.keys())} defined in your dataset YAML."
|
||||
)
|
||||
if isinstance(names[0], str) and names[0].startswith("n0"): # imagenet class codes, i.e. 'n01440764'
|
||||
names_map = yaml_load(ROOT / "cfg/datasets/ImageNet.yaml")["map"] # human-readable names
|
||||
names = {k: names_map[v] for k, v in names.items()}
|
||||
return names
|
||||
|
||||
|
||||
def default_class_names(data=None):
|
||||
"""Applies default class names to an input YAML file or returns numerical class names."""
|
||||
if data:
|
||||
with contextlib.suppress(Exception):
|
||||
return yaml_load(check_yaml(data))["names"]
|
||||
return {i: f"class{i}" for i in range(999)} # return default if above errors
|
||||
|
||||
|
||||
class AutoBackend(nn.Module):
|
||||
"""
|
||||
Handles dynamic backend selection for running inference using Ultralytics YOLO models.
|
||||
|
||||
def __init__(self,
|
||||
weights='yolov8n.pt',
|
||||
device=torch.device('cpu'),
|
||||
dnn=False,
|
||||
data=None,
|
||||
fp16=False,
|
||||
fuse=True,
|
||||
verbose=True):
|
||||
"""
|
||||
MultiBackend class for python inference on various platforms using Ultralytics YOLO.
|
||||
The AutoBackend class is designed to provide an abstraction layer for various inference engines. It supports a wide
|
||||
range of formats, each with specific naming conventions as outlined below:
|
||||
|
||||
Args:
|
||||
weights (str): The path to the weights file. Default: 'yolov8n.pt'
|
||||
device (torch.device): The device to run the model on.
|
||||
dnn (bool): Use OpenCV DNN module for inference if True, defaults to False.
|
||||
data (str | Path | optional): Additional data.yaml file for class names.
|
||||
fp16 (bool): If True, use half precision. Default: False
|
||||
fuse (bool): Whether to fuse the model or not. Default: True
|
||||
verbose (bool): Whether to run in verbose mode or not. Default: True
|
||||
|
||||
Supported formats and their naming conventions:
|
||||
| Format | Suffix |
|
||||
Supported Formats and Naming Conventions:
|
||||
| Format | File Suffix |
|
||||
|-----------------------|------------------|
|
||||
| PyTorch | *.pt |
|
||||
| TorchScript | *.torchscript |
|
||||
| ONNX Runtime | *.onnx |
|
||||
| ONNX OpenCV DNN | *.onnx dnn=True |
|
||||
| OpenVINO | *.xml |
|
||||
| ONNX OpenCV DNN | *.onnx (dnn=True)|
|
||||
| OpenVINO | *openvino_model/ |
|
||||
| CoreML | *.mlpackage |
|
||||
| TensorRT | *.engine |
|
||||
| TensorFlow SavedModel | *_saved_model |
|
||||
@ -74,103 +72,166 @@ class AutoBackend(nn.Module):
|
||||
| TensorFlow Lite | *.tflite |
|
||||
| TensorFlow Edge TPU | *_edgetpu.tflite |
|
||||
| PaddlePaddle | *_paddle_model |
|
||||
| ncnn | *_ncnn_model |
|
||||
| NCNN | *_ncnn_model |
|
||||
|
||||
This class offers dynamic backend switching capabilities based on the input model format, making it easier to deploy
|
||||
models across various platforms.
|
||||
"""
|
||||
|
||||
@torch.no_grad()
|
||||
def __init__(
|
||||
self,
|
||||
weights="yolov8n.pt",
|
||||
device=torch.device("cpu"),
|
||||
dnn=False,
|
||||
data=None,
|
||||
fp16=False,
|
||||
batch=1,
|
||||
fuse=True,
|
||||
verbose=True,
|
||||
):
|
||||
"""
|
||||
Initialize the AutoBackend for inference.
|
||||
|
||||
Args:
|
||||
weights (str): Path to the model weights file. Defaults to 'yolov8n.pt'.
|
||||
device (torch.device): Device to run the model on. Defaults to CPU.
|
||||
dnn (bool): Use OpenCV DNN module for ONNX inference. Defaults to False.
|
||||
data (str | Path | optional): Path to the additional data.yaml file containing class names. Optional.
|
||||
fp16 (bool): Enable half-precision inference. Supported only on specific backends. Defaults to False.
|
||||
batch (int): Batch-size to assume for inference.
|
||||
fuse (bool): Fuse Conv2D + BatchNorm layers for optimization. Defaults to True.
|
||||
verbose (bool): Enable verbose logging. Defaults to True.
|
||||
"""
|
||||
super().__init__()
|
||||
w = str(weights[0] if isinstance(weights, list) else weights)
|
||||
nn_module = isinstance(weights, torch.nn.Module)
|
||||
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, ncnn, triton = \
|
||||
self._model_type(w)
|
||||
(
|
||||
pt,
|
||||
jit,
|
||||
onnx,
|
||||
xml,
|
||||
engine,
|
||||
coreml,
|
||||
saved_model,
|
||||
pb,
|
||||
tflite,
|
||||
edgetpu,
|
||||
tfjs,
|
||||
paddle,
|
||||
ncnn,
|
||||
triton,
|
||||
) = self._model_type(w)
|
||||
fp16 &= pt or jit or onnx or xml or engine or nn_module or triton # FP16
|
||||
nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)
|
||||
stride = 32 # default stride
|
||||
model, metadata = None, None
|
||||
|
||||
# Set device
|
||||
cuda = torch.cuda.is_available() and device.type != 'cpu' # use CUDA
|
||||
if cuda and not any([nn_module, pt, jit, engine]): # GPU dataloader formats
|
||||
device = torch.device('cpu')
|
||||
cuda = torch.cuda.is_available() and device.type != "cpu" # use CUDA
|
||||
if cuda and not any([nn_module, pt, jit, engine, onnx]): # GPU dataloader formats
|
||||
device = torch.device("cpu")
|
||||
cuda = False
|
||||
|
||||
# Download if not local
|
||||
if not (pt or triton or nn_module):
|
||||
w = attempt_download_asset(w)
|
||||
|
||||
# Load model
|
||||
if nn_module: # in-memory PyTorch model
|
||||
# In-memory PyTorch model
|
||||
if nn_module:
|
||||
model = weights.to(device)
|
||||
model = model.fuse(verbose=verbose) if fuse else model
|
||||
if hasattr(model, 'kpt_shape'):
|
||||
if hasattr(model, "kpt_shape"):
|
||||
kpt_shape = model.kpt_shape # pose-only
|
||||
stride = max(int(model.stride.max()), 32) # model stride
|
||||
names = model.module.names if hasattr(model, 'module') else model.names # get class names
|
||||
names = model.module.names if hasattr(model, "module") else model.names # get class names
|
||||
model.half() if fp16 else model.float()
|
||||
self.model = model # explicitly assign for to(), cpu(), cuda(), half()
|
||||
pt = True
|
||||
elif pt: # PyTorch
|
||||
|
||||
# PyTorch
|
||||
elif pt:
|
||||
from ultralytics.nn.tasks import attempt_load_weights
|
||||
model = attempt_load_weights(weights if isinstance(weights, list) else w,
|
||||
device=device,
|
||||
inplace=True,
|
||||
fuse=fuse)
|
||||
if hasattr(model, 'kpt_shape'):
|
||||
|
||||
model = attempt_load_weights(
|
||||
weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse
|
||||
)
|
||||
if hasattr(model, "kpt_shape"):
|
||||
kpt_shape = model.kpt_shape # pose-only
|
||||
stride = max(int(model.stride.max()), 32) # model stride
|
||||
names = model.module.names if hasattr(model, 'module') else model.names # get class names
|
||||
names = model.module.names if hasattr(model, "module") else model.names # get class names
|
||||
model.half() if fp16 else model.float()
|
||||
self.model = model # explicitly assign for to(), cpu(), cuda(), half()
|
||||
elif jit: # TorchScript
|
||||
LOGGER.info(f'Loading {w} for TorchScript inference...')
|
||||
extra_files = {'config.txt': ''} # model metadata
|
||||
|
||||
# TorchScript
|
||||
elif jit:
|
||||
LOGGER.info(f"Loading {w} for TorchScript inference...")
|
||||
extra_files = {"config.txt": ""} # model metadata
|
||||
model = torch.jit.load(w, _extra_files=extra_files, map_location=device)
|
||||
model.half() if fp16 else model.float()
|
||||
if extra_files['config.txt']: # load metadata dict
|
||||
metadata = json.loads(extra_files['config.txt'], object_hook=lambda x: dict(x.items()))
|
||||
elif dnn: # ONNX OpenCV DNN
|
||||
LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
|
||||
check_requirements('opencv-python>=4.5.4')
|
||||
if extra_files["config.txt"]: # load metadata dict
|
||||
metadata = json.loads(extra_files["config.txt"], object_hook=lambda x: dict(x.items()))
|
||||
|
||||
# ONNX OpenCV DNN
|
||||
elif dnn:
|
||||
LOGGER.info(f"Loading {w} for ONNX OpenCV DNN inference...")
|
||||
check_requirements("opencv-python>=4.5.4")
|
||||
net = cv2.dnn.readNetFromONNX(w)
|
||||
elif onnx: # ONNX Runtime
|
||||
LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
|
||||
check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
|
||||
|
||||
# ONNX Runtime
|
||||
elif onnx:
|
||||
LOGGER.info(f"Loading {w} for ONNX Runtime inference...")
|
||||
check_requirements(("onnx", "onnxruntime-gpu" if cuda else "onnxruntime"))
|
||||
import onnxruntime
|
||||
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
|
||||
|
||||
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] if cuda else ["CPUExecutionProvider"]
|
||||
session = onnxruntime.InferenceSession(w, providers=providers)
|
||||
output_names = [x.name for x in session.get_outputs()]
|
||||
metadata = session.get_modelmeta().custom_metadata_map # metadata
|
||||
elif xml: # OpenVINO
|
||||
LOGGER.info(f'Loading {w} for OpenVINO inference...')
|
||||
check_requirements('openvino>=2023.0') # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
||||
from openvino.runtime import Core, Layout, get_batch # noqa
|
||||
core = Core()
|
||||
metadata = session.get_modelmeta().custom_metadata_map
|
||||
|
||||
# OpenVINO
|
||||
elif xml:
|
||||
LOGGER.info(f"Loading {w} for OpenVINO inference...")
|
||||
check_requirements("openvino>=2024.0.0")
|
||||
import openvino as ov
|
||||
|
||||
core = ov.Core()
|
||||
w = Path(w)
|
||||
if not w.is_file(): # if not *.xml
|
||||
w = next(w.glob('*.xml')) # get *.xml file from *_openvino_model dir
|
||||
ov_model = core.read_model(model=str(w), weights=w.with_suffix('.bin'))
|
||||
w = next(w.glob("*.xml")) # get *.xml file from *_openvino_model dir
|
||||
ov_model = core.read_model(model=str(w), weights=w.with_suffix(".bin"))
|
||||
if ov_model.get_parameters()[0].get_layout().empty:
|
||||
ov_model.get_parameters()[0].set_layout(Layout('NCHW'))
|
||||
batch_dim = get_batch(ov_model)
|
||||
if batch_dim.is_static:
|
||||
batch_size = batch_dim.get_length()
|
||||
ov_compiled_model = core.compile_model(ov_model, device_name='AUTO') # AUTO selects best available device
|
||||
metadata = w.parent / 'metadata.yaml'
|
||||
elif engine: # TensorRT
|
||||
LOGGER.info(f'Loading {w} for TensorRT inference...')
|
||||
ov_model.get_parameters()[0].set_layout(ov.Layout("NCHW"))
|
||||
|
||||
# OpenVINO inference modes are 'LATENCY', 'THROUGHPUT' (not recommended), or 'CUMULATIVE_THROUGHPUT'
|
||||
inference_mode = "CUMULATIVE_THROUGHPUT" if batch > 1 else "LATENCY"
|
||||
LOGGER.info(f"Using OpenVINO {inference_mode} mode for batch={batch} inference...")
|
||||
ov_compiled_model = core.compile_model(
|
||||
ov_model,
|
||||
device_name="AUTO", # AUTO selects best available device, do not modify
|
||||
config={"PERFORMANCE_HINT": inference_mode},
|
||||
)
|
||||
input_name = ov_compiled_model.input().get_any_name()
|
||||
metadata = w.parent / "metadata.yaml"
|
||||
|
||||
# TensorRT
|
||||
elif engine:
|
||||
LOGGER.info(f"Loading {w} for TensorRT inference...")
|
||||
try:
|
||||
import tensorrt as trt # noqa https://developer.nvidia.com/nvidia-tensorrt-download
|
||||
except ImportError:
|
||||
if LINUX:
|
||||
check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com')
|
||||
check_requirements("nvidia-tensorrt", cmds="-U --index-url https://pypi.ngc.nvidia.com")
|
||||
import tensorrt as trt # noqa
|
||||
check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
|
||||
if device.type == 'cpu':
|
||||
device = torch.device('cuda:0')
|
||||
Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
|
||||
check_version(trt.__version__, "7.0.0", hard=True) # require tensorrt>=7.0.0
|
||||
if device.type == "cpu":
|
||||
device = torch.device("cuda:0")
|
||||
Binding = namedtuple("Binding", ("name", "dtype", "shape", "data", "ptr"))
|
||||
logger = trt.Logger(trt.Logger.INFO)
|
||||
# Read file
|
||||
with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
|
||||
meta_len = int.from_bytes(f.read(4), byteorder='little') # read metadata length
|
||||
metadata = json.loads(f.read(meta_len).decode('utf-8')) # read metadata
|
||||
with open(w, "rb") as f, trt.Runtime(logger) as runtime:
|
||||
meta_len = int.from_bytes(f.read(4), byteorder="little") # read metadata length
|
||||
metadata = json.loads(f.read(meta_len).decode("utf-8")) # read metadata
|
||||
model = runtime.deserialize_cuda_engine(f.read()) # read engine
|
||||
context = model.create_execution_context()
|
||||
bindings = OrderedDict()
|
||||
@ -192,126 +253,152 @@ class AutoBackend(nn.Module):
|
||||
im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
|
||||
bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
|
||||
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
|
||||
batch_size = bindings['images'].shape[0] # if dynamic, this is instead max batch size
|
||||
elif coreml: # CoreML
|
||||
LOGGER.info(f'Loading {w} for CoreML inference...')
|
||||
batch_size = bindings["images"].shape[0] # if dynamic, this is instead max batch size
|
||||
|
||||
# CoreML
|
||||
elif coreml:
|
||||
LOGGER.info(f"Loading {w} for CoreML inference...")
|
||||
import coremltools as ct
|
||||
|
||||
model = ct.models.MLModel(w)
|
||||
metadata = dict(model.user_defined_metadata)
|
||||
elif saved_model: # TF SavedModel
|
||||
LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
|
||||
|
||||
# TF SavedModel
|
||||
elif saved_model:
|
||||
LOGGER.info(f"Loading {w} for TensorFlow SavedModel inference...")
|
||||
import tensorflow as tf
|
||||
|
||||
keras = False # assume TF1 saved_model
|
||||
model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
|
||||
metadata = Path(w) / 'metadata.yaml'
|
||||
elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
|
||||
LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
|
||||
metadata = Path(w) / "metadata.yaml"
|
||||
|
||||
# TF GraphDef
|
||||
elif pb: # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
|
||||
LOGGER.info(f"Loading {w} for TensorFlow GraphDef inference...")
|
||||
import tensorflow as tf
|
||||
|
||||
from ultralytics.engine.exporter import gd_outputs
|
||||
|
||||
def wrap_frozen_graph(gd, inputs, outputs):
|
||||
"""Wrap frozen graphs for deployment."""
|
||||
x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=''), []) # wrapped
|
||||
x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
|
||||
ge = x.graph.as_graph_element
|
||||
return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
|
||||
|
||||
gd = tf.Graph().as_graph_def() # TF GraphDef
|
||||
with open(w, 'rb') as f:
|
||||
with open(w, "rb") as f:
|
||||
gd.ParseFromString(f.read())
|
||||
frozen_func = wrap_frozen_graph(gd, inputs='x:0', outputs=gd_outputs(gd))
|
||||
frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs=gd_outputs(gd))
|
||||
|
||||
# TFLite or TFLite Edge TPU
|
||||
elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
|
||||
try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
|
||||
from tflite_runtime.interpreter import Interpreter, load_delegate
|
||||
except ImportError:
|
||||
import tensorflow as tf
|
||||
|
||||
Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate
|
||||
if edgetpu: # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
|
||||
LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
|
||||
delegate = {
|
||||
'Linux': 'libedgetpu.so.1',
|
||||
'Darwin': 'libedgetpu.1.dylib',
|
||||
'Windows': 'edgetpu.dll'}[platform.system()]
|
||||
LOGGER.info(f"Loading {w} for TensorFlow Lite Edge TPU inference...")
|
||||
delegate = {"Linux": "libedgetpu.so.1", "Darwin": "libedgetpu.1.dylib", "Windows": "edgetpu.dll"}[
|
||||
platform.system()
|
||||
]
|
||||
interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
|
||||
else: # TFLite
|
||||
LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
|
||||
LOGGER.info(f"Loading {w} for TensorFlow Lite inference...")
|
||||
interpreter = Interpreter(model_path=w) # load TFLite model
|
||||
interpreter.allocate_tensors() # allocate
|
||||
input_details = interpreter.get_input_details() # inputs
|
||||
output_details = interpreter.get_output_details() # outputs
|
||||
# Load metadata
|
||||
with contextlib.suppress(zipfile.BadZipFile):
|
||||
with zipfile.ZipFile(w, 'r') as model:
|
||||
with zipfile.ZipFile(w, "r") as model:
|
||||
meta_file = model.namelist()[0]
|
||||
metadata = ast.literal_eval(model.read(meta_file).decode('utf-8'))
|
||||
elif tfjs: # TF.js
|
||||
raise NotImplementedError('YOLOv8 TF.js inference is not currently supported.')
|
||||
elif paddle: # PaddlePaddle
|
||||
LOGGER.info(f'Loading {w} for PaddlePaddle inference...')
|
||||
check_requirements('paddlepaddle-gpu' if cuda else 'paddlepaddle')
|
||||
metadata = ast.literal_eval(model.read(meta_file).decode("utf-8"))
|
||||
|
||||
# TF.js
|
||||
elif tfjs:
|
||||
raise NotImplementedError("YOLOv8 TF.js inference is not currently supported.")
|
||||
|
||||
# PaddlePaddle
|
||||
elif paddle:
|
||||
LOGGER.info(f"Loading {w} for PaddlePaddle inference...")
|
||||
check_requirements("paddlepaddle-gpu" if cuda else "paddlepaddle")
|
||||
import paddle.inference as pdi # noqa
|
||||
|
||||
w = Path(w)
|
||||
if not w.is_file(): # if not *.pdmodel
|
||||
w = next(w.rglob('*.pdmodel')) # get *.pdmodel file from *_paddle_model dir
|
||||
config = pdi.Config(str(w), str(w.with_suffix('.pdiparams')))
|
||||
w = next(w.rglob("*.pdmodel")) # get *.pdmodel file from *_paddle_model dir
|
||||
config = pdi.Config(str(w), str(w.with_suffix(".pdiparams")))
|
||||
if cuda:
|
||||
config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)
|
||||
predictor = pdi.create_predictor(config)
|
||||
input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
|
||||
output_names = predictor.get_output_names()
|
||||
metadata = w.parents[1] / 'metadata.yaml'
|
||||
elif ncnn: # ncnn
|
||||
LOGGER.info(f'Loading {w} for ncnn inference...')
|
||||
check_requirements('git+https://github.com/Tencent/ncnn.git' if ARM64 else 'ncnn') # requires ncnn
|
||||
metadata = w.parents[1] / "metadata.yaml"
|
||||
|
||||
# NCNN
|
||||
elif ncnn:
|
||||
LOGGER.info(f"Loading {w} for NCNN inference...")
|
||||
check_requirements("git+https://github.com/Tencent/ncnn.git" if ARM64 else "ncnn") # requires NCNN
|
||||
import ncnn as pyncnn
|
||||
|
||||
net = pyncnn.Net()
|
||||
net.opt.use_vulkan_compute = cuda
|
||||
w = Path(w)
|
||||
if not w.is_file(): # if not *.param
|
||||
w = next(w.glob('*.param')) # get *.param file from *_ncnn_model dir
|
||||
w = next(w.glob("*.param")) # get *.param file from *_ncnn_model dir
|
||||
net.load_param(str(w))
|
||||
net.load_model(str(w.with_suffix('.bin')))
|
||||
metadata = w.parent / 'metadata.yaml'
|
||||
elif triton: # NVIDIA Triton Inference Server
|
||||
"""TODO
|
||||
check_requirements('tritonclient[all]')
|
||||
from utils.triton import TritonRemoteModel
|
||||
model = TritonRemoteModel(url=w)
|
||||
nhwc = model.runtime.startswith("tensorflow")
|
||||
"""
|
||||
raise NotImplementedError('Triton Inference Server is not currently supported.')
|
||||
net.load_model(str(w.with_suffix(".bin")))
|
||||
metadata = w.parent / "metadata.yaml"
|
||||
|
||||
# NVIDIA Triton Inference Server
|
||||
elif triton:
|
||||
check_requirements("tritonclient[all]")
|
||||
from ultralytics.utils.triton import TritonRemoteModel
|
||||
|
||||
model = TritonRemoteModel(w)
|
||||
|
||||
# Any other format (unsupported)
|
||||
else:
|
||||
from ultralytics.engine.exporter import export_formats
|
||||
raise TypeError(f"model='{w}' is not a supported model format. "
|
||||
'See https://docs.ultralytics.com/modes/predict for help.'
|
||||
f'\n\n{export_formats()}')
|
||||
|
||||
raise TypeError(
|
||||
f"model='{w}' is not a supported model format. "
|
||||
f"See https://docs.ultralytics.com/modes/predict for help.\n\n{export_formats()}"
|
||||
)
|
||||
|
||||
# Load external metadata YAML
|
||||
if isinstance(metadata, (str, Path)) and Path(metadata).exists():
|
||||
metadata = yaml_load(metadata)
|
||||
if metadata:
|
||||
for k, v in metadata.items():
|
||||
if k in ('stride', 'batch'):
|
||||
if k in ("stride", "batch"):
|
||||
metadata[k] = int(v)
|
||||
elif k in ('imgsz', 'names', 'kpt_shape') and isinstance(v, str):
|
||||
elif k in ("imgsz", "names", "kpt_shape") and isinstance(v, str):
|
||||
metadata[k] = eval(v)
|
||||
stride = metadata['stride']
|
||||
task = metadata['task']
|
||||
batch = metadata['batch']
|
||||
imgsz = metadata['imgsz']
|
||||
names = metadata['names']
|
||||
kpt_shape = metadata.get('kpt_shape')
|
||||
stride = metadata["stride"]
|
||||
task = metadata["task"]
|
||||
batch = metadata["batch"]
|
||||
imgsz = metadata["imgsz"]
|
||||
names = metadata["names"]
|
||||
kpt_shape = metadata.get("kpt_shape")
|
||||
elif not (pt or triton or nn_module):
|
||||
LOGGER.warning(f"WARNING ⚠️ Metadata not found for 'model={weights}'")
|
||||
|
||||
# Check names
|
||||
if 'names' not in locals(): # names missing
|
||||
names = self._apply_default_class_names(data)
|
||||
if "names" not in locals(): # names missing
|
||||
names = default_class_names(data)
|
||||
names = check_class_names(names)
|
||||
|
||||
# Disable gradients
|
||||
if pt:
|
||||
for p in model.parameters():
|
||||
p.requires_grad = False
|
||||
|
||||
self.__dict__.update(locals()) # assign all variables to self
|
||||
|
||||
def forward(self, im, augment=False, visualize=False):
|
||||
def forward(self, im, augment=False, visualize=False, embed=None):
|
||||
"""
|
||||
Runs inference on the YOLOv8 MultiBackend model.
|
||||
|
||||
@ -319,6 +406,7 @@ class AutoBackend(nn.Module):
|
||||
im (torch.Tensor): The image tensor to perform inference on.
|
||||
augment (bool): whether to perform data augmentation during inference, defaults to False
|
||||
visualize (bool): whether to visualize the output predictions, defaults to False
|
||||
embed (list, optional): A list of feature vectors/embeddings to return.
|
||||
|
||||
Returns:
|
||||
(tuple): Tuple containing the raw output tensor, and processed output for visualization (if visualize=True)
|
||||
@ -329,41 +417,75 @@ class AutoBackend(nn.Module):
|
||||
if self.nhwc:
|
||||
im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3)
|
||||
|
||||
if self.pt or self.nn_module: # PyTorch
|
||||
y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
|
||||
elif self.jit: # TorchScript
|
||||
# PyTorch
|
||||
if self.pt or self.nn_module:
|
||||
y = self.model(im, augment=augment, visualize=visualize, embed=embed)
|
||||
|
||||
# TorchScript
|
||||
elif self.jit:
|
||||
y = self.model(im)
|
||||
elif self.dnn: # ONNX OpenCV DNN
|
||||
|
||||
# ONNX OpenCV DNN
|
||||
elif self.dnn:
|
||||
im = im.cpu().numpy() # torch to numpy
|
||||
self.net.setInput(im)
|
||||
y = self.net.forward()
|
||||
elif self.onnx: # ONNX Runtime
|
||||
|
||||
# ONNX Runtime
|
||||
elif self.onnx:
|
||||
im = im.cpu().numpy() # torch to numpy
|
||||
y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
|
||||
elif self.xml: # OpenVINO
|
||||
|
||||
# OpenVINO
|
||||
elif self.xml:
|
||||
im = im.cpu().numpy() # FP32
|
||||
y = list(self.ov_compiled_model(im).values())
|
||||
elif self.engine: # TensorRT
|
||||
if self.dynamic and im.shape != self.bindings['images'].shape:
|
||||
i = self.model.get_binding_index('images')
|
||||
|
||||
if self.inference_mode in {"THROUGHPUT", "CUMULATIVE_THROUGHPUT"}: # optimized for larger batch-sizes
|
||||
n = im.shape[0] # number of images in batch
|
||||
results = [None] * n # preallocate list with None to match the number of images
|
||||
|
||||
def callback(request, userdata):
|
||||
"""Places result in preallocated list using userdata index."""
|
||||
results[userdata] = request.results
|
||||
|
||||
# Create AsyncInferQueue, set the callback and start asynchronous inference for each input image
|
||||
async_queue = self.ov.runtime.AsyncInferQueue(self.ov_compiled_model)
|
||||
async_queue.set_callback(callback)
|
||||
for i in range(n):
|
||||
# Start async inference with userdata=i to specify the position in results list
|
||||
async_queue.start_async(inputs={self.input_name: im[i : i + 1]}, userdata=i) # keep image as BCHW
|
||||
async_queue.wait_all() # wait for all inference requests to complete
|
||||
y = np.concatenate([list(r.values())[0] for r in results])
|
||||
|
||||
else: # inference_mode = "LATENCY", optimized for fastest first result at batch-size 1
|
||||
y = list(self.ov_compiled_model(im).values())
|
||||
|
||||
# TensorRT
|
||||
elif self.engine:
|
||||
if self.dynamic and im.shape != self.bindings["images"].shape:
|
||||
i = self.model.get_binding_index("images")
|
||||
self.context.set_binding_shape(i, im.shape) # reshape if dynamic
|
||||
self.bindings['images'] = self.bindings['images']._replace(shape=im.shape)
|
||||
self.bindings["images"] = self.bindings["images"]._replace(shape=im.shape)
|
||||
for name in self.output_names:
|
||||
i = self.model.get_binding_index(name)
|
||||
self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
|
||||
s = self.bindings['images'].shape
|
||||
s = self.bindings["images"].shape
|
||||
assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
|
||||
self.binding_addrs['images'] = int(im.data_ptr())
|
||||
self.binding_addrs["images"] = int(im.data_ptr())
|
||||
self.context.execute_v2(list(self.binding_addrs.values()))
|
||||
y = [self.bindings[x].data for x in sorted(self.output_names)]
|
||||
elif self.coreml: # CoreML
|
||||
|
||||
# CoreML
|
||||
elif self.coreml:
|
||||
im = im[0].cpu().numpy()
|
||||
im_pil = Image.fromarray((im * 255).astype('uint8'))
|
||||
im_pil = Image.fromarray((im * 255).astype("uint8"))
|
||||
# im = im.resize((192, 320), Image.BILINEAR)
|
||||
y = self.model.predict({'image': im_pil}) # coordinates are xywh normalized
|
||||
if 'confidence' in y:
|
||||
raise TypeError('Ultralytics only supports inference of non-pipelined CoreML models exported with '
|
||||
f"'nms=False', but 'model={w}' has an NMS pipeline created by an 'nms=True' export.")
|
||||
y = self.model.predict({"image": im_pil}) # coordinates are xywh normalized
|
||||
if "confidence" in y:
|
||||
raise TypeError(
|
||||
"Ultralytics only supports inference of non-pipelined CoreML models exported with "
|
||||
f"'nms=False', but 'model={w}' has an NMS pipeline created by an 'nms=True' export."
|
||||
)
|
||||
# TODO: CoreML NMS inference handling
|
||||
# from ultralytics.utils.ops import xywh2xyxy
|
||||
# box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
|
||||
@ -373,24 +495,28 @@ class AutoBackend(nn.Module):
|
||||
y = list(y.values())
|
||||
elif len(y) == 2: # segmentation model
|
||||
y = list(reversed(y.values())) # reversed for segmentation models (pred, proto)
|
||||
elif self.paddle: # PaddlePaddle
|
||||
|
||||
# PaddlePaddle
|
||||
elif self.paddle:
|
||||
im = im.cpu().numpy().astype(np.float32)
|
||||
self.input_handle.copy_from_cpu(im)
|
||||
self.predictor.run()
|
||||
y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
|
||||
elif self.ncnn: # ncnn
|
||||
|
||||
# NCNN
|
||||
elif self.ncnn:
|
||||
mat_in = self.pyncnn.Mat(im[0].cpu().numpy())
|
||||
ex = self.net.create_extractor()
|
||||
input_names, output_names = self.net.input_names(), self.net.output_names()
|
||||
ex.input(input_names[0], mat_in)
|
||||
y = []
|
||||
for output_name in output_names:
|
||||
mat_out = self.pyncnn.Mat()
|
||||
ex.extract(output_name, mat_out)
|
||||
y.append(np.array(mat_out)[None])
|
||||
elif self.triton: # NVIDIA Triton Inference Server
|
||||
with self.net.create_extractor() as ex:
|
||||
ex.input(self.net.input_names()[0], mat_in)
|
||||
y = [np.array(ex.extract(x)[1])[None] for x in self.net.output_names()]
|
||||
|
||||
# NVIDIA Triton Inference Server
|
||||
elif self.triton:
|
||||
im = im.cpu().numpy() # torch to numpy
|
||||
y = self.model(im)
|
||||
else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
|
||||
|
||||
# TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
|
||||
else:
|
||||
im = im.cpu().numpy()
|
||||
if self.saved_model: # SavedModel
|
||||
y = self.model(im, training=False) if self.keras else self.model(im)
|
||||
@ -401,20 +527,20 @@ class AutoBackend(nn.Module):
|
||||
if len(y) == 2 and len(self.names) == 999: # segments and names not defined
|
||||
ip, ib = (0, 1) if len(y[0].shape) == 4 else (1, 0) # index of protos, boxes
|
||||
nc = y[ib].shape[1] - y[ip].shape[3] - 4 # y = (1, 160, 160, 32), (1, 116, 8400)
|
||||
self.names = {i: f'class{i}' for i in range(nc)}
|
||||
self.names = {i: f"class{i}" for i in range(nc)}
|
||||
else: # Lite or Edge TPU
|
||||
details = self.input_details[0]
|
||||
integer = details['dtype'] in (np.int8, np.int16) # is TFLite quantized int8 or int16 model
|
||||
integer = details["dtype"] in (np.int8, np.int16) # is TFLite quantized int8 or int16 model
|
||||
if integer:
|
||||
scale, zero_point = details['quantization']
|
||||
im = (im / scale + zero_point).astype(details['dtype']) # de-scale
|
||||
self.interpreter.set_tensor(details['index'], im)
|
||||
scale, zero_point = details["quantization"]
|
||||
im = (im / scale + zero_point).astype(details["dtype"]) # de-scale
|
||||
self.interpreter.set_tensor(details["index"], im)
|
||||
self.interpreter.invoke()
|
||||
y = []
|
||||
for output in self.output_details:
|
||||
x = self.interpreter.get_tensor(output['index'])
|
||||
x = self.interpreter.get_tensor(output["index"])
|
||||
if integer:
|
||||
scale, zero_point = output['quantization']
|
||||
scale, zero_point = output["quantization"]
|
||||
x = (x.astype(np.float32) - zero_point) * scale # re-scale
|
||||
if x.ndim > 2: # if task is not classification
|
||||
# Denormalize xywh by image size. See https://github.com/ultralytics/ultralytics/pull/1695
|
||||
@ -438,14 +564,14 @@ class AutoBackend(nn.Module):
|
||||
|
||||
def from_numpy(self, x):
|
||||
"""
|
||||
Convert a numpy array to a tensor.
|
||||
Convert a numpy array to a tensor.
|
||||
|
||||
Args:
|
||||
x (np.ndarray): The array to be converted.
|
||||
Args:
|
||||
x (np.ndarray): The array to be converted.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): The converted tensor
|
||||
"""
|
||||
Returns:
|
||||
(torch.Tensor): The converted tensor
|
||||
"""
|
||||
return torch.tensor(x).to(self.device) if isinstance(x, np.ndarray) else x
|
||||
|
||||
def warmup(self, imgsz=(1, 3, 640, 640)):
|
||||
@ -454,44 +580,41 @@ class AutoBackend(nn.Module):
|
||||
|
||||
Args:
|
||||
imgsz (tuple): The shape of the dummy input tensor in the format (batch_size, channels, height, width)
|
||||
|
||||
Returns:
|
||||
(None): This method runs the forward pass and don't return any value
|
||||
"""
|
||||
warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton, self.nn_module
|
||||
if any(warmup_types) and (self.device.type != 'cpu' or self.triton):
|
||||
if any(warmup_types) and (self.device.type != "cpu" or self.triton):
|
||||
im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
|
||||
for _ in range(2 if self.jit else 1): #
|
||||
for _ in range(2 if self.jit else 1):
|
||||
self.forward(im) # warmup
|
||||
|
||||
@staticmethod
|
||||
def _apply_default_class_names(data):
|
||||
"""Applies default class names to an input YAML file or returns numerical class names."""
|
||||
with contextlib.suppress(Exception):
|
||||
return yaml_load(check_yaml(data))['names']
|
||||
return {i: f'class{i}' for i in range(999)} # return default if above errors
|
||||
|
||||
@staticmethod
|
||||
def _model_type(p='path/to/model.pt'):
|
||||
def _model_type(p="path/to/model.pt"):
|
||||
"""
|
||||
This function takes a path to a model file and returns the model type
|
||||
This function takes a path to a model file and returns the model type. Possibles types are pt, jit, onnx, xml,
|
||||
engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, ncnn or paddle.
|
||||
|
||||
Args:
|
||||
p: path to the model file. Defaults to path/to/model.pt
|
||||
|
||||
Examples:
|
||||
>>> model = AutoBackend(weights="path/to/model.onnx")
|
||||
>>> model_type = model._model_type() # returns "onnx"
|
||||
"""
|
||||
# Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
|
||||
# types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle]
|
||||
from ultralytics.engine.exporter import export_formats
|
||||
|
||||
sf = list(export_formats().Suffix) # export suffixes
|
||||
if not is_url(p, check=False) and not isinstance(p, str):
|
||||
if not is_url(p) and not isinstance(p, str):
|
||||
check_suffix(p, sf) # checks
|
||||
name = Path(p).name
|
||||
types = [s in name for s in sf]
|
||||
types[5] |= name.endswith('.mlmodel') # retain support for older Apple CoreML *.mlmodel formats
|
||||
types[5] |= name.endswith(".mlmodel") # retain support for older Apple CoreML *.mlmodel formats
|
||||
types[8] &= not types[9] # tflite &= not edgetpu
|
||||
if any(types):
|
||||
triton = False
|
||||
else:
|
||||
url = urlparse(p) # if url may be Triton inference server
|
||||
triton = all([any(s in url.scheme for s in ['http', 'grpc']), url.netloc])
|
||||
from urllib.parse import urlsplit
|
||||
|
||||
url = urlsplit(p)
|
||||
triton = bool(url.netloc) and bool(url.path) and url.scheme in {"http", "grpc"}
|
||||
|
||||
return types + [triton]
|
||||
|
@ -1,29 +1,147 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Ultralytics modules. Visualize with:
|
||||
Ultralytics modules.
|
||||
|
||||
from ultralytics.nn.modules import *
|
||||
import torch
|
||||
import os
|
||||
Example:
|
||||
Visualize a module with Netron.
|
||||
```python
|
||||
from ultralytics.nn.modules import *
|
||||
import torch
|
||||
import os
|
||||
|
||||
x = torch.ones(1, 128, 40, 40)
|
||||
m = Conv(128, 128)
|
||||
f = f'{m._get_name()}.onnx'
|
||||
torch.onnx.export(m, x, f)
|
||||
os.system(f'onnxsim {f} {f} && open {f}')
|
||||
x = torch.ones(1, 128, 40, 40)
|
||||
m = Conv(128, 128)
|
||||
f = f'{m._get_name()}.onnx'
|
||||
torch.onnx.export(m, x, f)
|
||||
os.system(f'onnxslim {f} {f} && open {f}') # pip install onnxslim
|
||||
```
|
||||
"""
|
||||
|
||||
from .block import (C1, C2, C3, C3TR, DFL, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x, GhostBottleneck,
|
||||
HGBlock, HGStem, Proto, RepC3)
|
||||
from .conv import (CBAM, ChannelAttention, Concat, Conv, Conv2, ConvTranspose, DWConv, DWConvTranspose2d, Focus,
|
||||
GhostConv, LightConv, RepConv, SpatialAttention)
|
||||
from .head import Classify, Detect, Pose, RTDETRDecoder, Segment
|
||||
from .transformer import (AIFI, MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer, LayerNorm2d,
|
||||
MLPBlock, MSDeformAttn, TransformerBlock, TransformerEncoderLayer, TransformerLayer)
|
||||
from .block import (
|
||||
C1,
|
||||
C2,
|
||||
C3,
|
||||
C3TR,
|
||||
DFL,
|
||||
SPP,
|
||||
SPPF,
|
||||
Bottleneck,
|
||||
BottleneckCSP,
|
||||
C2f,
|
||||
C2fAttn,
|
||||
ImagePoolingAttn,
|
||||
C3Ghost,
|
||||
C3x,
|
||||
GhostBottleneck,
|
||||
HGBlock,
|
||||
HGStem,
|
||||
Proto,
|
||||
RepC3,
|
||||
ResNetLayer,
|
||||
ContrastiveHead,
|
||||
BNContrastiveHead,
|
||||
RepNCSPELAN4,
|
||||
ADown,
|
||||
SPPELAN,
|
||||
CBFuse,
|
||||
CBLinear,
|
||||
Silence,
|
||||
PSA,
|
||||
C2fCIB,
|
||||
SCDown,
|
||||
RepVGGDW
|
||||
)
|
||||
from .conv import (
|
||||
CBAM,
|
||||
ChannelAttention,
|
||||
Concat,
|
||||
Conv,
|
||||
Conv2,
|
||||
ConvTranspose,
|
||||
DWConv,
|
||||
DWConvTranspose2d,
|
||||
Focus,
|
||||
GhostConv,
|
||||
LightConv,
|
||||
RepConv,
|
||||
SpatialAttention,
|
||||
)
|
||||
from .head import OBB, Classify, Detect, Pose, RTDETRDecoder, Segment, WorldDetect, v10Detect
|
||||
from .transformer import (
|
||||
AIFI,
|
||||
MLP,
|
||||
DeformableTransformerDecoder,
|
||||
DeformableTransformerDecoderLayer,
|
||||
LayerNorm2d,
|
||||
MLPBlock,
|
||||
MSDeformAttn,
|
||||
TransformerBlock,
|
||||
TransformerEncoderLayer,
|
||||
TransformerLayer,
|
||||
)
|
||||
|
||||
__all__ = ('Conv', 'Conv2', 'LightConv', 'RepConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus',
|
||||
'GhostConv', 'ChannelAttention', 'SpatialAttention', 'CBAM', 'Concat', 'TransformerLayer',
|
||||
'TransformerBlock', 'MLPBlock', 'LayerNorm2d', 'DFL', 'HGBlock', 'HGStem', 'SPP', 'SPPF', 'C1', 'C2', 'C3',
|
||||
'C2f', 'C3x', 'C3TR', 'C3Ghost', 'GhostBottleneck', 'Bottleneck', 'BottleneckCSP', 'Proto', 'Detect',
|
||||
'Segment', 'Pose', 'Classify', 'TransformerEncoderLayer', 'RepC3', 'RTDETRDecoder', 'AIFI',
|
||||
'DeformableTransformerDecoder', 'DeformableTransformerDecoderLayer', 'MSDeformAttn', 'MLP')
|
||||
__all__ = (
|
||||
"Conv",
|
||||
"Conv2",
|
||||
"LightConv",
|
||||
"RepConv",
|
||||
"DWConv",
|
||||
"DWConvTranspose2d",
|
||||
"ConvTranspose",
|
||||
"Focus",
|
||||
"GhostConv",
|
||||
"ChannelAttention",
|
||||
"SpatialAttention",
|
||||
"CBAM",
|
||||
"Concat",
|
||||
"TransformerLayer",
|
||||
"TransformerBlock",
|
||||
"MLPBlock",
|
||||
"LayerNorm2d",
|
||||
"DFL",
|
||||
"HGBlock",
|
||||
"HGStem",
|
||||
"SPP",
|
||||
"SPPF",
|
||||
"C1",
|
||||
"C2",
|
||||
"C3",
|
||||
"C2f",
|
||||
"C2fAttn",
|
||||
"C3x",
|
||||
"C3TR",
|
||||
"C3Ghost",
|
||||
"GhostBottleneck",
|
||||
"Bottleneck",
|
||||
"BottleneckCSP",
|
||||
"Proto",
|
||||
"Detect",
|
||||
"Segment",
|
||||
"Pose",
|
||||
"Classify",
|
||||
"TransformerEncoderLayer",
|
||||
"RepC3",
|
||||
"RTDETRDecoder",
|
||||
"AIFI",
|
||||
"DeformableTransformerDecoder",
|
||||
"DeformableTransformerDecoderLayer",
|
||||
"MSDeformAttn",
|
||||
"MLP",
|
||||
"ResNetLayer",
|
||||
"OBB",
|
||||
"WorldDetect",
|
||||
"ImagePoolingAttn",
|
||||
"ContrastiveHead",
|
||||
"BNContrastiveHead",
|
||||
"RepNCSPELAN4",
|
||||
"ADown",
|
||||
"SPPELAN",
|
||||
"CBFuse",
|
||||
"CBLinear",
|
||||
"Silence",
|
||||
"PSA",
|
||||
"C2fCIB",
|
||||
"SCDown",
|
||||
"RepVGGDW",
|
||||
"v10Detect"
|
||||
)
|
||||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -1,22 +1,50 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Block modules
|
||||
"""
|
||||
"""Block modules."""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from .conv import Conv, DWConv, GhostConv, LightConv, RepConv
|
||||
from .conv import Conv, DWConv, GhostConv, LightConv, RepConv, autopad
|
||||
from .transformer import TransformerBlock
|
||||
from ultralytics.utils.torch_utils import fuse_conv_and_bn
|
||||
|
||||
__all__ = ('DFL', 'HGBlock', 'HGStem', 'SPP', 'SPPF', 'C1', 'C2', 'C3', 'C2f', 'C3x', 'C3TR', 'C3Ghost',
|
||||
'GhostBottleneck', 'Bottleneck', 'BottleneckCSP', 'Proto', 'RepC3')
|
||||
__all__ = (
|
||||
"DFL",
|
||||
"HGBlock",
|
||||
"HGStem",
|
||||
"SPP",
|
||||
"SPPF",
|
||||
"C1",
|
||||
"C2",
|
||||
"C3",
|
||||
"C2f",
|
||||
"C2fAttn",
|
||||
"ImagePoolingAttn",
|
||||
"ContrastiveHead",
|
||||
"BNContrastiveHead",
|
||||
"C3x",
|
||||
"C3TR",
|
||||
"C3Ghost",
|
||||
"GhostBottleneck",
|
||||
"Bottleneck",
|
||||
"BottleneckCSP",
|
||||
"Proto",
|
||||
"RepC3",
|
||||
"ResNetLayer",
|
||||
"RepNCSPELAN4",
|
||||
"ADown",
|
||||
"SPPELAN",
|
||||
"CBFuse",
|
||||
"CBLinear",
|
||||
"Silence",
|
||||
)
|
||||
|
||||
|
||||
class DFL(nn.Module):
|
||||
"""
|
||||
Integral module of Distribution Focal Loss (DFL).
|
||||
|
||||
Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
|
||||
"""
|
||||
|
||||
@ -30,7 +58,7 @@ class DFL(nn.Module):
|
||||
|
||||
def forward(self, x):
|
||||
"""Applies a transformer layer on input tensor 'x' and returns a tensor."""
|
||||
b, c, a = x.shape # batch, channels, anchors
|
||||
b, _, a = x.shape # batch, channels, anchors
|
||||
return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)
|
||||
# return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a)
|
||||
|
||||
@ -38,7 +66,12 @@ class DFL(nn.Module):
|
||||
class Proto(nn.Module):
|
||||
"""YOLOv8 mask Proto module for segmentation models."""
|
||||
|
||||
def __init__(self, c1, c_=256, c2=32): # ch_in, number of protos, number of masks
|
||||
def __init__(self, c1, c_=256, c2=32):
|
||||
"""
|
||||
Initializes the YOLOv8 mask Proto module with specified number of protos and masks.
|
||||
|
||||
Input arguments are ch_in, number of protos, number of masks.
|
||||
"""
|
||||
super().__init__()
|
||||
self.cv1 = Conv(c1, c_, k=3)
|
||||
self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True) # nn.Upsample(scale_factor=2, mode='nearest')
|
||||
@ -51,11 +84,14 @@ class Proto(nn.Module):
|
||||
|
||||
|
||||
class HGStem(nn.Module):
|
||||
"""StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d.
|
||||
"""
|
||||
StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d.
|
||||
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
|
||||
"""
|
||||
|
||||
def __init__(self, c1, cm, c2):
|
||||
"""Initialize the SPP layer with input/output channels and specified kernel sizes for max pooling."""
|
||||
super().__init__()
|
||||
self.stem1 = Conv(c1, cm, 3, 2, act=nn.ReLU())
|
||||
self.stem2a = Conv(cm, cm // 2, 2, 1, 0, act=nn.ReLU())
|
||||
@ -79,11 +115,14 @@ class HGStem(nn.Module):
|
||||
|
||||
|
||||
class HGBlock(nn.Module):
|
||||
"""HG_Block of PPHGNetV2 with 2 convolutions and LightConv.
|
||||
"""
|
||||
HG_Block of PPHGNetV2 with 2 convolutions and LightConv.
|
||||
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
|
||||
"""
|
||||
|
||||
def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
|
||||
"""Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
|
||||
super().__init__()
|
||||
block = LightConv if lightconv else Conv
|
||||
self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
|
||||
@ -119,7 +158,12 @@ class SPP(nn.Module):
|
||||
class SPPF(nn.Module):
|
||||
"""Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher."""
|
||||
|
||||
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
|
||||
def __init__(self, c1, c2, k=5):
|
||||
"""
|
||||
Initializes the SPPF layer with given input/output channels and kernel size.
|
||||
|
||||
This module is equivalent to SPP(k=(5, 9, 13)).
|
||||
"""
|
||||
super().__init__()
|
||||
c_ = c1 // 2 # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
@ -137,7 +181,8 @@ class SPPF(nn.Module):
|
||||
class C1(nn.Module):
|
||||
"""CSP Bottleneck with 1 convolution."""
|
||||
|
||||
def __init__(self, c1, c2, n=1): # ch_in, ch_out, number
|
||||
def __init__(self, c1, c2, n=1):
|
||||
"""Initializes the CSP Bottleneck with configurations for 1 convolution with arguments ch_in, ch_out, number."""
|
||||
super().__init__()
|
||||
self.cv1 = Conv(c1, c2, 1, 1)
|
||||
self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n)))
|
||||
@ -151,7 +196,10 @@ class C1(nn.Module):
|
||||
class C2(nn.Module):
|
||||
"""CSP Bottleneck with 2 convolutions."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
||||
"""Initializes the CSP Bottleneck with 2 convolutions module with arguments ch_in, ch_out, number, shortcut,
|
||||
groups, expansion.
|
||||
"""
|
||||
super().__init__()
|
||||
self.c = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
||||
@ -168,7 +216,10 @@ class C2(nn.Module):
|
||||
class C2f(nn.Module):
|
||||
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||||
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
|
||||
"""Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
|
||||
expansion.
|
||||
"""
|
||||
super().__init__()
|
||||
self.c = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
||||
@ -191,7 +242,8 @@ class C2f(nn.Module):
|
||||
class C3(nn.Module):
|
||||
"""CSP Bottleneck with 3 convolutions."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
||||
"""Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
@ -218,6 +270,7 @@ class RepC3(nn.Module):
|
||||
"""Rep C3."""
|
||||
|
||||
def __init__(self, c1, c2, n=3, e=1.0):
|
||||
"""Initialize CSP Bottleneck with a single convolution using input channels, output channels, and number."""
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c2, 1, 1)
|
||||
@ -253,15 +306,18 @@ class C3Ghost(C3):
|
||||
class GhostBottleneck(nn.Module):
|
||||
"""Ghost Bottleneck https://github.com/huawei-noah/ghostnet."""
|
||||
|
||||
def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
|
||||
def __init__(self, c1, c2, k=3, s=1):
|
||||
"""Initializes GhostBottleneck module with arguments ch_in, ch_out, kernel, stride."""
|
||||
super().__init__()
|
||||
c_ = c2 // 2
|
||||
self.conv = nn.Sequential(
|
||||
GhostConv(c1, c_, 1, 1), # pw
|
||||
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
|
||||
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
|
||||
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1,
|
||||
act=False)) if s == 2 else nn.Identity()
|
||||
GhostConv(c_, c2, 1, 1, act=False), # pw-linear
|
||||
)
|
||||
self.shortcut = (
|
||||
nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
"""Applies skip connection and concatenation to input tensor."""
|
||||
@ -271,7 +327,10 @@ class GhostBottleneck(nn.Module):
|
||||
class Bottleneck(nn.Module):
|
||||
"""Standard bottleneck."""
|
||||
|
||||
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): # ch_in, ch_out, shortcut, groups, kernels, expand
|
||||
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
|
||||
"""Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
|
||||
expansion.
|
||||
"""
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c_, k[0], 1)
|
||||
@ -279,14 +338,15 @@ class Bottleneck(nn.Module):
|
||||
self.add = shortcut and c1 == c2
|
||||
|
||||
def forward(self, x):
|
||||
"""'forward()' applies the YOLOv5 FPN to input data."""
|
||||
"""'forward()' applies the YOLO FPN to input data."""
|
||||
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
||||
|
||||
|
||||
class BottleneckCSP(nn.Module):
|
||||
"""CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
||||
"""Initializes the CSP Bottleneck given arguments for ch_in, ch_out, number, shortcut, groups, expansion."""
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
@ -302,3 +362,466 @@ class BottleneckCSP(nn.Module):
|
||||
y1 = self.cv3(self.m(self.cv1(x)))
|
||||
y2 = self.cv2(x)
|
||||
return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
|
||||
|
||||
|
||||
class ResNetBlock(nn.Module):
|
||||
"""ResNet block with standard convolution layers."""
|
||||
|
||||
def __init__(self, c1, c2, s=1, e=4):
|
||||
"""Initialize convolution with given parameters."""
|
||||
super().__init__()
|
||||
c3 = e * c2
|
||||
self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
|
||||
self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
|
||||
self.cv3 = Conv(c2, c3, k=1, act=False)
|
||||
self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass through the ResNet block."""
|
||||
return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x))
|
||||
|
||||
|
||||
class ResNetLayer(nn.Module):
|
||||
"""ResNet layer with multiple ResNet blocks."""
|
||||
|
||||
def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
|
||||
"""Initializes the ResNetLayer given arguments."""
|
||||
super().__init__()
|
||||
self.is_first = is_first
|
||||
|
||||
if self.is_first:
|
||||
self.layer = nn.Sequential(
|
||||
Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
)
|
||||
else:
|
||||
blocks = [ResNetBlock(c1, c2, s, e=e)]
|
||||
blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
|
||||
self.layer = nn.Sequential(*blocks)
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass through the ResNet layer."""
|
||||
return self.layer(x)
|
||||
|
||||
|
||||
class MaxSigmoidAttnBlock(nn.Module):
|
||||
"""Max Sigmoid attention block."""
|
||||
|
||||
def __init__(self, c1, c2, nh=1, ec=128, gc=512, scale=False):
|
||||
"""Initializes MaxSigmoidAttnBlock with specified arguments."""
|
||||
super().__init__()
|
||||
self.nh = nh
|
||||
self.hc = c2 // nh
|
||||
self.ec = Conv(c1, ec, k=1, act=False) if c1 != ec else None
|
||||
self.gl = nn.Linear(gc, ec)
|
||||
self.bias = nn.Parameter(torch.zeros(nh))
|
||||
self.proj_conv = Conv(c1, c2, k=3, s=1, act=False)
|
||||
self.scale = nn.Parameter(torch.ones(1, nh, 1, 1)) if scale else 1.0
|
||||
|
||||
def forward(self, x, guide):
|
||||
"""Forward process."""
|
||||
bs, _, h, w = x.shape
|
||||
|
||||
guide = self.gl(guide)
|
||||
guide = guide.view(bs, -1, self.nh, self.hc)
|
||||
embed = self.ec(x) if self.ec is not None else x
|
||||
embed = embed.view(bs, self.nh, self.hc, h, w)
|
||||
|
||||
aw = torch.einsum("bmchw,bnmc->bmhwn", embed, guide)
|
||||
aw = aw.max(dim=-1)[0]
|
||||
aw = aw / (self.hc**0.5)
|
||||
aw = aw + self.bias[None, :, None, None]
|
||||
aw = aw.sigmoid() * self.scale
|
||||
|
||||
x = self.proj_conv(x)
|
||||
x = x.view(bs, self.nh, -1, h, w)
|
||||
x = x * aw.unsqueeze(2)
|
||||
return x.view(bs, -1, h, w)
|
||||
|
||||
|
||||
class C2fAttn(nn.Module):
|
||||
"""C2f module with an additional attn module."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, ec=128, nh=1, gc=512, shortcut=False, g=1, e=0.5):
|
||||
"""Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
|
||||
expansion.
|
||||
"""
|
||||
super().__init__()
|
||||
self.c = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
||||
self.cv2 = Conv((3 + n) * self.c, c2, 1) # optional act=FReLU(c2)
|
||||
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
|
||||
self.attn = MaxSigmoidAttnBlock(self.c, self.c, gc=gc, ec=ec, nh=nh)
|
||||
|
||||
def forward(self, x, guide):
|
||||
"""Forward pass through C2f layer."""
|
||||
y = list(self.cv1(x).chunk(2, 1))
|
||||
y.extend(m(y[-1]) for m in self.m)
|
||||
y.append(self.attn(y[-1], guide))
|
||||
return self.cv2(torch.cat(y, 1))
|
||||
|
||||
def forward_split(self, x, guide):
|
||||
"""Forward pass using split() instead of chunk()."""
|
||||
y = list(self.cv1(x).split((self.c, self.c), 1))
|
||||
y.extend(m(y[-1]) for m in self.m)
|
||||
y.append(self.attn(y[-1], guide))
|
||||
return self.cv2(torch.cat(y, 1))
|
||||
|
||||
|
||||
class ImagePoolingAttn(nn.Module):
|
||||
"""ImagePoolingAttn: Enhance the text embeddings with image-aware information."""
|
||||
|
||||
def __init__(self, ec=256, ch=(), ct=512, nh=8, k=3, scale=False):
|
||||
"""Initializes ImagePoolingAttn with specified arguments."""
|
||||
super().__init__()
|
||||
|
||||
nf = len(ch)
|
||||
self.query = nn.Sequential(nn.LayerNorm(ct), nn.Linear(ct, ec))
|
||||
self.key = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec))
|
||||
self.value = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec))
|
||||
self.proj = nn.Linear(ec, ct)
|
||||
self.scale = nn.Parameter(torch.tensor([0.0]), requires_grad=True) if scale else 1.0
|
||||
self.projections = nn.ModuleList([nn.Conv2d(in_channels, ec, kernel_size=1) for in_channels in ch])
|
||||
self.im_pools = nn.ModuleList([nn.AdaptiveMaxPool2d((k, k)) for _ in range(nf)])
|
||||
self.ec = ec
|
||||
self.nh = nh
|
||||
self.nf = nf
|
||||
self.hc = ec // nh
|
||||
self.k = k
|
||||
|
||||
def forward(self, x, text):
|
||||
"""Executes attention mechanism on input tensor x and guide tensor."""
|
||||
bs = x[0].shape[0]
|
||||
assert len(x) == self.nf
|
||||
num_patches = self.k**2
|
||||
x = [pool(proj(x)).view(bs, -1, num_patches) for (x, proj, pool) in zip(x, self.projections, self.im_pools)]
|
||||
x = torch.cat(x, dim=-1).transpose(1, 2)
|
||||
q = self.query(text)
|
||||
k = self.key(x)
|
||||
v = self.value(x)
|
||||
|
||||
# q = q.reshape(1, text.shape[1], self.nh, self.hc).repeat(bs, 1, 1, 1)
|
||||
q = q.reshape(bs, -1, self.nh, self.hc)
|
||||
k = k.reshape(bs, -1, self.nh, self.hc)
|
||||
v = v.reshape(bs, -1, self.nh, self.hc)
|
||||
|
||||
aw = torch.einsum("bnmc,bkmc->bmnk", q, k)
|
||||
aw = aw / (self.hc**0.5)
|
||||
aw = F.softmax(aw, dim=-1)
|
||||
|
||||
x = torch.einsum("bmnk,bkmc->bnmc", aw, v)
|
||||
x = self.proj(x.reshape(bs, -1, self.ec))
|
||||
return x * self.scale + text
|
||||
|
||||
|
||||
class ContrastiveHead(nn.Module):
|
||||
"""Contrastive Head for YOLO-World compute the region-text scores according to the similarity between image and text
|
||||
features.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""Initializes ContrastiveHead with specified region-text similarity parameters."""
|
||||
super().__init__()
|
||||
self.bias = nn.Parameter(torch.zeros([]))
|
||||
self.logit_scale = nn.Parameter(torch.ones([]) * torch.tensor(1 / 0.07).log())
|
||||
|
||||
def forward(self, x, w):
|
||||
"""Forward function of contrastive learning."""
|
||||
x = F.normalize(x, dim=1, p=2)
|
||||
w = F.normalize(w, dim=-1, p=2)
|
||||
x = torch.einsum("bchw,bkc->bkhw", x, w)
|
||||
return x * self.logit_scale.exp() + self.bias
|
||||
|
||||
|
||||
class BNContrastiveHead(nn.Module):
|
||||
"""
|
||||
Batch Norm Contrastive Head for YOLO-World using batch norm instead of l2-normalization.
|
||||
|
||||
Args:
|
||||
embed_dims (int): Embed dimensions of text and image features.
|
||||
"""
|
||||
|
||||
def __init__(self, embed_dims: int):
|
||||
"""Initialize ContrastiveHead with region-text similarity parameters."""
|
||||
super().__init__()
|
||||
self.norm = nn.BatchNorm2d(embed_dims)
|
||||
self.bias = nn.Parameter(torch.zeros([]))
|
||||
# use -1.0 is more stable
|
||||
self.logit_scale = nn.Parameter(-1.0 * torch.ones([]))
|
||||
|
||||
def forward(self, x, w):
|
||||
"""Forward function of contrastive learning."""
|
||||
x = self.norm(x)
|
||||
w = F.normalize(w, dim=-1, p=2)
|
||||
x = torch.einsum("bchw,bkc->bkhw", x, w)
|
||||
return x * self.logit_scale.exp() + self.bias
|
||||
|
||||
|
||||
class RepBottleneck(nn.Module):
|
||||
"""Rep bottleneck."""
|
||||
|
||||
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
|
||||
"""Initializes a RepBottleneck module with customizable in/out channels, shortcut option, groups and expansion
|
||||
ratio.
|
||||
"""
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = RepConv(c1, c_, k[0], 1)
|
||||
self.cv2 = Conv(c_, c2, k[1], 1, g=g)
|
||||
self.add = shortcut and c1 == c2
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass through RepBottleneck layer."""
|
||||
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
||||
|
||||
|
||||
class RepCSP(nn.Module):
|
||||
"""Rep CSP Bottleneck with 3 convolutions."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
||||
"""Initializes RepCSP layer with given channels, repetitions, shortcut, groups and expansion ratio."""
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
self.cv2 = Conv(c1, c_, 1, 1)
|
||||
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
|
||||
self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass through RepCSP layer."""
|
||||
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
|
||||
|
||||
|
||||
class RepNCSPELAN4(nn.Module):
|
||||
"""CSP-ELAN."""
|
||||
|
||||
def __init__(self, c1, c2, c3, c4, n=1):
|
||||
"""Initializes CSP-ELAN layer with specified channel sizes, repetitions, and convolutions."""
|
||||
super().__init__()
|
||||
self.c = c3 // 2
|
||||
self.cv1 = Conv(c1, c3, 1, 1)
|
||||
self.cv2 = nn.Sequential(RepCSP(c3 // 2, c4, n), Conv(c4, c4, 3, 1))
|
||||
self.cv3 = nn.Sequential(RepCSP(c4, c4, n), Conv(c4, c4, 3, 1))
|
||||
self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1)
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass through RepNCSPELAN4 layer."""
|
||||
y = list(self.cv1(x).chunk(2, 1))
|
||||
y.extend((m(y[-1])) for m in [self.cv2, self.cv3])
|
||||
return self.cv4(torch.cat(y, 1))
|
||||
|
||||
def forward_split(self, x):
|
||||
"""Forward pass using split() instead of chunk()."""
|
||||
y = list(self.cv1(x).split((self.c, self.c), 1))
|
||||
y.extend(m(y[-1]) for m in [self.cv2, self.cv3])
|
||||
return self.cv4(torch.cat(y, 1))
|
||||
|
||||
|
||||
class ADown(nn.Module):
|
||||
"""ADown."""
|
||||
|
||||
def __init__(self, c1, c2):
|
||||
"""Initializes ADown module with convolution layers to downsample input from channels c1 to c2."""
|
||||
super().__init__()
|
||||
self.c = c2 // 2
|
||||
self.cv1 = Conv(c1 // 2, self.c, 3, 2, 1)
|
||||
self.cv2 = Conv(c1 // 2, self.c, 1, 1, 0)
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass through ADown layer."""
|
||||
x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
|
||||
x1, x2 = x.chunk(2, 1)
|
||||
x1 = self.cv1(x1)
|
||||
x2 = torch.nn.functional.max_pool2d(x2, 3, 2, 1)
|
||||
x2 = self.cv2(x2)
|
||||
return torch.cat((x1, x2), 1)
|
||||
|
||||
|
||||
class SPPELAN(nn.Module):
|
||||
"""SPP-ELAN."""
|
||||
|
||||
def __init__(self, c1, c2, c3, k=5):
|
||||
"""Initializes SPP-ELAN block with convolution and max pooling layers for spatial pyramid pooling."""
|
||||
super().__init__()
|
||||
self.c = c3
|
||||
self.cv1 = Conv(c1, c3, 1, 1)
|
||||
self.cv2 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
||||
self.cv3 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
||||
self.cv4 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
||||
self.cv5 = Conv(4 * c3, c2, 1, 1)
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass through SPPELAN layer."""
|
||||
y = [self.cv1(x)]
|
||||
y.extend(m(y[-1]) for m in [self.cv2, self.cv3, self.cv4])
|
||||
return self.cv5(torch.cat(y, 1))
|
||||
|
||||
|
||||
class Silence(nn.Module):
|
||||
"""Silence."""
|
||||
|
||||
def __init__(self):
|
||||
"""Initializes the Silence module."""
|
||||
super(Silence, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass through Silence layer."""
|
||||
return x
|
||||
|
||||
|
||||
class CBLinear(nn.Module):
|
||||
"""CBLinear."""
|
||||
|
||||
def __init__(self, c1, c2s, k=1, s=1, p=None, g=1):
|
||||
"""Initializes the CBLinear module, passing inputs unchanged."""
|
||||
super(CBLinear, self).__init__()
|
||||
self.c2s = c2s
|
||||
self.conv = nn.Conv2d(c1, sum(c2s), k, s, autopad(k, p), groups=g, bias=True)
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass through CBLinear layer."""
|
||||
outs = self.conv(x).split(self.c2s, dim=1)
|
||||
return outs
|
||||
|
||||
|
||||
class CBFuse(nn.Module):
|
||||
"""CBFuse."""
|
||||
|
||||
def __init__(self, idx):
|
||||
"""Initializes CBFuse module with layer index for selective feature fusion."""
|
||||
super(CBFuse, self).__init__()
|
||||
self.idx = idx
|
||||
|
||||
def forward(self, xs):
|
||||
"""Forward pass through CBFuse layer."""
|
||||
target_size = xs[-1].shape[2:]
|
||||
res = [F.interpolate(x[self.idx[i]], size=target_size, mode="nearest") for i, x in enumerate(xs[:-1])]
|
||||
out = torch.sum(torch.stack(res + xs[-1:]), dim=0)
|
||||
return out
|
||||
|
||||
|
||||
class RepVGGDW(torch.nn.Module):
|
||||
def __init__(self, ed) -> None:
|
||||
super().__init__()
|
||||
self.conv = Conv(ed, ed, 7, 1, 3, g=ed, act=False)
|
||||
self.conv1 = Conv(ed, ed, 3, 1, 1, g=ed, act=False)
|
||||
self.dim = ed
|
||||
self.act = nn.SiLU()
|
||||
|
||||
def forward(self, x):
|
||||
return self.act(self.conv(x) + self.conv1(x))
|
||||
|
||||
def forward_fuse(self, x):
|
||||
return self.act(self.conv(x))
|
||||
|
||||
@torch.no_grad()
|
||||
def fuse(self):
|
||||
conv = fuse_conv_and_bn(self.conv.conv, self.conv.bn)
|
||||
conv1 = fuse_conv_and_bn(self.conv1.conv, self.conv1.bn)
|
||||
|
||||
conv_w = conv.weight
|
||||
conv_b = conv.bias
|
||||
conv1_w = conv1.weight
|
||||
conv1_b = conv1.bias
|
||||
|
||||
conv1_w = torch.nn.functional.pad(conv1_w, [2,2,2,2])
|
||||
|
||||
final_conv_w = conv_w + conv1_w
|
||||
final_conv_b = conv_b + conv1_b
|
||||
|
||||
conv.weight.data.copy_(final_conv_w)
|
||||
conv.bias.data.copy_(final_conv_b)
|
||||
|
||||
self.conv = conv
|
||||
del self.conv1
|
||||
|
||||
class CIB(nn.Module):
|
||||
"""Standard bottleneck."""
|
||||
|
||||
def __init__(self, c1, c2, shortcut=True, e=0.5, lk=False):
|
||||
"""Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
|
||||
expansion.
|
||||
"""
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = nn.Sequential(
|
||||
Conv(c1, c1, 3, g=c1),
|
||||
Conv(c1, 2 * c_, 1),
|
||||
Conv(2 * c_, 2 * c_, 3, g=2 * c_) if not lk else RepVGGDW(2 * c_),
|
||||
Conv(2 * c_, c2, 1),
|
||||
Conv(c2, c2, 3, g=c2),
|
||||
)
|
||||
|
||||
self.add = shortcut and c1 == c2
|
||||
|
||||
def forward(self, x):
|
||||
"""'forward()' applies the YOLO FPN to input data."""
|
||||
return x + self.cv1(x) if self.add else self.cv1(x)
|
||||
|
||||
class C2fCIB(C2f):
|
||||
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=False, lk=False, g=1, e=0.5):
|
||||
"""Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
|
||||
expansion.
|
||||
"""
|
||||
super().__init__(c1, c2, n, shortcut, g, e)
|
||||
self.m = nn.ModuleList(CIB(self.c, self.c, shortcut, e=1.0, lk=lk) for _ in range(n))
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, dim, num_heads=8,
|
||||
attn_ratio=0.5):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
self.head_dim = dim // num_heads
|
||||
self.key_dim = int(self.head_dim * attn_ratio)
|
||||
self.scale = self.key_dim ** -0.5
|
||||
nh_kd = nh_kd = self.key_dim * num_heads
|
||||
h = dim + nh_kd * 2
|
||||
self.qkv = Conv(dim, h, 1, act=False)
|
||||
self.proj = Conv(dim, dim, 1, act=False)
|
||||
self.pe = Conv(dim, dim, 3, 1, g=dim, act=False)
|
||||
|
||||
def forward(self, x):
|
||||
B, C, H, W = x.shape
|
||||
N = H * W
|
||||
qkv = self.qkv(x)
|
||||
q, k, v = qkv.view(B, self.num_heads, self.key_dim*2 + self.head_dim, N).split([self.key_dim, self.key_dim, self.head_dim], dim=2)
|
||||
|
||||
attn = (
|
||||
(q.transpose(-2, -1) @ k) * self.scale
|
||||
)
|
||||
attn = attn.softmax(dim=-1)
|
||||
x = (v @ attn.transpose(-2, -1)).view(B, C, H, W) + self.pe(v.reshape(B, C, H, W))
|
||||
x = self.proj(x)
|
||||
return x
|
||||
|
||||
class PSA(nn.Module):
|
||||
|
||||
def __init__(self, c1, c2, e=0.5):
|
||||
super().__init__()
|
||||
assert(c1 == c2)
|
||||
self.c = int(c1 * e)
|
||||
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
||||
self.cv2 = Conv(2 * self.c, c1, 1)
|
||||
|
||||
self.attn = Attention(self.c, attn_ratio=0.5, num_heads=self.c // 64)
|
||||
self.ffn = nn.Sequential(
|
||||
Conv(self.c, self.c*2, 1),
|
||||
Conv(self.c*2, self.c, 1, act=False)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
a, b = self.cv1(x).split((self.c, self.c), dim=1)
|
||||
b = b + self.attn(b)
|
||||
b = b + self.ffn(b)
|
||||
return self.cv2(torch.cat((a, b), 1))
|
||||
|
||||
class SCDown(nn.Module):
|
||||
def __init__(self, c1, c2, k, s):
|
||||
super().__init__()
|
||||
self.cv1 = Conv(c1, c2, 1, 1)
|
||||
self.cv2 = Conv(c2, c2, k=k, s=s, g=c2, act=False)
|
||||
|
||||
def forward(self, x):
|
||||
return self.cv2(self.cv1(x))
|
@ -1,7 +1,5 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Convolution modules
|
||||
"""
|
||||
"""Convolution modules."""
|
||||
|
||||
import math
|
||||
|
||||
@ -9,8 +7,21 @@ import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
__all__ = ('Conv', 'Conv2', 'LightConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus', 'GhostConv',
|
||||
'ChannelAttention', 'SpatialAttention', 'CBAM', 'Concat', 'RepConv')
|
||||
__all__ = (
|
||||
"Conv",
|
||||
"Conv2",
|
||||
"LightConv",
|
||||
"DWConv",
|
||||
"DWConvTranspose2d",
|
||||
"ConvTranspose",
|
||||
"Focus",
|
||||
"GhostConv",
|
||||
"ChannelAttention",
|
||||
"SpatialAttention",
|
||||
"CBAM",
|
||||
"Concat",
|
||||
"RepConv",
|
||||
)
|
||||
|
||||
|
||||
def autopad(k, p=None, d=1): # kernel, padding, dilation
|
||||
@ -24,6 +35,7 @@ def autopad(k, p=None, d=1): # kernel, padding, dilation
|
||||
|
||||
class Conv(nn.Module):
|
||||
"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
|
||||
|
||||
default_act = nn.SiLU() # default activation
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
|
||||
@ -62,14 +74,16 @@ class Conv2(Conv):
|
||||
"""Fuse parallel convolutions."""
|
||||
w = torch.zeros_like(self.conv.weight.data)
|
||||
i = [x // 2 for x in w.shape[2:]]
|
||||
w[:, :, i[0]:i[0] + 1, i[1]:i[1] + 1] = self.cv2.weight.data.clone()
|
||||
w[:, :, i[0] : i[0] + 1, i[1] : i[1] + 1] = self.cv2.weight.data.clone()
|
||||
self.conv.weight.data += w
|
||||
self.__delattr__('cv2')
|
||||
self.__delattr__("cv2")
|
||||
self.forward = self.forward_fuse
|
||||
|
||||
|
||||
class LightConv(nn.Module):
|
||||
"""Light convolution with args(ch_in, ch_out, kernel).
|
||||
"""
|
||||
Light convolution with args(ch_in, ch_out, kernel).
|
||||
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
|
||||
"""
|
||||
|
||||
@ -88,6 +102,7 @@ class DWConv(Conv):
|
||||
"""Depth-wise convolution."""
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, d=1, act=True): # ch_in, ch_out, kernel, stride, dilation, activation
|
||||
"""Initialize Depth-wise convolution with given parameters."""
|
||||
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
|
||||
|
||||
|
||||
@ -95,11 +110,13 @@ class DWConvTranspose2d(nn.ConvTranspose2d):
|
||||
"""Depth-wise transpose convolution."""
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out
|
||||
"""Initialize DWConvTranspose2d class with given parameters."""
|
||||
super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
|
||||
|
||||
|
||||
class ConvTranspose(nn.Module):
|
||||
"""Convolution transpose 2d layer."""
|
||||
|
||||
default_act = nn.SiLU() # default activation
|
||||
|
||||
def __init__(self, c1, c2, k=2, s=2, p=0, bn=True, act=True):
|
||||
@ -121,12 +138,18 @@ class ConvTranspose(nn.Module):
|
||||
class Focus(nn.Module):
|
||||
"""Focus wh information into c-space."""
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):
|
||||
"""Initializes Focus object with user defined channel, convolution, padding, group and activation values."""
|
||||
super().__init__()
|
||||
self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)
|
||||
# self.contract = Contract(gain=2)
|
||||
|
||||
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
|
||||
def forward(self, x):
|
||||
"""
|
||||
Applies convolution to concatenated tensor and returns the output.
|
||||
|
||||
Input shape is (b,c,w,h) and output shape is (b,4c,w/2,h/2).
|
||||
"""
|
||||
return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
|
||||
# return self.conv(self.contract(x))
|
||||
|
||||
@ -134,7 +157,10 @@ class Focus(nn.Module):
|
||||
class GhostConv(nn.Module):
|
||||
"""Ghost Convolution https://github.com/huawei-noah/ghostnet."""
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
|
||||
def __init__(self, c1, c2, k=1, s=1, g=1, act=True):
|
||||
"""Initializes the GhostConv object with input channels, output channels, kernel size, stride, groups and
|
||||
activation.
|
||||
"""
|
||||
super().__init__()
|
||||
c_ = c2 // 2 # hidden channels
|
||||
self.cv1 = Conv(c1, c_, k, s, None, g, act=act)
|
||||
@ -148,12 +174,16 @@ class GhostConv(nn.Module):
|
||||
|
||||
class RepConv(nn.Module):
|
||||
"""
|
||||
RepConv is a basic rep-style block, including training and deploy status. This module is used in RT-DETR.
|
||||
RepConv is a basic rep-style block, including training and deploy status.
|
||||
|
||||
This module is used in RT-DETR.
|
||||
Based on https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py
|
||||
"""
|
||||
|
||||
default_act = nn.SiLU() # default activation
|
||||
|
||||
def __init__(self, c1, c2, k=3, s=1, p=1, g=1, d=1, act=True, bn=False, deploy=False):
|
||||
"""Initializes Light Convolution layer with inputs, outputs & optional activation function."""
|
||||
super().__init__()
|
||||
assert k == 3 and p == 1
|
||||
self.g = g
|
||||
@ -166,27 +196,30 @@ class RepConv(nn.Module):
|
||||
self.conv2 = Conv(c1, c2, 1, s, p=(p - k // 2), g=g, act=False)
|
||||
|
||||
def forward_fuse(self, x):
|
||||
"""Forward process"""
|
||||
"""Forward process."""
|
||||
return self.act(self.conv(x))
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward process"""
|
||||
"""Forward process."""
|
||||
id_out = 0 if self.bn is None else self.bn(x)
|
||||
return self.act(self.conv1(x) + self.conv2(x) + id_out)
|
||||
|
||||
def get_equivalent_kernel_bias(self):
|
||||
"""Returns equivalent kernel and bias by adding 3x3 kernel, 1x1 kernel and identity kernel with their biases."""
|
||||
kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1)
|
||||
kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2)
|
||||
kernelid, biasid = self._fuse_bn_tensor(self.bn)
|
||||
return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
|
||||
|
||||
def _pad_1x1_to_3x3_tensor(self, kernel1x1):
|
||||
"""Pads a 1x1 tensor to a 3x3 tensor."""
|
||||
if kernel1x1 is None:
|
||||
return 0
|
||||
else:
|
||||
return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])
|
||||
|
||||
def _fuse_bn_tensor(self, branch):
|
||||
"""Generates appropriate kernels and biases for convolution by fusing branches of the neural network."""
|
||||
if branch is None:
|
||||
return 0, 0
|
||||
if isinstance(branch, Conv):
|
||||
@ -197,7 +230,7 @@ class RepConv(nn.Module):
|
||||
beta = branch.bn.bias
|
||||
eps = branch.bn.eps
|
||||
elif isinstance(branch, nn.BatchNorm2d):
|
||||
if not hasattr(self, 'id_tensor'):
|
||||
if not hasattr(self, "id_tensor"):
|
||||
input_dim = self.c1 // self.g
|
||||
kernel_value = np.zeros((self.c1, input_dim, 3, 3), dtype=np.float32)
|
||||
for i in range(self.c1):
|
||||
@ -214,41 +247,46 @@ class RepConv(nn.Module):
|
||||
return kernel * t, beta - running_mean * gamma / std
|
||||
|
||||
def fuse_convs(self):
|
||||
if hasattr(self, 'conv'):
|
||||
"""Combines two convolution layers into a single layer and removes unused attributes from the class."""
|
||||
if hasattr(self, "conv"):
|
||||
return
|
||||
kernel, bias = self.get_equivalent_kernel_bias()
|
||||
self.conv = nn.Conv2d(in_channels=self.conv1.conv.in_channels,
|
||||
out_channels=self.conv1.conv.out_channels,
|
||||
kernel_size=self.conv1.conv.kernel_size,
|
||||
stride=self.conv1.conv.stride,
|
||||
padding=self.conv1.conv.padding,
|
||||
dilation=self.conv1.conv.dilation,
|
||||
groups=self.conv1.conv.groups,
|
||||
bias=True).requires_grad_(False)
|
||||
self.conv = nn.Conv2d(
|
||||
in_channels=self.conv1.conv.in_channels,
|
||||
out_channels=self.conv1.conv.out_channels,
|
||||
kernel_size=self.conv1.conv.kernel_size,
|
||||
stride=self.conv1.conv.stride,
|
||||
padding=self.conv1.conv.padding,
|
||||
dilation=self.conv1.conv.dilation,
|
||||
groups=self.conv1.conv.groups,
|
||||
bias=True,
|
||||
).requires_grad_(False)
|
||||
self.conv.weight.data = kernel
|
||||
self.conv.bias.data = bias
|
||||
for para in self.parameters():
|
||||
para.detach_()
|
||||
self.__delattr__('conv1')
|
||||
self.__delattr__('conv2')
|
||||
if hasattr(self, 'nm'):
|
||||
self.__delattr__('nm')
|
||||
if hasattr(self, 'bn'):
|
||||
self.__delattr__('bn')
|
||||
if hasattr(self, 'id_tensor'):
|
||||
self.__delattr__('id_tensor')
|
||||
self.__delattr__("conv1")
|
||||
self.__delattr__("conv2")
|
||||
if hasattr(self, "nm"):
|
||||
self.__delattr__("nm")
|
||||
if hasattr(self, "bn"):
|
||||
self.__delattr__("bn")
|
||||
if hasattr(self, "id_tensor"):
|
||||
self.__delattr__("id_tensor")
|
||||
|
||||
|
||||
class ChannelAttention(nn.Module):
|
||||
"""Channel-attention module https://github.com/open-mmlab/mmdetection/tree/v3.0.0rc1/configs/rtmdet."""
|
||||
|
||||
def __init__(self, channels: int) -> None:
|
||||
"""Initializes the class and sets the basic configurations and instance variables required."""
|
||||
super().__init__()
|
||||
self.pool = nn.AdaptiveAvgPool2d(1)
|
||||
self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True)
|
||||
self.act = nn.Sigmoid()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Applies forward pass using activation on convolutions of the input, optionally using batch normalization."""
|
||||
return x * self.act(self.fc(self.pool(x)))
|
||||
|
||||
|
||||
@ -258,7 +296,7 @@ class SpatialAttention(nn.Module):
|
||||
def __init__(self, kernel_size=7):
|
||||
"""Initialize Spatial-attention module with kernel size argument."""
|
||||
super().__init__()
|
||||
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
|
||||
assert kernel_size in (3, 7), "kernel size must be 3 or 7"
|
||||
padding = 3 if kernel_size == 7 else 1
|
||||
self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
|
||||
self.act = nn.Sigmoid()
|
||||
@ -271,7 +309,8 @@ class SpatialAttention(nn.Module):
|
||||
class CBAM(nn.Module):
|
||||
"""Convolutional Block Attention Module."""
|
||||
|
||||
def __init__(self, c1, kernel_size=7): # ch_in, kernels
|
||||
def __init__(self, c1, kernel_size=7):
|
||||
"""Initialize CBAM with given input channel (c1) and kernel size."""
|
||||
super().__init__()
|
||||
self.channel_attention = ChannelAttention(c1)
|
||||
self.spatial_attention = SpatialAttention(kernel_size)
|
||||
|
@ -1,7 +1,5 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Model head modules
|
||||
"""
|
||||
"""Model head modules."""
|
||||
|
||||
import math
|
||||
|
||||
@ -9,25 +7,28 @@ import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn.init import constant_, xavier_uniform_
|
||||
|
||||
from ultralytics.utils.tal import TORCH_1_10, dist2bbox, make_anchors
|
||||
|
||||
from .block import DFL, Proto
|
||||
from ultralytics.utils.tal import TORCH_1_10, dist2bbox, dist2rbox, make_anchors
|
||||
from .block import DFL, Proto, ContrastiveHead, BNContrastiveHead
|
||||
from .conv import Conv
|
||||
from .transformer import MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer
|
||||
from .utils import bias_init_with_prob, linear_init_
|
||||
from .utils import bias_init_with_prob, linear_init
|
||||
import copy
|
||||
from ultralytics.utils import ops
|
||||
|
||||
__all__ = 'Detect', 'Segment', 'Pose', 'Classify', 'RTDETRDecoder'
|
||||
__all__ = "Detect", "Segment", "Pose", "Classify", "OBB", "RTDETRDecoder"
|
||||
|
||||
|
||||
class Detect(nn.Module):
|
||||
"""YOLOv8 Detect head for detection models."""
|
||||
|
||||
dynamic = False # force grid reconstruction
|
||||
export = False # export mode
|
||||
shape = None
|
||||
anchors = torch.empty(0) # init
|
||||
strides = torch.empty(0) # init
|
||||
|
||||
def __init__(self, nc=80, ch=()): # detection layer
|
||||
def __init__(self, nc=80, ch=()):
|
||||
"""Initializes the YOLOv8 detection layer with specified number of classes and channels."""
|
||||
super().__init__()
|
||||
self.nc = nc # number of classes
|
||||
self.nl = len(ch) # number of detection layers
|
||||
@ -36,41 +37,54 @@ class Detect(nn.Module):
|
||||
self.stride = torch.zeros(self.nl) # strides computed during build
|
||||
c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100)) # channels
|
||||
self.cv2 = nn.ModuleList(
|
||||
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch)
|
||||
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch
|
||||
)
|
||||
self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
|
||||
self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
"""Concatenates and returns predicted bounding boxes and class probabilities."""
|
||||
def inference(self, x):
|
||||
# Inference path
|
||||
shape = x[0].shape # BCHW
|
||||
for i in range(self.nl):
|
||||
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
|
||||
if self.training:
|
||||
return x
|
||||
elif self.dynamic or self.shape != shape:
|
||||
x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)
|
||||
if self.dynamic or self.shape != shape:
|
||||
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
|
||||
self.shape = shape
|
||||
|
||||
x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)
|
||||
if self.export and self.format in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs'): # avoid TF FlexSplitV ops
|
||||
box = x_cat[:, :self.reg_max * 4]
|
||||
cls = x_cat[:, self.reg_max * 4:]
|
||||
if self.export and self.format in ("saved_model", "pb", "tflite", "edgetpu", "tfjs"): # avoid TF FlexSplitV ops
|
||||
box = x_cat[:, : self.reg_max * 4]
|
||||
cls = x_cat[:, self.reg_max * 4 :]
|
||||
else:
|
||||
box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
|
||||
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
||||
|
||||
if self.export and self.format in ('tflite', 'edgetpu'):
|
||||
# Normalize xywh with image size to mitigate quantization error of TFLite integer models as done in YOLOv5:
|
||||
# https://github.com/ultralytics/yolov5/blob/0c8de3fca4a702f8ff5c435e67f378d1fce70243/models/tf.py#L307-L309
|
||||
# See this PR for details: https://github.com/ultralytics/ultralytics/pull/1695
|
||||
img_h = shape[2] * self.stride[0]
|
||||
img_w = shape[3] * self.stride[0]
|
||||
img_size = torch.tensor([img_w, img_h, img_w, img_h], device=dbox.device).reshape(1, 4, 1)
|
||||
dbox /= img_size
|
||||
if self.export and self.format in ("tflite", "edgetpu"):
|
||||
# Precompute normalization factor to increase numerical stability
|
||||
# See https://github.com/ultralytics/ultralytics/issues/7371
|
||||
grid_h = shape[2]
|
||||
grid_w = shape[3]
|
||||
grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
|
||||
norm = self.strides / (self.stride[0] * grid_size)
|
||||
dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
|
||||
else:
|
||||
dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides
|
||||
|
||||
y = torch.cat((dbox, cls.sigmoid()), 1)
|
||||
return y if self.export else (y, x)
|
||||
|
||||
def forward_feat(self, x, cv2, cv3):
|
||||
y = []
|
||||
for i in range(self.nl):
|
||||
y.append(torch.cat((cv2[i](x[i]), cv3[i](x[i])), 1))
|
||||
return y
|
||||
|
||||
def forward(self, x):
|
||||
"""Concatenates and returns predicted bounding boxes and class probabilities."""
|
||||
y = self.forward_feat(x, self.cv2, self.cv3)
|
||||
|
||||
if self.training:
|
||||
return y
|
||||
|
||||
return self.inference(y)
|
||||
|
||||
def bias_init(self):
|
||||
"""Initialize Detect() biases, WARNING: requires stride availability."""
|
||||
m = self # self.model[-1] # Detect() module
|
||||
@ -78,7 +92,13 @@ class Detect(nn.Module):
|
||||
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
||||
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
|
||||
a[-1].bias.data[:] = 1.0 # box
|
||||
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)
|
||||
b[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)
|
||||
|
||||
def decode_bboxes(self, bboxes, anchors):
|
||||
"""Decode bounding boxes."""
|
||||
if self.export:
|
||||
return dist2bbox(bboxes, anchors, xywh=False, dim=1)
|
||||
return dist2bbox(bboxes, anchors, xywh=True, dim=1)
|
||||
|
||||
|
||||
class Segment(Detect):
|
||||
@ -107,6 +127,37 @@ class Segment(Detect):
|
||||
return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
|
||||
|
||||
|
||||
class OBB(Detect):
|
||||
"""YOLOv8 OBB detection head for detection with rotation models."""
|
||||
|
||||
def __init__(self, nc=80, ne=1, ch=()):
|
||||
"""Initialize OBB with number of classes `nc` and layer channels `ch`."""
|
||||
super().__init__(nc, ch)
|
||||
self.ne = ne # number of extra parameters
|
||||
self.detect = Detect.forward
|
||||
|
||||
c4 = max(ch[0] // 4, self.ne)
|
||||
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.ne, 1)) for x in ch)
|
||||
|
||||
def forward(self, x):
|
||||
"""Concatenates and returns predicted bounding boxes and class probabilities."""
|
||||
bs = x[0].shape[0] # batch size
|
||||
angle = torch.cat([self.cv4[i](x[i]).view(bs, self.ne, -1) for i in range(self.nl)], 2) # OBB theta logits
|
||||
# NOTE: set `angle` as an attribute so that `decode_bboxes` could use it.
|
||||
angle = (angle.sigmoid() - 0.25) * math.pi # [-pi/4, 3pi/4]
|
||||
# angle = angle.sigmoid() * math.pi / 2 # [0, pi/2]
|
||||
if not self.training:
|
||||
self.angle = angle
|
||||
x = self.detect(self, x)
|
||||
if self.training:
|
||||
return x, angle
|
||||
return torch.cat([x, angle], 1) if self.export else (torch.cat([x[0], angle], 1), (x[1], angle))
|
||||
|
||||
def decode_bboxes(self, bboxes, anchors):
|
||||
"""Decode rotated bounding boxes."""
|
||||
return dist2rbox(bboxes, self.angle, anchors, dim=1)
|
||||
|
||||
|
||||
class Pose(Detect):
|
||||
"""YOLOv8 Pose head for keypoints models."""
|
||||
|
||||
@ -142,7 +193,7 @@ class Pose(Detect):
|
||||
else:
|
||||
y = kpts.clone()
|
||||
if ndim == 3:
|
||||
y[:, 2::3].sigmoid_() # inplace sigmoid
|
||||
y[:, 2::3] = y[:, 2::3].sigmoid() # sigmoid (WARNING: inplace .sigmoid_() Apple MPS bug)
|
||||
y[:, 0::ndim] = (y[:, 0::ndim] * 2.0 + (self.anchors[0] - 0.5)) * self.strides
|
||||
y[:, 1::ndim] = (y[:, 1::ndim] * 2.0 + (self.anchors[1] - 0.5)) * self.strides
|
||||
return y
|
||||
@ -151,7 +202,10 @@ class Pose(Detect):
|
||||
class Classify(nn.Module):
|
||||
"""YOLOv8 classification head, i.e. x(b,c1,20,20) to x(b,c2)."""
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
|
||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1):
|
||||
"""Initializes YOLOv8 classification head with specified input and output channels, kernel size, stride,
|
||||
padding, and groups.
|
||||
"""
|
||||
super().__init__()
|
||||
c_ = 1280 # efficientnet_b0 size
|
||||
self.conv = Conv(c1, c_, k, s, p, g)
|
||||
@ -167,27 +221,99 @@ class Classify(nn.Module):
|
||||
return x if self.training else x.softmax(1)
|
||||
|
||||
|
||||
class WorldDetect(Detect):
|
||||
def __init__(self, nc=80, embed=512, with_bn=False, ch=()):
|
||||
"""Initialize YOLOv8 detection layer with nc classes and layer channels ch."""
|
||||
super().__init__(nc, ch)
|
||||
c3 = max(ch[0], min(self.nc, 100))
|
||||
self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, embed, 1)) for x in ch)
|
||||
self.cv4 = nn.ModuleList(BNContrastiveHead(embed) if with_bn else ContrastiveHead() for _ in ch)
|
||||
|
||||
def forward(self, x, text):
|
||||
"""Concatenates and returns predicted bounding boxes and class probabilities."""
|
||||
for i in range(self.nl):
|
||||
x[i] = torch.cat((self.cv2[i](x[i]), self.cv4[i](self.cv3[i](x[i]), text)), 1)
|
||||
if self.training:
|
||||
return x
|
||||
|
||||
# Inference path
|
||||
shape = x[0].shape # BCHW
|
||||
x_cat = torch.cat([xi.view(shape[0], self.nc + self.reg_max * 4, -1) for xi in x], 2)
|
||||
if self.dynamic or self.shape != shape:
|
||||
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
|
||||
self.shape = shape
|
||||
|
||||
if self.export and self.format in ("saved_model", "pb", "tflite", "edgetpu", "tfjs"): # avoid TF FlexSplitV ops
|
||||
box = x_cat[:, : self.reg_max * 4]
|
||||
cls = x_cat[:, self.reg_max * 4 :]
|
||||
else:
|
||||
box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
|
||||
|
||||
if self.export and self.format in ("tflite", "edgetpu"):
|
||||
# Precompute normalization factor to increase numerical stability
|
||||
# See https://github.com/ultralytics/ultralytics/issues/7371
|
||||
grid_h = shape[2]
|
||||
grid_w = shape[3]
|
||||
grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
|
||||
norm = self.strides / (self.stride[0] * grid_size)
|
||||
dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
|
||||
else:
|
||||
dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides
|
||||
|
||||
y = torch.cat((dbox, cls.sigmoid()), 1)
|
||||
return y if self.export else (y, x)
|
||||
|
||||
|
||||
class RTDETRDecoder(nn.Module):
|
||||
"""
|
||||
Real-Time Deformable Transformer Decoder (RTDETRDecoder) module for object detection.
|
||||
|
||||
This decoder module utilizes Transformer architecture along with deformable convolutions to predict bounding boxes
|
||||
and class labels for objects in an image. It integrates features from multiple layers and runs through a series of
|
||||
Transformer decoder layers to output the final predictions.
|
||||
"""
|
||||
|
||||
export = False # export mode
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
nc=80,
|
||||
ch=(512, 1024, 2048),
|
||||
hd=256, # hidden dim
|
||||
nq=300, # num queries
|
||||
ndp=4, # num decoder points
|
||||
nh=8, # num head
|
||||
ndl=6, # num decoder layers
|
||||
d_ffn=1024, # dim of feedforward
|
||||
dropout=0.,
|
||||
act=nn.ReLU(),
|
||||
eval_idx=-1,
|
||||
# training args
|
||||
nd=100, # num denoising
|
||||
label_noise_ratio=0.5,
|
||||
box_noise_scale=1.0,
|
||||
learnt_init_query=False):
|
||||
self,
|
||||
nc=80,
|
||||
ch=(512, 1024, 2048),
|
||||
hd=256, # hidden dim
|
||||
nq=300, # num queries
|
||||
ndp=4, # num decoder points
|
||||
nh=8, # num head
|
||||
ndl=6, # num decoder layers
|
||||
d_ffn=1024, # dim of feedforward
|
||||
dropout=0.0,
|
||||
act=nn.ReLU(),
|
||||
eval_idx=-1,
|
||||
# Training args
|
||||
nd=100, # num denoising
|
||||
label_noise_ratio=0.5,
|
||||
box_noise_scale=1.0,
|
||||
learnt_init_query=False,
|
||||
):
|
||||
"""
|
||||
Initializes the RTDETRDecoder module with the given parameters.
|
||||
|
||||
Args:
|
||||
nc (int): Number of classes. Default is 80.
|
||||
ch (tuple): Channels in the backbone feature maps. Default is (512, 1024, 2048).
|
||||
hd (int): Dimension of hidden layers. Default is 256.
|
||||
nq (int): Number of query points. Default is 300.
|
||||
ndp (int): Number of decoder points. Default is 4.
|
||||
nh (int): Number of heads in multi-head attention. Default is 8.
|
||||
ndl (int): Number of decoder layers. Default is 6.
|
||||
d_ffn (int): Dimension of the feed-forward networks. Default is 1024.
|
||||
dropout (float): Dropout rate. Default is 0.
|
||||
act (nn.Module): Activation function. Default is nn.ReLU.
|
||||
eval_idx (int): Evaluation index. Default is -1.
|
||||
nd (int): Number of denoising. Default is 100.
|
||||
label_noise_ratio (float): Label noise ratio. Default is 0.5.
|
||||
box_noise_scale (float): Box noise scale. Default is 1.0.
|
||||
learnt_init_query (bool): Whether to learn initial query embeddings. Default is False.
|
||||
"""
|
||||
super().__init__()
|
||||
self.hidden_dim = hd
|
||||
self.nhead = nh
|
||||
@ -196,7 +322,7 @@ class RTDETRDecoder(nn.Module):
|
||||
self.num_queries = nq
|
||||
self.num_decoder_layers = ndl
|
||||
|
||||
# backbone feature projection
|
||||
# Backbone feature projection
|
||||
self.input_proj = nn.ModuleList(nn.Sequential(nn.Conv2d(x, hd, 1, bias=False), nn.BatchNorm2d(hd)) for x in ch)
|
||||
# NOTE: simplified version but it's not consistent with .pt weights.
|
||||
# self.input_proj = nn.ModuleList(Conv(x, hd, act=False) for x in ch)
|
||||
@ -205,58 +331,61 @@ class RTDETRDecoder(nn.Module):
|
||||
decoder_layer = DeformableTransformerDecoderLayer(hd, nh, d_ffn, dropout, act, self.nl, ndp)
|
||||
self.decoder = DeformableTransformerDecoder(hd, decoder_layer, ndl, eval_idx)
|
||||
|
||||
# denoising part
|
||||
# Denoising part
|
||||
self.denoising_class_embed = nn.Embedding(nc, hd)
|
||||
self.num_denoising = nd
|
||||
self.label_noise_ratio = label_noise_ratio
|
||||
self.box_noise_scale = box_noise_scale
|
||||
|
||||
# decoder embedding
|
||||
# Decoder embedding
|
||||
self.learnt_init_query = learnt_init_query
|
||||
if learnt_init_query:
|
||||
self.tgt_embed = nn.Embedding(nq, hd)
|
||||
self.query_pos_head = MLP(4, 2 * hd, hd, num_layers=2)
|
||||
|
||||
# encoder head
|
||||
# Encoder head
|
||||
self.enc_output = nn.Sequential(nn.Linear(hd, hd), nn.LayerNorm(hd))
|
||||
self.enc_score_head = nn.Linear(hd, nc)
|
||||
self.enc_bbox_head = MLP(hd, hd, 4, num_layers=3)
|
||||
|
||||
# decoder head
|
||||
# Decoder head
|
||||
self.dec_score_head = nn.ModuleList([nn.Linear(hd, nc) for _ in range(ndl)])
|
||||
self.dec_bbox_head = nn.ModuleList([MLP(hd, hd, 4, num_layers=3) for _ in range(ndl)])
|
||||
|
||||
self._reset_parameters()
|
||||
|
||||
def forward(self, x, batch=None):
|
||||
"""Runs the forward pass of the module, returning bounding box and classification scores for the input."""
|
||||
from ultralytics.models.utils.ops import get_cdn_group
|
||||
|
||||
# input projection and embedding
|
||||
# Input projection and embedding
|
||||
feats, shapes = self._get_encoder_input(x)
|
||||
|
||||
# prepare denoising training
|
||||
dn_embed, dn_bbox, attn_mask, dn_meta = \
|
||||
get_cdn_group(batch,
|
||||
self.nc,
|
||||
self.num_queries,
|
||||
self.denoising_class_embed.weight,
|
||||
self.num_denoising,
|
||||
self.label_noise_ratio,
|
||||
self.box_noise_scale,
|
||||
self.training)
|
||||
# Prepare denoising training
|
||||
dn_embed, dn_bbox, attn_mask, dn_meta = get_cdn_group(
|
||||
batch,
|
||||
self.nc,
|
||||
self.num_queries,
|
||||
self.denoising_class_embed.weight,
|
||||
self.num_denoising,
|
||||
self.label_noise_ratio,
|
||||
self.box_noise_scale,
|
||||
self.training,
|
||||
)
|
||||
|
||||
embed, refer_bbox, enc_bboxes, enc_scores = \
|
||||
self._get_decoder_input(feats, shapes, dn_embed, dn_bbox)
|
||||
embed, refer_bbox, enc_bboxes, enc_scores = self._get_decoder_input(feats, shapes, dn_embed, dn_bbox)
|
||||
|
||||
# decoder
|
||||
dec_bboxes, dec_scores = self.decoder(embed,
|
||||
refer_bbox,
|
||||
feats,
|
||||
shapes,
|
||||
self.dec_bbox_head,
|
||||
self.dec_score_head,
|
||||
self.query_pos_head,
|
||||
attn_mask=attn_mask)
|
||||
# Decoder
|
||||
dec_bboxes, dec_scores = self.decoder(
|
||||
embed,
|
||||
refer_bbox,
|
||||
feats,
|
||||
shapes,
|
||||
self.dec_bbox_head,
|
||||
self.dec_score_head,
|
||||
self.query_pos_head,
|
||||
attn_mask=attn_mask,
|
||||
)
|
||||
x = dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta
|
||||
if self.training:
|
||||
return x
|
||||
@ -264,29 +393,31 @@ class RTDETRDecoder(nn.Module):
|
||||
y = torch.cat((dec_bboxes.squeeze(0), dec_scores.squeeze(0).sigmoid()), -1)
|
||||
return y if self.export else (y, x)
|
||||
|
||||
def _generate_anchors(self, shapes, grid_size=0.05, dtype=torch.float32, device='cpu', eps=1e-2):
|
||||
def _generate_anchors(self, shapes, grid_size=0.05, dtype=torch.float32, device="cpu", eps=1e-2):
|
||||
"""Generates anchor bounding boxes for given shapes with specific grid size and validates them."""
|
||||
anchors = []
|
||||
for i, (h, w) in enumerate(shapes):
|
||||
sy = torch.arange(end=h, dtype=dtype, device=device)
|
||||
sx = torch.arange(end=w, dtype=dtype, device=device)
|
||||
grid_y, grid_x = torch.meshgrid(sy, sx, indexing='ij') if TORCH_1_10 else torch.meshgrid(sy, sx)
|
||||
grid_y, grid_x = torch.meshgrid(sy, sx, indexing="ij") if TORCH_1_10 else torch.meshgrid(sy, sx)
|
||||
grid_xy = torch.stack([grid_x, grid_y], -1) # (h, w, 2)
|
||||
|
||||
valid_WH = torch.tensor([h, w], dtype=dtype, device=device)
|
||||
valid_WH = torch.tensor([w, h], dtype=dtype, device=device)
|
||||
grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH # (1, h, w, 2)
|
||||
wh = torch.ones_like(grid_xy, dtype=dtype, device=device) * grid_size * (2.0 ** i)
|
||||
wh = torch.ones_like(grid_xy, dtype=dtype, device=device) * grid_size * (2.0**i)
|
||||
anchors.append(torch.cat([grid_xy, wh], -1).view(-1, h * w, 4)) # (1, h*w, 4)
|
||||
|
||||
anchors = torch.cat(anchors, 1) # (1, h*w*nl, 4)
|
||||
valid_mask = ((anchors > eps) * (anchors < 1 - eps)).all(-1, keepdim=True) # 1, h*w*nl, 1
|
||||
valid_mask = ((anchors > eps) & (anchors < 1 - eps)).all(-1, keepdim=True) # 1, h*w*nl, 1
|
||||
anchors = torch.log(anchors / (1 - anchors))
|
||||
anchors = anchors.masked_fill(~valid_mask, float('inf'))
|
||||
anchors = anchors.masked_fill(~valid_mask, float("inf"))
|
||||
return anchors, valid_mask
|
||||
|
||||
def _get_encoder_input(self, x):
|
||||
# get projection features
|
||||
"""Processes and returns encoder inputs by getting projection features from input and concatenating them."""
|
||||
# Get projection features
|
||||
x = [self.input_proj[i](feat) for i, feat in enumerate(x)]
|
||||
# get encoder inputs
|
||||
# Get encoder inputs
|
||||
feats = []
|
||||
shapes = []
|
||||
for feat in x:
|
||||
@ -301,14 +432,15 @@ class RTDETRDecoder(nn.Module):
|
||||
return feats, shapes
|
||||
|
||||
def _get_decoder_input(self, feats, shapes, dn_embed=None, dn_bbox=None):
|
||||
bs = len(feats)
|
||||
# prepare input for decoder
|
||||
"""Generates and prepares the input required for the decoder from the provided features and shapes."""
|
||||
bs = feats.shape[0]
|
||||
# Prepare input for decoder
|
||||
anchors, valid_mask = self._generate_anchors(shapes, dtype=feats.dtype, device=feats.device)
|
||||
features = self.enc_output(valid_mask * feats) # bs, h*w, 256
|
||||
|
||||
enc_outputs_scores = self.enc_score_head(features) # (bs, h*w, nc)
|
||||
|
||||
# query selection
|
||||
# Query selection
|
||||
# (bs, num_queries)
|
||||
topk_ind = torch.topk(enc_outputs_scores.max(-1).values, self.num_queries, dim=1).indices.view(-1)
|
||||
# (bs, num_queries)
|
||||
@ -319,7 +451,7 @@ class RTDETRDecoder(nn.Module):
|
||||
# (bs, num_queries, 4)
|
||||
top_k_anchors = anchors[:, topk_ind].view(bs, self.num_queries, -1)
|
||||
|
||||
# dynamic anchors + static content
|
||||
# Dynamic anchors + static content
|
||||
refer_bbox = self.enc_bbox_head(top_k_features) + top_k_anchors
|
||||
|
||||
enc_bboxes = refer_bbox.sigmoid()
|
||||
@ -339,20 +471,21 @@ class RTDETRDecoder(nn.Module):
|
||||
|
||||
# TODO
|
||||
def _reset_parameters(self):
|
||||
# class and bbox head init
|
||||
"""Initializes or resets the parameters of the model's various components with predefined weights and biases."""
|
||||
# Class and bbox head init
|
||||
bias_cls = bias_init_with_prob(0.01) / 80 * self.nc
|
||||
# NOTE: the weight initialization in `linear_init_` would cause NaN when training with custom datasets.
|
||||
# linear_init_(self.enc_score_head)
|
||||
# NOTE: the weight initialization in `linear_init` would cause NaN when training with custom datasets.
|
||||
# linear_init(self.enc_score_head)
|
||||
constant_(self.enc_score_head.bias, bias_cls)
|
||||
constant_(self.enc_bbox_head.layers[-1].weight, 0.)
|
||||
constant_(self.enc_bbox_head.layers[-1].bias, 0.)
|
||||
constant_(self.enc_bbox_head.layers[-1].weight, 0.0)
|
||||
constant_(self.enc_bbox_head.layers[-1].bias, 0.0)
|
||||
for cls_, reg_ in zip(self.dec_score_head, self.dec_bbox_head):
|
||||
# linear_init_(cls_)
|
||||
# linear_init(cls_)
|
||||
constant_(cls_.bias, bias_cls)
|
||||
constant_(reg_.layers[-1].weight, 0.)
|
||||
constant_(reg_.layers[-1].bias, 0.)
|
||||
constant_(reg_.layers[-1].weight, 0.0)
|
||||
constant_(reg_.layers[-1].bias, 0.0)
|
||||
|
||||
linear_init_(self.enc_output[0])
|
||||
linear_init(self.enc_output[0])
|
||||
xavier_uniform_(self.enc_output[0].weight)
|
||||
if self.learnt_init_query:
|
||||
xavier_uniform_(self.tgt_embed.weight)
|
||||
@ -360,3 +493,43 @@ class RTDETRDecoder(nn.Module):
|
||||
xavier_uniform_(self.query_pos_head.layers[1].weight)
|
||||
for layer in self.input_proj:
|
||||
xavier_uniform_(layer[0].weight)
|
||||
|
||||
class v10Detect(Detect):
|
||||
|
||||
max_det = 300
|
||||
|
||||
def __init__(self, nc=80, ch=()):
|
||||
super().__init__(nc, ch)
|
||||
c3 = max(ch[0], min(self.nc, 100)) # channels
|
||||
self.cv3 = nn.ModuleList(nn.Sequential(nn.Sequential(Conv(x, x, 3, g=x), Conv(x, c3, 1)), \
|
||||
nn.Sequential(Conv(c3, c3, 3, g=c3), Conv(c3, c3, 1)), \
|
||||
nn.Conv2d(c3, self.nc, 1)) for i, x in enumerate(ch))
|
||||
|
||||
self.one2one_cv2 = copy.deepcopy(self.cv2)
|
||||
self.one2one_cv3 = copy.deepcopy(self.cv3)
|
||||
|
||||
def forward(self, x):
|
||||
one2one = self.forward_feat([xi.detach() for xi in x], self.one2one_cv2, self.one2one_cv3)
|
||||
if not self.export:
|
||||
one2many = super().forward(x)
|
||||
|
||||
if not self.training:
|
||||
one2one = self.inference(one2one)
|
||||
if not self.export:
|
||||
return {"one2many": one2many, "one2one": one2one}
|
||||
else:
|
||||
assert(self.max_det != -1)
|
||||
boxes, scores, labels = ops.v10postprocess(one2one.permute(0, 2, 1), self.max_det, self.nc)
|
||||
return torch.cat([boxes, scores.unsqueeze(-1), labels.unsqueeze(-1).to(boxes.dtype)], dim=-1)
|
||||
else:
|
||||
return {"one2many": one2many, "one2one": one2one}
|
||||
|
||||
def bias_init(self):
|
||||
super().bias_init()
|
||||
"""Initialize Detect() biases, WARNING: requires stride availability."""
|
||||
m = self # self.model[-1] # Detect() module
|
||||
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
||||
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
||||
for a, b, s in zip(m.one2one_cv2, m.one2one_cv3, m.stride): # from
|
||||
a[-1].bias.data[:] = 1.0 # box
|
||||
b[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)
|
||||
|
@ -1,7 +1,5 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Transformer modules
|
||||
"""
|
||||
"""Transformer modules."""
|
||||
|
||||
import math
|
||||
|
||||
@ -13,19 +11,32 @@ from torch.nn.init import constant_, xavier_uniform_
|
||||
from .conv import Conv
|
||||
from .utils import _get_clones, inverse_sigmoid, multi_scale_deformable_attn_pytorch
|
||||
|
||||
__all__ = ('TransformerEncoderLayer', 'TransformerLayer', 'TransformerBlock', 'MLPBlock', 'LayerNorm2d', 'AIFI',
|
||||
'DeformableTransformerDecoder', 'DeformableTransformerDecoderLayer', 'MSDeformAttn', 'MLP')
|
||||
__all__ = (
|
||||
"TransformerEncoderLayer",
|
||||
"TransformerLayer",
|
||||
"TransformerBlock",
|
||||
"MLPBlock",
|
||||
"LayerNorm2d",
|
||||
"AIFI",
|
||||
"DeformableTransformerDecoder",
|
||||
"DeformableTransformerDecoderLayer",
|
||||
"MSDeformAttn",
|
||||
"MLP",
|
||||
)
|
||||
|
||||
|
||||
class TransformerEncoderLayer(nn.Module):
|
||||
"""Transformer Encoder."""
|
||||
"""Defines a single layer of the transformer encoder."""
|
||||
|
||||
def __init__(self, c1, cm=2048, num_heads=8, dropout=0.0, act=nn.GELU(), normalize_before=False):
|
||||
"""Initialize the TransformerEncoderLayer with specified parameters."""
|
||||
super().__init__()
|
||||
from ...utils.torch_utils import TORCH_1_9
|
||||
|
||||
if not TORCH_1_9:
|
||||
raise ModuleNotFoundError(
|
||||
'TransformerEncoderLayer() requires torch>=1.9 to use nn.MultiheadAttention(batch_first=True).')
|
||||
"TransformerEncoderLayer() requires torch>=1.9 to use nn.MultiheadAttention(batch_first=True)."
|
||||
)
|
||||
self.ma = nn.MultiheadAttention(c1, num_heads, dropout=dropout, batch_first=True)
|
||||
# Implementation of Feedforward model
|
||||
self.fc1 = nn.Linear(c1, cm)
|
||||
@ -40,11 +51,13 @@ class TransformerEncoderLayer(nn.Module):
|
||||
self.act = act
|
||||
self.normalize_before = normalize_before
|
||||
|
||||
def with_pos_embed(self, tensor, pos=None):
|
||||
"""Add position embeddings if given."""
|
||||
@staticmethod
|
||||
def with_pos_embed(tensor, pos=None):
|
||||
"""Add position embeddings to the tensor if provided."""
|
||||
return tensor if pos is None else tensor + pos
|
||||
|
||||
def forward_post(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
|
||||
"""Performs forward pass with post-normalization."""
|
||||
q = k = self.with_pos_embed(src, pos)
|
||||
src2 = self.ma(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
||||
src = src + self.dropout1(src2)
|
||||
@ -54,6 +67,7 @@ class TransformerEncoderLayer(nn.Module):
|
||||
return self.norm2(src)
|
||||
|
||||
def forward_pre(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
|
||||
"""Performs forward pass with pre-normalization."""
|
||||
src2 = self.norm1(src)
|
||||
q = k = self.with_pos_embed(src2, pos)
|
||||
src2 = self.ma(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
||||
@ -70,27 +84,30 @@ class TransformerEncoderLayer(nn.Module):
|
||||
|
||||
|
||||
class AIFI(TransformerEncoderLayer):
|
||||
"""Defines the AIFI transformer layer."""
|
||||
|
||||
def __init__(self, c1, cm=2048, num_heads=8, dropout=0, act=nn.GELU(), normalize_before=False):
|
||||
"""Initialize the AIFI instance with specified parameters."""
|
||||
super().__init__(c1, cm, num_heads, dropout, act, normalize_before)
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass for the AIFI transformer layer."""
|
||||
c, h, w = x.shape[1:]
|
||||
pos_embed = self.build_2d_sincos_position_embedding(w, h, c)
|
||||
# flatten [B, C, H, W] to [B, HxW, C]
|
||||
# Flatten [B, C, H, W] to [B, HxW, C]
|
||||
x = super().forward(x.flatten(2).permute(0, 2, 1), pos=pos_embed.to(device=x.device, dtype=x.dtype))
|
||||
return x.permute(0, 2, 1).view([-1, c, h, w]).contiguous()
|
||||
|
||||
@staticmethod
|
||||
def build_2d_sincos_position_embedding(w, h, embed_dim=256, temperature=10000.):
|
||||
grid_w = torch.arange(int(w), dtype=torch.float32)
|
||||
grid_h = torch.arange(int(h), dtype=torch.float32)
|
||||
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing='ij')
|
||||
assert embed_dim % 4 == 0, \
|
||||
'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'
|
||||
def build_2d_sincos_position_embedding(w, h, embed_dim=256, temperature=10000.0):
|
||||
"""Builds 2D sine-cosine position embedding."""
|
||||
assert embed_dim % 4 == 0, "Embed dimension must be divisible by 4 for 2D sin-cos position embedding"
|
||||
grid_w = torch.arange(w, dtype=torch.float32)
|
||||
grid_h = torch.arange(h, dtype=torch.float32)
|
||||
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing="ij")
|
||||
pos_dim = embed_dim // 4
|
||||
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
|
||||
omega = 1. / (temperature ** omega)
|
||||
omega = 1.0 / (temperature**omega)
|
||||
|
||||
out_w = grid_w.flatten()[..., None] @ omega[None]
|
||||
out_h = grid_h.flatten()[..., None] @ omega[None]
|
||||
@ -140,27 +157,32 @@ class TransformerBlock(nn.Module):
|
||||
|
||||
|
||||
class MLPBlock(nn.Module):
|
||||
"""Implements a single block of a multi-layer perceptron."""
|
||||
|
||||
def __init__(self, embedding_dim, mlp_dim, act=nn.GELU):
|
||||
"""Initialize the MLPBlock with specified embedding dimension, MLP dimension, and activation function."""
|
||||
super().__init__()
|
||||
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
||||
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
||||
self.act = act()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Forward pass for the MLPBlock."""
|
||||
return self.lin2(self.act(self.lin1(x)))
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
""" Very simple multi-layer perceptron (also called FFN)"""
|
||||
"""Implements a simple multi-layer perceptron (also called FFN)."""
|
||||
|
||||
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
|
||||
"""Initialize the MLP with specified input, hidden, output dimensions and number of layers."""
|
||||
super().__init__()
|
||||
self.num_layers = num_layers
|
||||
h = [hidden_dim] * (num_layers - 1)
|
||||
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass for the entire MLP."""
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
||||
return x
|
||||
@ -168,17 +190,23 @@ class MLP(nn.Module):
|
||||
|
||||
class LayerNorm2d(nn.Module):
|
||||
"""
|
||||
LayerNorm2d module from https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py
|
||||
https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119
|
||||
2D Layer Normalization module inspired by Detectron2 and ConvNeXt implementations.
|
||||
|
||||
Original implementations in
|
||||
https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py
|
||||
and
|
||||
https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py.
|
||||
"""
|
||||
|
||||
def __init__(self, num_channels, eps=1e-6):
|
||||
"""Initialize LayerNorm2d with the given parameters."""
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.ones(num_channels))
|
||||
self.bias = nn.Parameter(torch.zeros(num_channels))
|
||||
self.eps = eps
|
||||
|
||||
def forward(self, x):
|
||||
"""Perform forward pass for 2D layer normalization."""
|
||||
u = x.mean(1, keepdim=True)
|
||||
s = (x - u).pow(2).mean(1, keepdim=True)
|
||||
x = (x - u) / torch.sqrt(s + self.eps)
|
||||
@ -187,17 +215,19 @@ class LayerNorm2d(nn.Module):
|
||||
|
||||
class MSDeformAttn(nn.Module):
|
||||
"""
|
||||
Original Multi-Scale Deformable Attention Module.
|
||||
Multiscale Deformable Attention Module based on Deformable-DETR and PaddleDetection implementations.
|
||||
|
||||
https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py
|
||||
"""
|
||||
|
||||
def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4):
|
||||
"""Initialize MSDeformAttn with the given parameters."""
|
||||
super().__init__()
|
||||
if d_model % n_heads != 0:
|
||||
raise ValueError(f'd_model must be divisible by n_heads, but got {d_model} and {n_heads}')
|
||||
raise ValueError(f"d_model must be divisible by n_heads, but got {d_model} and {n_heads}")
|
||||
_d_per_head = d_model // n_heads
|
||||
# you'd better set _d_per_head to a power of 2 which is more efficient in our CUDA implementation
|
||||
assert _d_per_head * n_heads == d_model, '`d_model` must be divisible by `n_heads`'
|
||||
# Better to set _d_per_head to a power of 2 which is more efficient in a CUDA implementation
|
||||
assert _d_per_head * n_heads == d_model, "`d_model` must be divisible by `n_heads`"
|
||||
|
||||
self.im2col_step = 64
|
||||
|
||||
@ -214,25 +244,32 @@ class MSDeformAttn(nn.Module):
|
||||
self._reset_parameters()
|
||||
|
||||
def _reset_parameters(self):
|
||||
constant_(self.sampling_offsets.weight.data, 0.)
|
||||
"""Reset module parameters."""
|
||||
constant_(self.sampling_offsets.weight.data, 0.0)
|
||||
thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads)
|
||||
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
|
||||
grid_init = (grid_init / grid_init.abs().max(-1, keepdim=True)[0]).view(self.n_heads, 1, 1, 2).repeat(
|
||||
1, self.n_levels, self.n_points, 1)
|
||||
grid_init = (
|
||||
(grid_init / grid_init.abs().max(-1, keepdim=True)[0])
|
||||
.view(self.n_heads, 1, 1, 2)
|
||||
.repeat(1, self.n_levels, self.n_points, 1)
|
||||
)
|
||||
for i in range(self.n_points):
|
||||
grid_init[:, :, i, :] *= i + 1
|
||||
with torch.no_grad():
|
||||
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
|
||||
constant_(self.attention_weights.weight.data, 0.)
|
||||
constant_(self.attention_weights.bias.data, 0.)
|
||||
constant_(self.attention_weights.weight.data, 0.0)
|
||||
constant_(self.attention_weights.bias.data, 0.0)
|
||||
xavier_uniform_(self.value_proj.weight.data)
|
||||
constant_(self.value_proj.bias.data, 0.)
|
||||
constant_(self.value_proj.bias.data, 0.0)
|
||||
xavier_uniform_(self.output_proj.weight.data)
|
||||
constant_(self.output_proj.bias.data, 0.)
|
||||
constant_(self.output_proj.bias.data, 0.0)
|
||||
|
||||
def forward(self, query, refer_bbox, value, value_shapes, value_mask=None):
|
||||
"""
|
||||
Perform forward pass for multiscale deformable attention.
|
||||
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
|
||||
|
||||
Args:
|
||||
query (torch.Tensor): [bs, query_length, C]
|
||||
refer_bbox (torch.Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0),
|
||||
@ -265,31 +302,34 @@ class MSDeformAttn(nn.Module):
|
||||
add = sampling_offsets / self.n_points * refer_bbox[:, :, None, :, None, 2:] * 0.5
|
||||
sampling_locations = refer_bbox[:, :, None, :, None, :2] + add
|
||||
else:
|
||||
raise ValueError(f'Last dim of reference_points must be 2 or 4, but got {num_points}.')
|
||||
raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {num_points}.")
|
||||
output = multi_scale_deformable_attn_pytorch(value, value_shapes, sampling_locations, attention_weights)
|
||||
return self.output_proj(output)
|
||||
|
||||
|
||||
class DeformableTransformerDecoderLayer(nn.Module):
|
||||
"""
|
||||
Deformable Transformer Decoder Layer inspired by PaddleDetection and Deformable-DETR implementations.
|
||||
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
|
||||
https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/deformable_transformer.py
|
||||
"""
|
||||
|
||||
def __init__(self, d_model=256, n_heads=8, d_ffn=1024, dropout=0., act=nn.ReLU(), n_levels=4, n_points=4):
|
||||
def __init__(self, d_model=256, n_heads=8, d_ffn=1024, dropout=0.0, act=nn.ReLU(), n_levels=4, n_points=4):
|
||||
"""Initialize the DeformableTransformerDecoderLayer with the given parameters."""
|
||||
super().__init__()
|
||||
|
||||
# self attention
|
||||
# Self attention
|
||||
self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.norm1 = nn.LayerNorm(d_model)
|
||||
|
||||
# cross attention
|
||||
# Cross attention
|
||||
self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
self.norm2 = nn.LayerNorm(d_model)
|
||||
|
||||
# ffn
|
||||
# FFN
|
||||
self.linear1 = nn.Linear(d_model, d_ffn)
|
||||
self.act = act
|
||||
self.dropout3 = nn.Dropout(dropout)
|
||||
@ -299,37 +339,46 @@ class DeformableTransformerDecoderLayer(nn.Module):
|
||||
|
||||
@staticmethod
|
||||
def with_pos_embed(tensor, pos):
|
||||
"""Add positional embeddings to the input tensor, if provided."""
|
||||
return tensor if pos is None else tensor + pos
|
||||
|
||||
def forward_ffn(self, tgt):
|
||||
"""Perform forward pass through the Feed-Forward Network part of the layer."""
|
||||
tgt2 = self.linear2(self.dropout3(self.act(self.linear1(tgt))))
|
||||
tgt = tgt + self.dropout4(tgt2)
|
||||
return self.norm3(tgt)
|
||||
|
||||
def forward(self, embed, refer_bbox, feats, shapes, padding_mask=None, attn_mask=None, query_pos=None):
|
||||
# self attention
|
||||
"""Perform the forward pass through the entire decoder layer."""
|
||||
|
||||
# Self attention
|
||||
q = k = self.with_pos_embed(embed, query_pos)
|
||||
tgt = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), embed.transpose(0, 1),
|
||||
attn_mask=attn_mask)[0].transpose(0, 1)
|
||||
tgt = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), embed.transpose(0, 1), attn_mask=attn_mask)[
|
||||
0
|
||||
].transpose(0, 1)
|
||||
embed = embed + self.dropout1(tgt)
|
||||
embed = self.norm1(embed)
|
||||
|
||||
# cross attention
|
||||
tgt = self.cross_attn(self.with_pos_embed(embed, query_pos), refer_bbox.unsqueeze(2), feats, shapes,
|
||||
padding_mask)
|
||||
# Cross attention
|
||||
tgt = self.cross_attn(
|
||||
self.with_pos_embed(embed, query_pos), refer_bbox.unsqueeze(2), feats, shapes, padding_mask
|
||||
)
|
||||
embed = embed + self.dropout2(tgt)
|
||||
embed = self.norm2(embed)
|
||||
|
||||
# ffn
|
||||
# FFN
|
||||
return self.forward_ffn(embed)
|
||||
|
||||
|
||||
class DeformableTransformerDecoder(nn.Module):
|
||||
"""
|
||||
Implementation of Deformable Transformer Decoder based on PaddleDetection.
|
||||
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
|
||||
"""
|
||||
|
||||
def __init__(self, hidden_dim, decoder_layer, num_layers, eval_idx=-1):
|
||||
"""Initialize the DeformableTransformerDecoder with the given parameters."""
|
||||
super().__init__()
|
||||
self.layers = _get_clones(decoder_layer, num_layers)
|
||||
self.num_layers = num_layers
|
||||
@ -337,16 +386,18 @@ class DeformableTransformerDecoder(nn.Module):
|
||||
self.eval_idx = eval_idx if eval_idx >= 0 else num_layers + eval_idx
|
||||
|
||||
def forward(
|
||||
self,
|
||||
embed, # decoder embeddings
|
||||
refer_bbox, # anchor
|
||||
feats, # image features
|
||||
shapes, # feature shapes
|
||||
bbox_head,
|
||||
score_head,
|
||||
pos_mlp,
|
||||
attn_mask=None,
|
||||
padding_mask=None):
|
||||
self,
|
||||
embed, # decoder embeddings
|
||||
refer_bbox, # anchor
|
||||
feats, # image features
|
||||
shapes, # feature shapes
|
||||
bbox_head,
|
||||
score_head,
|
||||
pos_mlp,
|
||||
attn_mask=None,
|
||||
padding_mask=None,
|
||||
):
|
||||
"""Perform the forward pass through the entire decoder."""
|
||||
output = embed
|
||||
dec_bboxes = []
|
||||
dec_cls = []
|
||||
|
@ -1,7 +1,5 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Module utils
|
||||
"""
|
||||
"""Module utils."""
|
||||
|
||||
import copy
|
||||
import math
|
||||
@ -12,37 +10,44 @@ import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.init import uniform_
|
||||
|
||||
__all__ = 'multi_scale_deformable_attn_pytorch', 'inverse_sigmoid'
|
||||
__all__ = "multi_scale_deformable_attn_pytorch", "inverse_sigmoid"
|
||||
|
||||
|
||||
def _get_clones(module, n):
|
||||
"""Create a list of cloned modules from the given module."""
|
||||
return nn.ModuleList([copy.deepcopy(module) for _ in range(n)])
|
||||
|
||||
|
||||
def bias_init_with_prob(prior_prob=0.01):
|
||||
"""initialize conv/fc bias value according to a given probability value."""
|
||||
"""Initialize conv/fc bias value according to a given probability value."""
|
||||
return float(-np.log((1 - prior_prob) / prior_prob)) # return bias_init
|
||||
|
||||
|
||||
def linear_init_(module):
|
||||
def linear_init(module):
|
||||
"""Initialize the weights and biases of a linear module."""
|
||||
bound = 1 / math.sqrt(module.weight.shape[0])
|
||||
uniform_(module.weight, -bound, bound)
|
||||
if hasattr(module, 'bias') and module.bias is not None:
|
||||
if hasattr(module, "bias") and module.bias is not None:
|
||||
uniform_(module.bias, -bound, bound)
|
||||
|
||||
|
||||
def inverse_sigmoid(x, eps=1e-5):
|
||||
"""Calculate the inverse sigmoid function for a tensor."""
|
||||
x = x.clamp(min=0, max=1)
|
||||
x1 = x.clamp(min=eps)
|
||||
x2 = (1 - x).clamp(min=eps)
|
||||
return torch.log(x1 / x2)
|
||||
|
||||
|
||||
def multi_scale_deformable_attn_pytorch(value: torch.Tensor, value_spatial_shapes: torch.Tensor,
|
||||
sampling_locations: torch.Tensor,
|
||||
attention_weights: torch.Tensor) -> torch.Tensor:
|
||||
def multi_scale_deformable_attn_pytorch(
|
||||
value: torch.Tensor,
|
||||
value_spatial_shapes: torch.Tensor,
|
||||
sampling_locations: torch.Tensor,
|
||||
attention_weights: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Multi-scale deformable attention.
|
||||
Multiscale deformable attention.
|
||||
|
||||
https://github.com/IDEA-Research/detrex/blob/main/detrex/layers/multi_scale_deform_attn.py
|
||||
"""
|
||||
|
||||
@ -56,23 +61,25 @@ def multi_scale_deformable_attn_pytorch(value: torch.Tensor, value_spatial_shape
|
||||
# bs, H_*W_, num_heads*embed_dims ->
|
||||
# bs, num_heads*embed_dims, H_*W_ ->
|
||||
# bs*num_heads, embed_dims, H_, W_
|
||||
value_l_ = (value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_))
|
||||
value_l_ = value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_)
|
||||
# bs, num_queries, num_heads, num_points, 2 ->
|
||||
# bs, num_heads, num_queries, num_points, 2 ->
|
||||
# bs*num_heads, num_queries, num_points, 2
|
||||
sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1)
|
||||
# bs*num_heads, embed_dims, num_queries, num_points
|
||||
sampling_value_l_ = F.grid_sample(value_l_,
|
||||
sampling_grid_l_,
|
||||
mode='bilinear',
|
||||
padding_mode='zeros',
|
||||
align_corners=False)
|
||||
sampling_value_l_ = F.grid_sample(
|
||||
value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
|
||||
)
|
||||
sampling_value_list.append(sampling_value_l_)
|
||||
# (bs, num_queries, num_heads, num_levels, num_points) ->
|
||||
# (bs, num_heads, num_queries, num_levels, num_points) ->
|
||||
# (bs, num_heads, 1, num_queries, num_levels*num_points)
|
||||
attention_weights = attention_weights.transpose(1, 2).reshape(bs * num_heads, 1, num_queries,
|
||||
num_levels * num_points)
|
||||
output = ((torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights).sum(-1).view(
|
||||
bs, num_heads * embed_dims, num_queries))
|
||||
attention_weights = attention_weights.transpose(1, 2).reshape(
|
||||
bs * num_heads, 1, num_queries, num_levels * num_points
|
||||
)
|
||||
output = (
|
||||
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
|
||||
.sum(-1)
|
||||
.view(bs, num_heads * embed_dims, num_queries)
|
||||
)
|
||||
return output.transpose(1, 2).contiguous()
|
||||
|
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user